
QoS Constrained Optimal Sink and Relay
Placement in Planned Wireless Sensor Networks

Abhijit Bhattacharya, Akhila Rao, Naveen K. P., Nishanth P. P.,
S.V.R. Anand, and Anurag Kumar

Dept. of Electrical Communication Engineering, Indian Institute of Science (IISc), Bangalore 560012, India.
Email: {abhijit, naveenkp, anand, anurag}@ece.iisc.ernet.in, {akhila.suresh.rao, nishanth.pp93}@gmail.com

Abstract— We are given a set of sensors at given locations, a
set of potential locations for placing base stations (BSs, or sinks),
and another set of potential locations for placing wireless relay
nodes. There is a cost for placing a BS and a cost for placing a
relay. The problem we consider is to select a set of BS locations,
a set of relay locations, and an association of sensor nodes with
the selected BS locations, so that the number of hops in the
path from each sensor to its BS is bounded by hmax, and among
all such feasible networks, the cost of the selected network is
the minimum. The hop count bound suffices to ensure a certain
probability of the data being delivered to the BS within a given
maximum delay under a light traffic model. We observe that the
problem is NP-Hard, and is hard to even approximate within
a constant factor. For this problem, we propose a polynomial
time approximation algorithm (SmartSelect) based on a relay
placement algorithm proposed in our earlier work, along with a
modification of the greedy algorithm for weighted set cover. We
have analyzed the worst case approximation guarantee for this
algorithm. We have also proposed a polynomial time heuristic
to improve upon the solution provided by SmartSelect. Our
numerical results demonstrate that the algorithms provide good
quality solutions using very little computation time in various
randomly generated network scenarios.

Index Terms—Wireless sensor network design; Multiple sink
and relay placement; QoS-aware network design

I. INTRODUCTION1

Recently there has been increasing interest in replacing
wireline industrial sensor networks with wireless packet net-
works ([1], [2], [3]). Owing to the small communication range
of the sensing nodes (typically a few tens of meters), usually
multi-hopping is needed to communicate to the control center.
The practical problem that we consider in this paper is the
following: there are already deployed, static sensors (also re-
ferred to as sources) from which measurements, encapsulated
into packets, need to be collected. Additional relays and base
stations (BS) need to be placed in the region in order to provide
multi-hop paths from each of the sources to at least one BS.
The sources can also act as relays for the packets from other
sources. The network so obtained needs to provide certain
quality-of-service (QoS) to the packets flowing over it, in terms
of, e.g., delivery probability, or packet delay.

In most practical applications, due to the presence of
obstacles or taboo regions, we cannot place relays and sinks
anywhere in the region, but only at certain designated loca-
tions. This leads to the problem of constrained node placement
in which the nodes are constrained to be placed at certain
potential locations. Further, only certain links are permitted2.
See Figure 1 for a depiction of the problem.

We assume that there is a cost associated with each sink,
and each relay. The objective of the design is to place a
minimum cost selection of sinks and relays (at the potential
locations) while achieving a network that meets the following
QoS objectives:

1This work was supported by the Department of Science and Technology
(DST) under the Indo-Brazil project, and under a J. C. Bose fellowship

2This could be because some links could be too long, leading to high bit
error rate and hence large packet delay, or due to an obstacle, e.g., a firewall

Sensor Nodes

Good links

(also serve as relays)

Potential Relay Node Locations

Potential Sink Locations

Source

Potential relay

Potential sink

Fig. 1. The constrained sink and relay placement problem; the edges denote
the useful links between the nodes.

1) There is a path from each source node to at least one
BS.

2) The maximum delay on any path is bounded by a
given value dmax, and the packet delivery probability
(the probability of delivering a packet within the delay
bound) on any path is ≥ pdel.

In wireless networks, the actual link qualities are unknown
a priori, and can only be ascertained by field measurements;
designs based only on approximate stochastic RF propagation
models cannot be guaranteed to work when deployed on field.
This motivates iterative algorithms that explore the field by
making partial deployments and link quality measurements,
and build the network iteratively (see, for example, [4]). As
explained in [4], such iterative algorithms require to invoke, at
each iteration, a design module which extracts from a network
graph with given link qualities, a subgraph that meets the QoS
requirements assuming the given link qualities to be true. Since
this module has to be invoked at each of potentially many
iterations, it should have low time complexity. We therefore,
seek fast algorithms that provide optimal or close to optimal
solutions. In our earlier work [5], [6], [4], we addressed this
problem for the special case where there is a single BS at a
designated location. In this paper, we study the more general
problem where there is the possibility of deploying multiple
sinks. This general problem is of interest for scalability of the
network design, i.e., when we want to deploy a network over
an area so large that a single sink based solution fails to meet
the desired QoS requirements.3

II. THE NETWORK DESIGN PROBLEM

The Lone Packet Model: In this paper, we assume that
the traffic from the source nodes is very light. Formally, we
define “light traffic” as follows: at any point of time, there is at
most one packet flowing in the network. We call this the “lone
packet traffic model,” which is realistic for many applications,

3For example, since in low power wireless networks the usable link lengths
are limited, with just one sink the number of hops from some of the sources
to the sink can become so large as to make the packet delivery probability
unacceptably small



including the so called condition monitoring/industrial teleme-
try applications ([7]), where the time between successive
measurements being taken is sufficiently long so that the
measurements can be staggered so as not to occupy the
medium at the same time. The main motivation behind the
lone-packet model comes from the following important result
(formally proved in [6]): for a design (network) to satisfy the
QoS objectives for a given positive traffic arrival rate, it is
necessary that the network satisfies the QoS objectives under
the lone packet model.

This light traffic assumption facilitates the conversion of
QoS objectives into simple graph constraints. The designs
based on lone-packet model can be used as a starting point
for network design with more general arrival processes. Packet
level simulation results reported in [6] suggest that such lone-
packet model based designs suffice up to some small (but
useful) positive arrival rates. For a more detailed discussion
on the applicability and justification of the lone-packet model,
see [6].
The Network Design Setting: Given a set of source nodes
or required vertices Q, a set of potential relay locations R,
each with cost cr, and a set of potential sink locations B,
each with cost cs, we consider a graph G = (V,E) on V =
Q∪R∪B with E consisting of all feasible edges. Throughout
this work, we assume that all nodes operate at the same fixed
power level. We can then define the set of feasible edges E,
either by imposing a bound on the packet error rate (PER) of
each link, or alternately, by constraining the maximum allowed
link length (which, in turn, affects the link PER). Having thus
characterized the link quality of each feasible link in the graph
G, it can be shown by an elementary analysis that the QoS
objectives (dmax and pdel) can be met by imposing a hop count
bound of hmax between each source node and the sink. Details
of this analysis are provided in [6], where we have considered
the practical situation of slowly fading links, and packet losses
due to random channel errors. Thus, there is a random delay
at each hop due to packet retransmissions, and packets could
be dropped if a retransmission limit is reached. Note that as
a consequence of the lone packet assumption, the delay along
a path is additive, i.e., it is simply the sum of the delays on
each hop along the path.
Problem Formulation: Given the graph G = (V,E) on V =
Q∪R∪B with E consisting of all feasible edges (as explained
earlier), costs cs and cr of each sink and relay respectively,
and a hop constraint hmax, the problem is to extract from
this graph, a minimum cost subgraph spanning Q, such that
each source has a path to at least one sink with hop count
≤ hmax. We call this the MultiSink Steiner Network-Minimum
Cost-Hop Constraint (MSSN-MC-HC) problem.4

Complexity of the Problem
Proposition 1: 1) Complexity: The MSSN-MC-HC prob-

lem is NP-Hard. 2) Inapproximability: The MSSN-MC-HC
problem is not constant factor approximable. In particular,
it cannot be approximated to within a factor better than
O(log(m)), where m is the number of sensors.

Proof: Proof uses the restriction argument [8, p. 63,
Section 3.2.1] along with a reduction from set cover to the
subclass of problems with cr = 0. For details, see [9].

Proposition 2: If cs

cr
≥ m(m + 1)(hmax − 1), for some

m ∈ N, m > m ≥ 1, then the worst case approximation

4In this formulation, we have not taken into account the energy expenditure
at a node due to transmission and reception since, in a light traffic setting, the
fraction of time a node is transmitting or receiving a packet is small compared
to the idle time of the node.

guarantee of any algorithm for the MSSN-MC-HC problem is
upper bounded by m

(
1 + 1

m(m+1)

)
, where |Q| = m.

Proof: The proof follows by observing that the cost of
the optimal solution to the MSSN-MC-HC problem is lower
bounded by cs (since at least one sink is required), and the
cost of the outcome of any algorithm is upper bounded by
mcs + m(hmax − 1)cr. See [9] for details.

Related Work: [10], [11] proposed approximation algorithms
for variations of the NP-Hard problem of unconstrained relay
placement for connectivity, where a minimum number of
relays have to be placed (they can be placed anywhere;
no potential locations are given) to obtain a tree spanning
a given set of sources and BS. No QoS constraint was
imposed in their formulations. Bredin et al. [12] proposed an
O(1) approximation algorithm for the NP-hard problem of
optimal (unconstrained) relay placement for k−connectivity,
but without any QoS constraint. [13] and references therein
proposed approximation algorithms for variations of the NP-
Hard problem of constrained relay placement for connectivity
and survivability, but without any constraint on the end-to-end
QoS. In [5], [6], [4], we have studied the NP-Hard problem
of constrained relay placement with end-to-end QoS objective,
but with a single Base Station at a given location. In our cur-
rent work, we aim at extending this formulation to incorporate
the possibility of deploying multiple sinks. Recently, Sitanayah
et al. [14] have proposed a local search heuristic (GRASP-
MSRP) of exponential time-complexity for the MSSN-MC-HC
problem. However, no theoretical study of either the problem,
or the proposed algorithm was provided. The time-complexity
of the algorithm prohibits its use in an iterative network design
process such as SmartConnect [4]. Hence, we seek, instead,
fast heuristics that perform reasonably close to optimal.

III. MSSN-MC-HC: A HEURISTIC AND ITS ANALYSIS

In this section, we present a polynomial time approximation
algorithm for the MSSN-MC-HC problem. The algorithm
proceeds by reducing the problem to a modified version of
the weighted set cover problem, and the greedy algorithm for
weighted set cover is used to obtain a solution. Since the
greedy algorithm for weighted set cover is polynomial time
[15], the proposed algorithm is polynomial time.
A. SmartSelect: A Greedy Algorithm for Sink and Relay Se-
lection
1) The single sink, zero relay case: Consider the restriction
of the graph G to only the sources, Q, and the potential sinks,
B. For each sink b ∈ B, find the shortest path tree rooted at
b spanning the sources in Q. If there exists a sink b0 such
that the SPT rooted at b0 satisfies the hop constraint for each
source in Q, then we are done; the optimal solution requires
a single sink, and no relays. Otherwise, go to the next step.
2) Checking feasibility: On graph G (i.e., now including all
sources and relays), obtain a shortest path tree rooted at each
potential sink location (i.e., we have as many shortest path
trees as there are potential sinks). If there exists a source such
that its shortest paths to all the sinks have lengths exceeding
hmax, declare the problem infeasible. Else, go to the next step.
3) For each sink bi ∈ B, i = 1, . . . , |B|, identify the set
of sources, say Qi, whose shortest paths to bi have lengths
≤ hmax. The set Qi ⊆ Q, is said to be covered by bi. Note
that, having ensured feasibility in Step 2, ∪|B|i=1Qi = Q. Also
identify the set of relays, Ri ⊆ R, whose shortest paths to bi
have lengths ≤ hmax− 1 (this helps to reduce the complexity
of Step 4; indeed Ri is the set of relays that may ever be used
to connect the sources in Qi to bi).



4) Set j ← 0. The iterations will be indexed by j. Set Q
(0)
i =

Qi, B(0) = B. B(j) denotes the set of sinks not yet picked
at the start of iteration j, j ≥ 0, and Q

(j)
i denotes the set of

uncovered sources that are associated with a BS bi ∈ B(j) at
the start of iteration j.

The greedy iterative algorithm:
5) For each i such that bi ∈ B(j), let G

(j)
i be the restriction

of G to Q
(j)
i ∪Ri ∪{bi}. Run an algorithm (e.g., the SPTiRP

algorithm in [6]) on G
(j)
i to obtain a near-optimal subset of

relays, R̂
(j)
i ⊆ Ri, that connect the sources in Q

(j)
i to bi with

≤ hmax hops.
6) For each i such that bi ∈ B(j), consider the restriction of
G

(j)
i to Q

(j)
i ∪ R̂

(j)
i ∪ bi. Denote this graph by G̃

(j)
i .

7) For each i such that bi ∈ B(j), define the cost of G̃
(j)
i as

C
(j)
i = cs+cr×|R̂(j)

i |
|Q(j)

i |
, i.e., the cost of a subgraph is computed

as the total cost per source.
8) The greedy selection: Pick the subgraph with the least
cost among the subgraphs not yet picked, i.e., pick G̃(j) =
arg min

G̃
(j)
i

C
(j)
i . Break ties by picking the subgraph that

covers more sources. Let b̃(j) be the sink associated with G̃(j).
9) Let Q(j) = Q ∩ G̃(j), R(j) = R ∩ G̃(j). If ∪j

k=1Q
(k) = Q,

STOP, i.e., stop when all the sources have been covered. Else,
go to next step.
10) Update step: Set B(j+1) = B(j)\b̃(j). For each i such that
bi ∈ B(j+1), set Q

(j+1)
i = Q

(j)
i \(G̃(j) ∩Q

(j)
i ). Moreover, set

the cost of each relay in R(j) to zero for all future iterations.
This is done so that sources and relays that are shared by
covers do not get counted more than once.
11) Set j ← j + 1, and go to Step 5.

B. Analysis of SmartSelect
Some observations:

1) If the optimal solution uses a single sink, and no re-
lays, SmartSelect achieves the optimal solution (follows from
Step 1).
2) For the sink placement problem (i.e., cr = 0), the Smart-
Select algorithm reduces exactly to the greedy algorithm for
weighted set cover ([15]), and hence achieves the best possible
worst case approximation guarantee (O(log(m))) for the sink
placement problem, where m is the number of sources.

Worst Case Approximation Guarantee: We already know
that when an optimal solution uses a single sink, and no
relays, the SmartSelect algorithm gives the optimal solution.
We, therefore, focus on instances where any optimal solution
uses at least one sink, and at least one relay. We start with
the following lemma.

Lemma 1: Suppose cs

cr
≥ m(m + 1)(hmax − 1), for some

m ∈ N, m > m ≥ 1.5 Then the following holds: In an iteration
in which the number of sources remaining to be covered is
> m, if there is a (not yet selected) sink that covers all the
remaining sources, the greedy algorithm will select a sink that
covers at least (m + 1) sources.

Proof: Suppose, up to the start of iteration j, j ≥ 0,
m(j) sources have been covered, and m−m(j) > m. Suppose
there exists a sink (not yet picked) that covers all the remaining

5This assumption is not too restrictive because in practice, the cost of a
base station is much more than the cost of a relay node, since setting up
a base station typically requires infrastructure such as uninterrupted power
supply from mains, ethernet or WiFi connectivity to a backhaul network etc.

sources, and another sink (not yet picked) that covers m of
the remaining sources. We index these two sinks by 1 and 2
respectively. Let n

(j)
1 and n

(j)
2 be the number of relays picked

in Step 5 of the SmartSelect algorithm in iteration j for sinks
1 and 2 respectively. Then, the algorithm favors sink 2 over
sink 1 iff

cs + n
(j)
1 cr

m−m(j)
>

cs + n
(j)
2 cr

m

⇔ cs

cr
<

mn
(j)
1 − (m−m(j))n(j)

2

m−m(j) −m
(1)

Note that we have made use of the tie-breaking mechanism
introduced in Step 8 to obtain the strict inequality above.

Now, we make the following observations:

1) n
(j)
1 ≤ (m − m(j))(hmax − 1), since each of the

remaining sources connects to the sink 1 using at most
hmax hops.

2) m(m−m(j))
m−m(j)−m

= m
1− m

m−m(j)
≤ m(m + 1), where the last

inequality follows since m−m(j) ≥ m + 1.
Then we have that

cs

cr
≥ m(m + 1)(hmax − 1)

≥ m(m−m(j))(hmax − 1)
m−m(j) −m

≥ mn
(j)
1

m−m(j) −m

≥ mn
(j)
1 − (m−m(j))n(j)

2

m−m(j) −m

Thus, condition (1) cannot hold, and hence, the algorithm
cannot favor sink 2 over sink 1.

Proceeding similarly, and using the monotonicity of f(m)
4
=

m(m + 1) in m, it can be shown that the algorithm cannot
favor a sink covering less than m sources over sink 1. Then
the lemma follows.

Equipped with the above lemma, we derive bounds on the
worst case approximation factor of the SmartSelect algorithm
as follows.

Theorem 1: Consider the subclass of MSSN-MC-HC prob-
lems where there exists a feasible solution that uses exactly
one sink. Further assume that cs

cr
≥ m(m + 1)(hmax − 1), for

some m ∈ N, m > m ≥ 1. Then the following hold:
1) The number of sinks picked by the SmartSelect algorithm
is at most d m

m+1e.
2) The worst case approximation guarantee of the SmartSelect
algorithm is upper bounded by ε+ m

m , where ε ∈ [0, 1) satisfies
d m

m+1e = m
m+1 + ε.

Proof: We provide an outline here. For details, see [9].
Since there exists a sink that can cover all the sources,

as long as this sink is not picked during the course of the
SmartSelect algorithm, the hypothesis in Lemma 1 continues
to hold. Then Part 1 follows by using the monotonicity of
m(m + 1), and repeatedly applying Lemma 1.

Part 2 follows by using Part 1, and observing that the
optimum cost is at least (cs + cr).

Corollary 1: Consider the subclass of problems introduced
in Theorem 1. Further, suppose cs

cr
≥ dαme(dαme+1)(hmax−

1) for some α ∈ (0, 1]. Then, the worst case approximation
factor of the SmartSelect algorithm is upper bounded by (1+



1
α ), i.e., for this subclass of problems, SmartSelect provides
an O(1) approximation guarantee.

Proof: Follows by putting m = dαme, and proceeding as
in the proof of Part 2 of Theorem 1. See [9] for details.

Theorem 2: Suppose cs

cr
≥ m(m + 1)(hmax − 1), for

some m ∈ N, m > m ≥ 1. Then, for the general class
of MSSN-MC-HC problems, the worst case approximation
guarantee of the SmartSelect algorithm is upper bounded by
max{ε+ m

m , m
2

(
1 + 1

m(m+1)

)
}, where ε ∈ [0, 1) is as defined

in Theorem 1.
Proof: We provide a sketch here. See [9] for details.

Theorem 1 gives the worst case approximation guarantee for
a subclass of problems. For the remaining (complementary)
class of problems, the worst case approximation guarantee is
upper bounded by observing that the optimum cost ≥ 2cs,
and trivially upper bounding the cost of the algorithm. The
theorem follows by combining the worst case guarantees.

C. A Destroy and Repair Heuristic to Improve upon SmartS-
elect

We propose below a polynomial time heuristic to improve
upon the solution provided by the SmartSelect algorithm.

Destroy and Repair Heuristic
1) Let N (0) be the outcome of the SmartSelect algorithm.
N (0) is the restriction of the initial network graph G to the
sources, selected sinks and selected relays. Set k = 0. Also
set Nbest = N (0), and solution update = false. Let K be
the maximum number of iterations allowed.
2) For each sink bj in N (k), do the following:
• Pretend to prune the sink bj .
• Run the SmartSelect algorithm using only the remaining

sinks in N (k), and all potential relays to obtain a solution
N1.
If N1 is feasible, and cost of N1 is better than cost of
Nbest, set Nbest = N1, and solution update = true.
Else go to the next step.

• Pretend to prune the sink bj , and Run the SmartSelect
algorithm using all the remaining sinks and relays in G
to obtain a solution N2.
If N2 is feasible, and cost of N2 is better than cost of
Nbest, set Nbest = N2, and solution update = true.

3) After all the sinks in N (k) have been tried (for pruning), if
solution update = true, set k ← k + 1, N (k) = Nbest, and
go to Step 2.
4) Stop when no further solution update is possible, or the
maximum number of iterations have been exceeded.
Remark: Since each iteration of the Destroy and Repair
heuristic uses the SmartSelect algorithm which is polynomial
time, and since the number of iterations is upper bounded by
a constant K, it follows that the heuristic is polynomial time.

IV. NUMERICAL RESULTS

Since computing an optimal solution is NP-Hard, we obtain
a lower bound on the optimum cost of a problem instance
by solving the LP relaxation of an ILP formulation for the
MSSN-MC-HC problem. See [9] for details of the ILP. We
compare the performance of our algorithms against this LP-
based lower bound on the optimum cost, as well as the expo-
nential search heuristic (GRASP-MSRP) proposed by [14] in
three different experimental settings. In all the experiments,
we chose cs = 10, cr = 1, and hmax = 5; note that these
choices satisfy the hypothesis on cs/cr made in Theorems 1
and 2 with m = 1. For Setups 1 and 2, we selected the

TABLE I
DETAILS OF THE EXPERIMENTAL SETTINGS

Setup Instances Sources potential potential Area rmax
generated relays sinks (in m2) (in meters)

1 60 20 30 10 100×100 20
2 60 40 50 15 140×140 20
3 60 30 50 15 140×140 30

Fig. 2. Performance comparison of the algorithms against the LP-relaxation
based lower bound

source locations and potential node locations according to
a continuous uniform distribution over the area, whereas for
Setup 3, we partitioned the area into square cells of side 10m,
and picked the sources and potential node locations randomly
from among the corner points of the cells. The other details
of the experimental settings are provided in Table I.

For ease of exposition, from now on, we use the abbrevia-
tions SS, DR, and GM respectively to denote the SmartSelect
algorithm, the Destroy and Repair heuristic, and the GRASP-
MSRP heuristic proposed in [14]. For each instance in each
setting, we ran all the three algorithms on that instance, and
also computed the LP-based lower bound on the optimum
solution for that instance. The maximum number of iterations
in the DR heuristic was chosen to be 25. The experiments
were run using MATLAB R2011b on a Linux based desktop
with 8 GB RAM. Figure 2 summarizes the performance of the
algorithms as compared to the LP-based lower bound. The
number of feasible instances for the three settings were 47,
32, and 60 respectively. For each of the feasible instances in
each setting, we computed the empirical approximation ratio
of each algorithm (with respect to the LP-based lower bound)
as Approx. ratio = Cost of the algorithm outcome

Cost of LP solution . The maximum of
these over the feasible instances in that setting was taken as
the empirical worst case approximation ratio for that setting.

We also computed the empirical average case approximation
ratio of the algorithms as follows: let C

(algo)
avg be the average

cost of the algorithm outcome over the feasible instances in
a setting, and let Clp be the average cost of the LP solution
over those feasible instances. Then, the empirical average case
approximation ratio, αalgo was computed as αalgo = C(algo)

avg

Clp
.

The theoretical upper bound on the worst case approximation
ratio of SS algorithm was computed using Theorem 2.

In Table II, we compare the execution times of the algo-
rithms and that of the LP-based lower bound computation.

From Figure 2 and Table II, we make the following obser-
vations:
1) In all the experimental settings considered, the average
empirical performance of both the SS and DR algorithms
in terms of cost are within a factor of about 1.4 of the LP
based lower bound on the optimum cost. Notice that the actual
performance would be even better since we are only comparing



TABLE II
EXECUTION TIMES OF THE ALGORITHMS, AND THE LP-BASED LOWER BOUND COMPUTATION

Experimental Execution time in secs
setup SS DR GM LP

mean max mean max mean max mean max
1 1.148 2.72 3.4565 15.0878 258.645 673.415 37.36 138.14
2 4.5344 12.37 23.64 86.02 1885.8 6296.4 3819.7 41785
3 5.173 11.46 12.095 34.922 311.514 638.15 489.039 5395.3

TABLE III
PERFORMANCE COMPARISON OF THE DR AND SS ALGORITHMS

Experimental Improvement in average cost Max. improvement in cost
setup by DR over SS by DR over SS

(in %) (in %)
1 4.87 37.5
2 5.65 29.3
3 7.68 75

TABLE IV
PERFORMANCE COMPARISON OF THE DR AND GM ALGORITHMS

Degradation in Max. degradation Max. improvement
setup average cost in cost in cost

of DR w.r.t GM of DR w.r.t GM of DR w.r.t GM
(in %) (in %) (in %)

1 2.76 33.33 11.54
2 4.55 20.51 5.36
3 0.52 25 7.69

against a lower bound on the optimum cost. In the worst case,
the algorithms are off from the lower bound by a factor of
about 2.9, which is still much better than the theoretically
predicted performance bound for the SS algorithm in the
corresponding setting.
2) Both the SS and the DR algorithms achieve orders of
magnitude improvement in running time compared to the LP
(and hence, obviously with respect to the exact ILP).
3) In all the settings considered, both the SS and DR algo-
rithms are order of magnitude faster compared to the GM
algorithm.

While this extremely fast execution time of DR (and SS)
is desirable, it comes with a degradation in cost. We now
proceed to further quantify the degradation in cost when DR
(or SS) algorithm is used instead of the GM algorithm. We
first quantify the improvement in cost achieved by the DR
heuristic over SS algorithm. Our findings are summarized in
Table III.

Since we observe from Table III that the DR algorithm
achieves an improvement in average cost of about 5% to 8%
(and a maximum improvement of 75% over all the instances)
over the SS algorithm in all the settings considered, and
has the same order of running time as the SS algorithm (as
observed from Table II), we next compare the performance
of the DR algorithm against that of the GM algorithm ([14]).
Our findings are summarized in Table IV.

From Table IV, we make a couple of observations:
1) In all the settings considered, the average cost of the DR
heuristic is within at most 4.6% of that of the GM algorithm,
and in the worst case (over all the tested scenarios in all
the settings), the cost of the DR algorithm is off by 33.33%
from that of the GM algorithm. On the other hand, as can be
observed from Table II, the improvement in average run time
of the DR algorithm compared to that of the GM algorithm is
up to a factor of about 80.
2) Surprisingly, in all the three settings considered, there were
instances where the DR algorithm in fact did better than
the (more complex) GM algorithm even in terms of cost, as
indicated by the last column in Table IV, and the improvement
was up to 11.54%.

In summary, we conclude that the DR heuristic (with the SS
algorithm as its starting point) achieves significant improve-
ment in running time compared to both the GM algorithm

([14]), and ILP based solutions, while incurring only a small
penalty in terms of cost. This extremely fast running time,
and insignificant penalty in cost make the Destroy and Repair
heuristic (with SmartSelect as starting point) an excellent
choice for use in an iterative network design procedure such
as SmartConnect [4].

V. CONCLUSION

In this paper, we have studied the problem of determining
an optimal relay and sink node placement strategy such that
certain performance objective(s) (in this case, hop constraint,
which, under a lone-packet model, ensures data delivery to the
BS within a certain maximum delay) is (are) met. We found
that the problem is NP-Hard, and is even hard to approximate
within a factor of O(lnm), where m is the number of sources.
We have proposed a polynomial time approximation algorithm
for the problem. The algorithm is simple, intuitive, and as
can be concluded from numerical experiments presented in
Section IV, gives solutions of very good quality in extremely
reasonable computation time. We have also provided worst
case bound on the performance of the algorithm. Further, we
are working on combining our algorithm with that proposed
by Sitanayah et al. [14] to further improve the cost efficiency
of our algorithm while retaining the benefits of fast running
time.

REFERENCES

[1] Honeywell, “www.honeywell.com/ps/wireless.”
[2] ISA100, “www.isa.org/isa100.”
[3] GE, “http://www.ge.com/stories/industrial-internet.”
[4] A. Bhattacharya, S. M. Ladwa, R. Srivastava, A. Mallya, A. Rao,

D. G. R. Sahib, S. Anand, and A. Kumar, “Smartconnect: A system
for the design and deployment of wireless sensor networks,” in 5th
International Conference on Communication Systems and Networks
(COMSNETS), 2013.

[5] A. Bhattacharya and A. Kumar, “Delay Constrained Optimal Relay
Placement for Planned Wireless Sensor Networks,” in 18th IEEE In-
ternational Workshop on Quality of Service (IWQoS), 2010.

[6] A. Bhattacharya and A. Kumar, “QoS Aware and Survivable Network
Design for Planned Wireless Sensor Networks,” tech. rep., available at
arxiv.org/pdf/1110.4746, 2013.

[7] B. Aghaei, “Using wireless sensor network in water, electricity and
gas industry,” in 3rd IEEE International Conference on Electronics
Computer Technology, pp. 14–17, April 2011.

[8] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide
to the Theory of NP-Completeness. Bell Telephone Laboratories, Inc.,
1979.

[9] A. Bhattacharya, A. Rao, K. P. Naveen, P. P. Nishanth, S. Anand, and
A. Kumar, “Qos constrained optimal sink and relay placement in planned
wireless sensor networks,” tech. rep., available at www.ece.iisc.ernet.in/
∼abhijit/temp/multi-sink-draft.pdf, 2014.

[10] G.-H. Lin and G. Xue, “Steiner tree problem with minimum number
of Steiner points and bounded edge length,” Information Processing
Letters, vol. 69, pp. 53–57, 1999.

[11] E. L. Lloyd and G. Xue, “Relay node placement in wireless sensor
networks,” IEEE Transactions on Computers, vol. 56, January 2007.

[12] J. L. Bredin, E. D. Demaine, M. T. Hajiaghayi, and D. Rus, “Deploying
Sensor Networks with Guaranteed Capacity and Fault Tolerance,” in
MobiHoc’05, ACM, 2005.

[13] D. Yang, S. Misra, X. Fang, G. Xue, and J. Zhang, “Two-Tiered Con-
strained Relay Node Placement in Wireless Sensor Networks: Compu-
tational Complexity and Efficient Approximations,” IEEE Transactions
on Mobile Computing, 2011. accepted for publication.

[14] L. Sitanayah, K. N. Brown, and C. J. Sreenan, “Multiple sink and relay
placement in wireless sensor networks,” in European Conference on
Wireless Sensor Networks, 2013.

[15] V. V. Vazirani, Approximation Algorithms. Springer.

www.ece.iisc.ernet.in/~abhijit/temp/multi-sink-draft.pdf
www.ece.iisc.ernet.in/~abhijit/temp/multi-sink-draft.pdf

	IntroductionThis work was supported by the Department of Science and Technology (DST) under the Indo-Brazil project, and under a J. C. Bose fellowship
	The Network Design Problem
	MSSN-MC-HC: A Heuristic and its Analysis
	SmartSelect: A Greedy Algorithm for Sink and Relay Selection
	Analysis of SmartSelect
	A Destroy and Repair Heuristic to Improve upon SmartSelect

	Numerical Results
	Conclusion
	References

