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Abstract—We study the question of determining locations of Related work: Plastria [1] presented an overview of
base stations that may belong to the same or to competing research on locating one or more new facilities in an envi-
service providers. We take into account the impact of these ,nment where competing facilities already exist. Gabszew
decisions on the behavior of intelligent mobile terminals o . . . .
can connect to the base station that offers the best utilityThe and Thisse [2] provided another Qe”era' overview on Iocat'o_
signal to interference and noise ratio is used as the quangitthat 9ames. Mazalov and Sakaguchi [3] and references therein
determines the association. We first study the SINR associah- studied competition over prices of goods between facdlitie
game: we determine the cells corresponding to each base stats, that have fixed positions. They then derived the equilibrium
i.e., the locations at which mobile terminals prefer to conect to allocation of customers. Such games, as well as hierafchica
a given base station than to others. We make some surprising . - . ' . .
observations: (i) displacing a base station a little in one idection gar_‘nes in which flrms compete for Iocatlon. or over .pr.lces
may result in a disp|acement of the boundary of the Correspod_ Wh|Ch then determ|ne the Customer—a”OCB.tIOI’l equ|l|b|:|um
ing cell to the opposite direction; (ii) A cell correspondirg to a BS were introduced by Hotelling [4] in 1929. When considering
may be the union of disconnected sub-cells. We then study the gych games over a finite line segment with two firms, the
hierarchical equilibrium in the combined BS location and maile models under appropriate conditions give rise to a partitio

association problem: we determine where to locate the BSs s f th t into t b t “cells”
to maximize the revenues obtained at the induced SINR mobile ©' th€ Segment Into two convex subsegments or "Cells™ as

association game. We consider the cases of single frequergnd  introduced in our context.
and two frequency bands of operation. Finally, we also conder An interesting difference between the settings above and ou

hierarchical equilibria in two frequency systems with sucessive getting, which is also defined on a finite line segment, is that
interference cancellation. in our case more complex cells are obtained at equilibrium.
This is due to the difference in the cost structure in theuda|
context. Hotelling [4] considered a general cost relateth&o
. INTRODUCTION distance between the customer and the firm it chooses; this
cost however depended only on the distance and not on the
In this paper we study some hierarchical decision makirggtual location of the firm. This does not hold in our case:
problems arising in the uplinks of cellular networks. Wehe throughput of the mobile depends on the interference at
first address the problem of association: given multipleebathe base station which in turn depends on the location of the
stations (BS) capable of providing services to a mobiletleta base station. We finally note that in our model, the power of a
at a given point in the region of operation, to which BS shoulghobile, which can be considered as the “cost”, is fixed, while
the mobile connect? This is studied in a non-cooperatiiteattempts to maximize the utility, i.e., throughput.
context where each mobile connects to the BS that provides itAram et al. [5] study coalition based joint resource pro-
with the best signal to interference and noise ratio (SINRe curement and resource allocation in wireless networksgusin
associations determine tleells corresponding to each BS. Wethe framework of cooperative game theory. They consider a
characterize the nature of cells as a function of BS locatiorset of operators and customers with predetermined customer
We then consider the problem of determining the locatiorperator associations. All the operators together place ba
of base stations, taking into account the behavior of tlsations, procure spectrum, and allocate channels to time co
mobiles that will be induced by the location decisions. Weon pool of customers. Doing so is shown to be optimal
study cases where the BSs cooperate (e.g., they belongeven when the operators are selfish. However, it is assumed
the same service provider) and those where they compthat operators can divide the aggregate earned utility i1 an
with each other. The latter scenario results in a locatiomeya arbitrary way. In another work, Aram et al. [6] extend the
between the BSs. analysis to nontransferable utilities.
There has been much interest in wireless node placement
This is an extended version of a paper that appeared in IEEEdm 2009. problems recently. Appuswamy et al. [7] consider a linear
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tan.Altman@sophia.inria.fr). Anurag Kumar, Chandrama&ingh and Ra-  gSrinjvas and Modiano [8] address the joint problem of plgcin
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there appears to be no prior literature on a hierarchicaleggarand compete if they belong to different operators. We allow
formulation, as has been developed in our work. placements of BSs outside the area where mobiles exist, i.e.
After the appearance of our initial work [9], Ramanatlr; < —L andz; > L are allowed forj = 1,2. In the
et al. [10] have studied the joint placement of two baseatati following, we use only the first coordinates to specify locas
that use same frequency. The utilities of BSs come from tifeith the understanding that second coordinates are O ia cas
notion of a-fairness. They also consider a multicell scenariof mobiles, and 1 in case of BSs).
where each cell has one BS, and all BSs operate on the sam@ransmitters are point sources radiating in two-dimenalion
frequency. The goal is to optimally place the BSs in thespace with circular wavefronts (respectively, three-disienal
respective cells so as to maximize the#fair utilities. Silva with spherical wavefronts). We consider a power law patls los
et al. [11] consider an association problem where mobilesodel with exponent; i.e., the power from a radio transmitter
have hard average throughput constraints, and the obgectattenuates as distance raised to the pawgsee Appendix A).
of optimal association is to minimize the aggregate pow@r mobile located aty has a channel “gain” of(y — z;)? +
consumption of all the mobiles in the network. They also gtud ] ~*/? to BSj. All mobiles are assumed to transmit at a power
the downlink scenario under the assumption that neighforisuch that the power density along the line is unit power per
BSs operate in orthogonal channels. Again the objective isunit length. Thus the total transmitted power2is. Thermal
find an optimal association that minimizes the aggregatespowioise at the BSs is assumed to be Gaussian with noise variance
consumption of the BSs. Kasbekar et al. [12] consider a joint per sample.
problem of mobiles’ association and charging and spectrumAt any time, each mobile isssociatedwith exactly one
leasing by service providers. BS. Let A; C [-L, L] be such that the mobiles id; are
A description of the model studied in this paper and thassociated with BS. A; will be calledcell j. The utility of
notation used can be found in Section Il and Appendix A. a mobile aty is assumed to be a nondecreasing function of
Our contributions: First, we consider a code divisionthe SINR densityat i, as seen at the BS to which the mobile
multiple access (CDMA) system where BSs perform single associated. The SINR density depends on the interference
mobile decoding. We derive analytical expressions for thwodel under consideration, which we discuss next.
cell boundaries in the case where BSs are on the same
frequency band (Section IlI-A). This allows us to study the
geometric properties of cells as a function of the locatiorfs 'nterference Models
of the BSs. We then study the hierarchical equilibrium in the Mobiles that connect to a particular BS may or may not
combined BS location and mobile association problem, i.€¢ause interference to the other BS depending on whether the
we determine where to locate the BSs so as to maximiBSs operate on the same or different radio frequency (RF)
the revenues obtained on the induced SINR-based molilends. We consider both the cases in this paper. The case in
association game (Section IlI-B). We also do the analogowsich the same frequency band (channel) is used at both the
analyses for the case where BSs are on different frequerB8s occurs if the wireless network operates in an unlicensed
bands (Section V). Subsequently, we consider BSs capablnd; in such a case, BSs belonging to different networks (or
of successive interference cancellation (SIC) decodiriterA providers) may use the same RF band. We calltinéssingle-
discussion on the association problem and the single frexyue frequency caself the wireless network operates in licensed
band case (Section V), we analyze the case of differeRF bands, two neighboring BSs would operate in disjoint RF
frequency bands and give a complete characterization of thends. We call thishe two-frequencies cas#/e now discuss
resulting equilibria (Section VI). the useful power collected and interference seen at a BS in
The main body of our work assumes mobiles placed ovttte single- and two-frequencies cases. For this purposs, it
the line-segmenf{—L, L] C R. Such a setting is a naturaluseful to define the following functions. Define
starting point for this kind of a study, and could also arise i
some real-world situations, for example, when BSs need to be gly) =1+ 972 (1)
placed along a straight, isolated stretch of highway whieee t
mobiles are inside the cars on the highway. We discuss tﬁ
extension to two dimensional deployments in Appendix G.

Qr a sets C [-L, L] and candidate BS locatian, define

B(w.S) = [ gv-) dy @
s
Il. THE MODEL AND NOTATION and E°(z) := E(z,[-L, L]). The dependence af, E, and
Our focus is on communication in the uplink directionE° on « is understood. We highlight some of the properties
i.e., from mobiles to BSs. Mobiles and BSs lie in the twoef E°(z) in Appendix B.
dimensional spac®?. A large number of mobiles are placed In the following we consider a CDMA system where BSs
uniformly over the segmerit-L, L] on the first of the coordi- perform single mobile decoding, i.e., while decoding any
nate axes. The fluid approximation is obtained for the irdigit mobile’s signal, they treat all other mobiles’ receivedsits as
large population of mobiles. For details see Appendix A.r€heinterference. Subsequent descriptions of SINR-equilibrand
are two BSs, BS 1 and BS 2, located(at, 1) and (x2,1), hierarchical equilibrium are also for such a system. Analeg
respectively (say on the top of a flat building whose height i®otions for SIC decoding are defined in Sections V (single-
one unit). BSs cooperate if they belong to the same operatioequency case) and VI (two-frequencies case).



1) The single-frequency casdn this case, power from case where there is a finite number of user classes and the
all the mobiles is received at both the BSs. The total redility of using a resource for a user in a given class depends
ceived power at BSj located atx; is therefore given by on the amount of users of each one of the classes who use that
E(z;,[-L,L]) = E°(x;). All of this received power will resource [15]. In our problem, however, there is a continuum
clearly be interference to a mobile atbecause the mobile’s of classes corresponding to the locations of the mobiles.
own contribution to this is infinitesimal.

2) The two-frequencies caséinlike the previous setting, _ ) _
in which the two BSs operate on the same RF band, §rr Hierarchical Equilibrium
the two-frequencies case the total interference at each BSAe shall also consider placement of BSs taking into account
depends on the association decisions of the mobiles. Indeg@& SINR-equilibrium that follows when mobiles associate t
the interference power at BSis the total power received at maximize their SINR densityThe two BSs play a location
that BS from all mobiles that actually associate with it. Thgame:BS j decides to place itself &t:;, 1) wherez; € R, j =
total received power at B$ is thus given byE(z;, A;). 1, 2. The utility of a BS is a monotone function of the aggregate
throughput of all the mobiles associated with &ince the
throughput density at location increases linearly with SINR
density, we may simply set the integral of SINR density over

We shall first consider the case in which the BSs’ locationge cell of a BS as its utility. Thus for B with cell A; and
are fixed, and each mobile has the option of associating Wimerfererslj, the utility is '

one of the BSs.The continuum of mobiles constitute the
players in this association game. 1/ SINR(y, 2;, 1) dy — }/ gy — ;) dy
Consider a mobile at location Its utility is a nondecreas- 2 Ja, T 2 Ja, E(z;,I;) + o

ing function of the throughput density at(see Appendix A). . _ o
The throughput density ay increases linearly with SINR Once the BSs choose their locatiods, I;, and thus the utility

density. Thus, this mobile chooses a BS that yields the Inigﬁg BS j are determined by the association game played by the

SINR density aty. Let I; be the set of interferers as seen d'opiles. We thus have a Stackelberg-like game [16] with the
BS . If a mobile at poihty is associated with BS, the SINR lead players being the two BSs (who may either cooperate or
density for this mobile is compete) and the followers the continuum of mobiles (who

compete to maximize their respective SINR densities). We
9y — z; [ i i ilibri .
SINR(y, z;, 1) := E(x(- 5 j-)JQ' 3) refer to this as the hierarchical equilibrium problem
727

B. SINR-Equilibrium Association

A mobile aty € [—L, L] will therefore prefer to associate with [1l. CDMA: T HE SINGLE-FREQUENCY CASE
BS 1 if SINR(y,Il,Il) Z SINR(y,ZCQ,IQ).

We observe that in the single-frequency ca§e= [—L, L.
Thus, the SINR density for a location, as seen at B We begin by providing closed form expressions for cell
fixed. However, in the two-frequencies case= A;,j = 1,2. boundaries in the SINR-equilibrium (see Definition 2.1).-De
Hence, the SINR density for a location, as seen atjBSa fine theath root of the ratio of the net interferences (including

A. SINR-Equilibrium Association

function of the cellA;. thermal noise) at the two BSs to be
Remark 2.1:A mobile needs to know the SINRs as seen by ) o\ 1/a

the BSs in order to make a BS (or access point) selection. If Bu(21,22) i= (E (r1) +0 >

there is channel reciprocity between the uplink and the down ’ E°(x2) + 02

link, as in a time-division duplex system, downlink channg}\/e start by considering symmetric placements of BiSs; —
condition is a good indication of uplink channel condition|.x2| which implies B (z1,25) = 1. If 1 — 2, BSs are
In frequency-division duplexed CDMA systems, mobiles Al different to all thea m(;biles from the point of view of
power-controlled to an appropriate level for decoding wath

. .~ SINR density. Hencd A, [-L, L]\ A) for all A C [-L, L]
certain target block error rate. The averaged power setHngare SINR-equilibrium association profiles. #f — —zy % 0
also a good indication of channel condition. '

S ) " . ) mobiles associate with the BS which is closer. Hence either
Definition 2.1.Th(_e _ceII partmon (Al,_Ag) is said to ([=L,0], (0, L]) (if =1 < 0) or ([0, L]),[~L,0)) (if z1 > 0)

Ele ‘.”;n SIS}III\FI{R-equHAl,bnum IfSIEPH?{ fOHOV\}'ng hc(;lds.yl e_f is the unique SINR-equilibrium. To study the asymmetric

SIINII{ I(y,x>1, Sll)l\IR> I (y]lchS’HzI)R an C}ny l scenarios we assume, without loss of generality, that BS 2
(Y21, 1) 2 (y, 22, I2). (u:21.1) = i5 |ocated closer to the origin than BS 1, By | > |z2] > 0.

SINR(y, 22, 1), y € A, of A, arbitrarily. On account of Proposition B.1 in Appendix B, we have
Remark 2.2:This definition of equilibrium is similar to Bu(a1,22) < 1

the ll\_/ga_rdrop eqU|I|Ibrt|_um n roadltgaffll\(l: t[13]r; or the tﬁ;tsh Proposition 3.1:Let BS 1 be located at; and BS 2 at
equilibnum in popufation games [14]. ole, however, ! o where|z1| > |z2| > 0. The set of mobile locations that
Wardrop equilibrium the utility of choosing a resource (a B . :
) nnect to BS 2 is nonempty only if
in the present problem) depends on the set of users that ma&e

Boc(xlva)

the same choice through their total “number” (their fraatio o 51 4
or their mass). Extensions of the Wardrop concept existéo th 7= w2 — |- 1—B2(xy,22) — )



If the inequality holds strictly then the set of locationsath a=2 a=1
connect to BS 2 is given by the interVal 1o 10

— B2
To — X1 04(9171,172)4_(_ /7_2_1’ /7.2_1).

1-— B(Qy(‘fl,xg)
Proof: Mobiles that have a higher SINR density &t

will connect to BS 2, i.e.y € A, if _5 N _5:"”‘
(=22 + 1= (g = z2)? +1)00
E°(x3) + 02 Eo(x1) + 02 s 1w 5 20 % 5 w0 15 2

which is equivalent to

(y—22)®+1< ((y—21)” + 1) B(21, 22). %70
As B2(zxy,29) < 1, the above inequality holds when a  ° 5 - 'i{_i
convex quadratic function af is strictly negative. The positive T
discriminant condition straightforwardly yields that thset o O : o . X
connecting to BS 2 is nonempty only if (4) holds. The ends « 5 , 5
the specified interval are the roots of the quadratic eqnoatic F_‘ .
Since the convex quadratic function is strictly negativehia 10 - _10 -
interval between the roots, all the mobiles in this intetvabe 0 5 o B2 0 5 120
higher SINR densities at BS 2. [ 2 :

Remark _3'1:0) If the dlstrlbuuon. O_f mobiles is nonumfo_rm Fig. 1.  Single-frequency case; SINR-equilibrium: ThrddBodetermining
over the line (e.g., due to a finite number of mobilesjne cell boundaries as a function of the location of BS 2 faious locations
Proposition 3.1 holds, withz () (IJ) being the net received of BS 1. The path loss exponent is 2 in the figures on the leftlamdthose
power under the nonuniform distribution. on the right.

(i) If there aren > 2 BSs, Proposition 3.1 can be applied to

every pair of BSs (ignoring all other BSs). Thus, for each B§,a farther BS. Thus, in this casde = [~ L,6:) U (6, L], a

we getn — 1 candidate association sets. Its equilibrium assyn_convex setds is similarly non-convex when:; = 0 and
ciation cell is then the intersection of these- 1 association x5 is sufficiently far to the right (or left).

sets.

When |z2| > |z1| > 0, the roles of BS 1 and BS 2 are
switched: BS 1 sees more interference, its céjl may be
empty, and when nonemptyl; is an interval.

We provide numerical results to illustrate some surprising
features of the SINR-equilibrium that distinguish this rfro
other association games (e.g., [4], [15]). We get 10 (so
that mobiles are concentrated over the intefval0, 10]) and
the noise parameter = 0.3. We place BS 1 at one of the
fixed locationsz; wherexz; = —10,—5,—2,0. For each of
these, we vary the location of BS 2 fromy = 0 to 2o =
30 (see Figure 1). The left column of plots corresponds to a
path loss exponent = 2 and the right one tax = 1. The ‘ ‘ ‘
equilibrium setsA; turn out to have the formi; = [0y, 62], 0 10 20 30 40
Ay = [—L,@l) U (92,.[/] for 1 = 0,-2, and A; = [—L,@g], 2
Ay = (02, L] for z; = —5, —10. The top (respectively bottom) rig. 2. single-frequency case; SINR-equilibrium: Uppeli &undary of
row of plots depict the thresholé, (respectivelyf;) as a cell A; as a function of the location of BS 2 for various locations & B.
function of z5. See the following for more details.

1) Observations: b) Non-monotonicity of the cell boundarie¥/e observe

a) Non-convex cellsFor all the locations of BS 1;; = @ Surprising non-monotonicity of the threshdldas a function
—10, —5, —2,0, mobiles in(f,, L] have a better SINR density Of the locationz; of BS 2.0, first increases with:, until about

at BS 2. Let us concentrate on the curves correspondingte = 8, then it decreases with, until aroundz, = 14; finally,
21 = —2 in Figure 1. When BS 2 is located sufficiently farfor largeras, 6> again increases. Analogous non-monotonicity
to the right of the origin, the interference at BS 1 is largt$ observed ird; too (in the the curves correspondingit =
compared to that at BS 2 (see Proposition B.1). Thus, mobileg: 0 anda = 2). o

sufficiently far away and to the left of BS 1 (those[inL, 6, )) Figure 2 shows a zoomed-in view of the = —10 case of

also have a better SINR density at BS 2 despite BS 2 beifitg top-left plot of Figure 1. The threshofd increases beyond
0 until x5 is about 8 units to the right of the origin, and then

1The notationa + (b, ¢) is short for the intervala + b, a + ¢). returns to 0 when:; = 10. This can be understood as follows.

=2

92 for a




Clearly, for zo = 10 the interferences at both the BSs are
the same; hence, = 0, the midpoint. Now imagine moving
BS 2 a little to the left (i.e., decreasing). Now |z3| < |z1].
Thus, from Proposition B.1, the interferené® (z2) at BS 2

I
o

I
~

is larger thanE°(z1), the interference at BS 1. This makes it 2 0al
advantageous for mobiles a little to the right of the origsoa o~
to associate with BS 1; henak increases as, decreases 2
from x5 = 10. Further decrease im; brings BS 2 closer to E 02r

mobiles on the negative-axis, thus ultimately causing, to
return to O, and even cross below 0, asdecreases further.

As x5 increases beyondo, the interference perceived by it
decreases, thus making it advantageous for mobiles a little 9 20 0 0 20

to the left of the origin also to associate with BS 2; hence X,

0, decreases as, increases beyond, = 10. Once BS 2

is moved far from the region where the mobiles exist, thed: 3. ~Single-frequency case; Utility of BS 2 as a functidrits location
. .. . hen we position BS 1 at; = —10.

signal power tar, becomes smaller, and association with BS ¥

becomes increasingly better for mobiles to the right of the

origin, causingd, to increase. o _ the middle interval switch to BS2, and hence the discontynui
2) Discussion: The form of equilibria displayed in the_in the utility. For —10 < z» < 10 nodes in an interval join

SINR-association examples is unusual in the class of lmealigs > and this eventually becomes a half infinite line with

games. The reason for the unusual features lies in the S”ﬂgundary moving to the right as, becomes large.
criterion, as we describe now. 1) Two cooperating base stationsVe now consider opti-

« If a mobile is very close to a BS, path gain from thenal joint placement of two BSs to maximize the sum utility.
mobile to the BS will be very high. Thus, the mobile |t can be shown that in a hierarchical optimal configura-
connects to this BS, even if the interference suffered hipn the two BSs are placed on the opposite sides of the
this BS is relatively higher. origin. Furthermore, the corresponding cells are of thevfor

« If a mobile is located sufﬁciently far from both BSs, theq_L7 CL] and (a7 L]' and are characterized by a Sing|e parameter
the relative difference in the powers received at the BSs(See [17, Appendix C] for justifications). While the exact
will be small. Thus the mobile will prefer to connect tocharacterization of: remains open, simulations indicate that
BS that suffers from less interference. sum utility is maximized whem = 0 and —z; = o, i.e., the

« If a mobile is at moderate distance from both the BS8Ss are equidistant from the origin. We call such a placement

it takes into account both the factors (i) path gains tgs symmetric The SINR-equilibrium cells under symmetric
the BSs and (ii) interferences suffered by the BSs, whilgacement aré—L,0] and (0, L].

making its association decision.

o
[
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B. Hierarchical Equilibrium

Single base stationSuppose there is only one BS. Given
that the interference is maximum at the origin and decreases
monotonically with distance from the origin, where should i
be placed to maximize utility? The utility of the BS, when
placed atz, is given by

Lt gly—=) 1 E°(2)
5/,L E°(z) + o2 dy = 2 E°(z) + o2

Optimal location

which is maximized wherf°(x) is maximized, i.e., att =
0 (see Proposition B.1). Despite the high interference, the 0 05 1 15 2
origin is the best location to maximize the utility given the Standard deviation of thermal noise : o
nature of the Utlllty _functlon_._ . . Fig. 4. Single-frequency case; cooperating BSs; Optimalmsgtric distance

Two base stations, utility behaviorFigure 3 portrays from origin for two BSs, as a function of thermal noise staddaeviation.
the effect of cell boundaries on utility. BS 1 is located at
x1 = —10. The utility of BS 2 as a function of its location Further experimentation revealed that, @asis increased,
is then plotted. Forrs < —10, mobiles at the farthest right optimal distance of the BSs from the origin decreases (see
connect to BS 2. For, approximately in the interval -11 to Figure 4). Asoc — oo, the optimal symmetric locations of
-10, an interval in the left most extreme ¢f10,10] also the BSs converge to -5 and 5. This is expected because at
joins BS 2 so that BS 2 cell partition is a union of twovery largeo, interference does not play any role, and the BSs
intervals. Consequently, the utility increases in thieiaal. should be placed to maximize the total power collected from
At 25 = —10 a sudden transition occurs where all nodes ithe respective cellsE(z, (0, L]) + E(—x, [—L,0]). Proposi-




tion B.1 says that this is maximized by choosingand —x In Table | we compare the optimal location of the coopera-
to be the mid-points of the respective intervals, ize= L/2, tive case and the equilibrium location of the non-coopeeati
which is 5 in our example. case, as a function of. We observe that at the non-cooperative
2) Two non-cooperating base stationsVe now consider equilibrium, the BSs are closer than at the cooperative op-
a non-cooperative game between the two BSs. The BSs #awm, i.e., placements are more aggressive. An analytical
simultaneously and pick their locations to maximize theRroof of this observation remains an interesting open bl

respective utilities. In both cooperative and non-cooperative cases the disgance
decrease inr and tend to a limit which is-z; = 2o = 5
05 : : : : : for the cooperative case andr; = zo = 4.06 for the non-
cooperative case.
0~y TABLE |
OPTIMAL COOPERATIVE AND NON-COOPERATIVE PLACEMENTS OBSS
~ AS A FUNCTION OFo
@ 0.3y,
5 o 0.1 0.4 1 2 40
2 Optimum distance
502 of BSsfrom 0 | 8.658 7.745 6.435 5591 5.00Q
(cooperative)
| Equilibrium distance
01 of BSs from 0 810 6.95 550 4.667 4.09
(non-cooperative)
0 ‘ ‘ ‘ ‘ ‘
-10 -5 0 5 10 15 20

¥

IV. CDMA: THE TWO-FREQUENCIESCASE
Fig. 5. Single-frequency case; non-cooperating BSs: tytitif BS 2 as

a function of its location when we position BS 1 ay where z1 = A. SINR'EqUIIIb”um Association

—2,-5,-8,~10. We study the properties of the SINR-equilibrium partition
and arrive at a numerical method to compute it. The case where

Figure 5 has on the horizontal axis the location of BS 2 ar@Ss are collocated, i.ex; = x», is trivial. Let us assume that

on the vertical axis the utility it achieves. The figure isaibed z; # x5. Recall that the interference at BSin the two-

for L = 10,0 = 0.3,a = 2. There are four curves thatfrequencies case if(z;, A4;). As in Section IlI-A, defineB

correspond to four locations of BS 13 = —2,—5,—8,—10. to be theath root of the ratio of the net interferences at the

From these curves, one can conclude that the utility of BSt®o BSs, i.e.,

is quite robust to placement errors around the best response

2 1/
location, for the indicated values of BS 1 locations. B = E(@1, A1) +0°
E(SCQ, AQ) + 0'2
20 ‘ ‘ ‘ Note thatB € [Bumin, Bmax], Where
’ o2 1/a E°(xz1) + o2 1/a
Bmin Ry —— andBmax = |\ .
e ]

A locationy € As if
9y — x2) gy — 1)

\\/N E($2,A2)+02 o E($1,A1)+02’

= (y-z)?+1<((y—=1)*+1)B% (5

First considerB < 1. Proceeding exactly as in the proof of

P Proposition 3.1, we get, to be the set of such that a convex

0 ;;' , 10 15 20 guadratic function of; is negative. Thusi, is an interval and
X, Distance of BSL. from origin its complement4; a union of at most two intervals. More

, ) ) precisely, the boundaries are given as follows. Define
Fig. 6. Single-frequency case; non-cooperating BSs: Th# t@sponse of
B

BS 2 when BS 1 is at a distance indicated by abscissa to theflgfe origin.

1—- B2
Figure 6 shows the best response of BS 2 to a BS 1 locati P'T(B) <1, Ay is empty, B2 = (E(z1, A1) + 02) /0% > 1

BS 1 s moved a_long the segment 1o left of the origin. ' contradiction. Thus(B) > 1 and A, is determined by the
the figure the horizontal axis isx, distance of BS 1 from interval (as in the proof of Proposition 3.1)

the origin. A positive best response value indicates a iooat
on the other side of the origin away from BS 1. Numerical (g1(B), g2(B))

computations indicate the existence of a unique symmetric xo — 11 B2
equilibrium at—z; = x5 = 7.36. = —T—p (—\/7(3)2 —1,\/7(B)? - 1) :

Best response location
=
o

o
T

T(B) = |.%'1 —.%'2| .




This gives expressions for the end points of intervals theten A relaxed fixed point iteration:We also provide an
up A; and A, in terms of B. In particular? algorithm to obtain the fixed point. Definé := |z; —

22]/2, Bmin := Vd? + 1 —d and fyax := Vd?> + 1+d. Then,

A = 2L L9u(B)] ) U ([o2(B)r, L, for B < 1, 7(B) > 1 implies B € (Bumin, 1]. Similarly, for
Ay = [lg1(B)]-L,[92(B)]L]- B > 1, 7(B) > 1 implies that B € [1, fmax). From an
Similar analysis could be done f@ > 1. In this case, it can €arlier discussion, the fixed point lies {Bmin, fmax). It can
be shown that also be verified that”"(B) — —oco0 as B — Bmin OF Bmax
and is finite otherwise. Thus a fixed point iteration of the
Ar = [lo(B)]-L,[92(B)]L], form B,,.1 = F(B,) (see (6)) may not converge. Motivated
Ay = [-L,|g1(B)|-r)U([g92(B)]1, L], by [18], we propose a variant of this iteration which always

whereg, (B), g»(B), andr(B) are the same as defined aboveSonverges to the desired fixed point. See Appendix C for the

. N algorithm and its analysis.
Finally for B =1, (5 I . _ .
inafly for ) |;np 1es We illustrate the form of SINR-equilibrium via some numer-
I [xl +:v2} ] and A, —
2 —L

a +xo]" ical results. We sel. = 10, the path loss exponent= 2 and
. the noise parameter = 0.3. We place BS 1 at one of the fixed
To emphasize thatl; and A, depend only onB, we write
A1(B) and A2(B). At SINR-equilibrium, therefore B must

locationsz; wherez; = —10,—5,—2,0. For each of these,
we vary the location of BS 2 fromy = 0 to x5 = 30 (see
Figure 7). As in single frequency case, the equilibrium sets

be a solution to the fixed point equation A; have the formA;, = [01,02], Ay = [~L,0:) U (02, L]
E(Il,Al(B))+O'2 e for zy = 0,-2, and A = [—..[/,92],.142 = (92,.[/] for
B = |:E(£CQ,A2(B)) > =: F(B). (6) 2, = —5,-10. The left (respectively right) plot depicts the

] ) ) thresholdd, (respectivelydy) as a function ofzs.
Theorem 4.1:The fixed point equatiort’(B) = B has a

unigue solution.

Proof: We first prove that E(x1,A4:(B)) and
E(xz2,A2(B)) are continuous inB. By inspection, g;(B) 5
and ¢g2(B) are continuous for allB # 1. Straightforward
calculations show that; (B) — (z1 +z2)/2 andgz(B) — oo o 0
as B 7 1, while g1(B) — —oo0 and g2(B) — (21 + 22)/2
as B | 1. So the boundaries ofl;(B) and Ay(B), after -
restriction to[—L, L], are continuous inB in [Buin, Bmax]-
ThusE(z1, A1 (B)) and E(z2, A2(B)) (see (2)) and therefore 0
F(B) are continuous functions @B in [Buin, Bmax]-

Next we show thaf’(B) is a decreasing function @8. Let Fig. 7. Two frequencies case; SINR-equilibrium: Thresbaletermining the
B < 1. We observe that if g satisfies (5) for some value of cell boundaries as a function of the location of BS 2 for vasidocations of
B, it will do so also for any larger value aB in [Byin, 1].

Thus, A2(B) is an increasing set function (order is specified
by inclusion relation), andi; (B) is a decreasing set function.
For B > 1, a similar argument shows that with’ = 1/B, B. Hierarchical Equilibrium

A1(B') isincreasing inB’, andA, (B') is decreasingilB’. S0 1) Two cooperating base station§he goal here is to place
A1(B) andA;(B) are decreasing and increasing set functionfie two BSs so that the sum utility is maximized.
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respectively, forB in [1, Buax| as well. ObviouslyE(:, A) Proposition 4.1: The locations—z; = z, = L/2 with
strictly increases asl C [~ L, L] increases. Henc&'(B) is a  g|NR-equilibrium cell partition( A1, As) = ( [~L,0], (0, L] )
decreasing function oB3 for B in [Bmin, Bmax]- maximizes the sum utility.

Finally, from (6), we see that'(B) € [Bumin, Bmax|. Thus Proof: For a given pair of locationsr; and w2, let

there is a unique fixed point of the equatiéiiB) = B. M (4, A,) be the SINR-equilibrium cell partition. For conve-
As a simple example, consider the symmetric case Whgpnce letu; := E(x;,4;), j = 1,2, be the received power

—x1 = 3 # 0. Itis easy to verify thatB = 1, and the 4t BS ;. Then the sum utility satisfies the following:
unique equilibrium partition i§[—L, 0], (0, L]) if 21 < 0 and

([0,L],[~L,0)) if 21 > 0. 22:3 wo (i tus)/2 -
Remark 4.1:Suppose B* solves the fixed point equa- —2uj+0? T (urtu2)/2+ 02
tion (6). B* < 1 implies that, at equilibrium, BS 2 has more 7=
interference than BS 1, and thuk, is a connected subset of < Umax/2 (8)
[~L,L]. B* > 1 implies that, at equilibrium, BS 1 has more T Umax/2+0?
interference than BS 2, and thul is a connected subset of _ E(L/2,[0,L]) )
L, L]. E(L/2,[0, L]) + o2
2[m];, = min{m,L}, |m|_p = max{m,—L}, and [m]t, = where (7) follows from Jensen’s inequality because the func

min{max{m, —L}, L} tion u/(u + o?) is concave inu; inequality (8) follows



because the functiorl% is monotone increasing im  A. SINR-Equilibrium Association

With umax the maximum sum of received energies across e first study the properties of the SINR-equilibrium parti-
any partition (not just SINR-equilibrium partitions). Th&st on The SINR density seen at BS for a mobile aty € A,
equality (9) follows from Proposition D.1 in Appendix D. The

ow _ : from2w=2i) _ 4, 9(y—z;) d di
upper bound is independent af and x5, and is achieved can range romgz © epending

Eo(zg)+o? Eo(z)—E(x;,Aj)+0>’ .
;o . n the BS's decodmg order. We assume that each mobile
when —zy = 25 = L/2. The corresponding intervals mdeecﬁ
constitute an SINR-equilibrium cell partition.

rst associates with a BS. The BSs then choose an arbitrary
) i _ decoding order. In the absence of a clear policy for choosing
2) Two non-cooperating base stationie now consider ho gecoding order at the BSs, we assume that the mobiles at
the h_|erqrch|gal gam.elwh.e.re the BSs compete Wlt.h each Otgeéssociate to BR only if
keeping in mind their individual utilities as in Section-B2.

Figure 8 has on the horizontal axis the locationof BS 1 g(y — x2) > gy —x1) '
and on the vertical axis the best response location for BS 2. E(x9, A1)+ 0% = E(x1,42) + 0?

The figure is obtained fol, = 10,0 = 0.3,a = 2. GiVéN & \We may interpret this as an association where a mobile
BS 1 location, the higher interference cell and the equilir - o oimistically believes that it will be decoded last (at the BS

ratio B3 are first found as discussed in Section IV-A, for eacRii which it is associated) and therefore expects to see an
possible location of BS 2. Then the BS 2 location yielding|\r densit g(y—=;)

h . ilitv is identified as the b locat Y T —E, AT With BS j. Without loss
the maximum utility is identified as the best response locati ¢ generality, relabel indices so that
and is plotted in the figure.

2 1/«
B .= | Bl ) +om )
E(IQ,Al) + 0'2

The above condition can be rewritten as

10

(y—a2)> +1< ((y—21)*+1) B?,

where B2 < 1.

The condition governing the structure of the SINR-
equilibrium partition has the same form as the one in
Section IlI-A. As before, the cell partition(A;, 4;) =
([-L,0],(0, L)) is an SINR-equilibrium withB = 1 in the
) symmetric case wherz; = x».
ok’ ‘ ‘ ‘ ‘ Numerical computations show that there can be more

0 X, 2Distance0f4B51from%rigin (tothse left) 10 than one SINR-equilibrium partitions for a pair of BS lo-
cations(x1,x2). To illustrate this phenomenon, assume that
Fig. 8. Two frequencies case; non-cooperating BSs: The flesgonse of all the mobiles are associated with BS A mobile’s antici-

BS 2 when BS 1 at a distance indicated by abscissa to the Iéffteobrigin. pated SINR densities at the two BSs would gé;zl) and
A positive best response indicates a location on the otluer sf BS 1. g(y—z2) respect' elv. It does not switch to 823?
2 ively. Wi i

Eo(z3) 402
Numerical results indicate that there is a unique symmetric
equilibrium for the chosen parameters-at; = x5 = 4.1. The
corresponding SINR-equilibrium cell partition s, = [—L, 0] _ _ o .
and 4, = (0,L]. Note that any unilateral deviation will Thus all mobiles keep their associations if
change the cell boundaries and yield lesser utility to the g(y — 2) E°(z2)
deviating BS. If the BSs were cooperative, the best location m <1+ 72
are —r; = xo = 5. However, this latter set of locations is
not an equilibrium under competition. We also performed nd-his makes([—L, L], ) an SINR-equilibrium partition. Sim-
merical computations for other values of noise variancg,, e.ilarly one can argue tha{f,[-L,L]) is also an SINR-
o =0.1,1,2. It is observed that the equilibrium BS locationgquilibrium partition if
are ins_ensitive to the value of Yet again, we observe in.our. gy — 1) E(z1)
numerical examples that placements are more aggressive (i. m <1+ s

BSs are closer to each other) under competition.

If the noise variance? is sufficiently small, both conditions
can hold and hence botf{—L, L|,0) and (0,[—L, L]) are
SINR-equilibrium partitions.

We now extend our study to incorporate the effect of em- Remark 5.1:The above discussion illustrates an interesting
ploying SIC decoding by the BSs. For model description, sé@pturephenomenon, which is of interest if the two BSs are
Appendix A. In this section, we consider the single frequendlaced sequentially, i.e., a Stackelberg game is playeé. Th
case where mobiles connected to BSause interference atBS being placed first can judiciously place itself, to captar
BS 2 and vice-versa. majority of the mobiles.

Best response location for BS 2

gy — x2) gy —x1)
E°(x3) + 02 o2

, Vyel-L L]

, Vyel-L L]

V. SIC: THE SINGLE-FREQUENCY CASE



B. Hierarchical Equilibrium to maximize its utility? Recall that given an associatioafibe,

BS 1 and BS 2 choose their respective locations coopefa.BS'S utility does not depend on what decoding order it

tively. Each BS then employs SIC decoding for all mobiledctually follows. But the advertisement will affect the $IN
in its cell. From the discussion in Appendix A, the utility ofeduilibrium and thus the utility. We leave this as an open

BSlisi 1<_>g _(1 + 71955?27321_2 , ind_ependent of thg decodingprOblem for future research.
order. A similar expression is obtained for the utility of BS
Two cooperating base stationsn the cooperative case, if VI. SIC: THE TWO-FREQUENCIESCASE

0% ~ 0, it is nearly optimal if all mobiles can associate to Wi d 1o the two-f . here the BS
one BS. This is because if there is a non-zero population € how proceed to the two-lrequencies case wnere the BoS

of mobiles connected to one BS, it generates a non_zigﬁloy SIC d(_ecodlng. We glv_e_acomﬁ!zt_e characterization of
interference to the other BS. On the other hand, with all t th cooperative and competitive equilibria.
mobiles associated to one of the BSs, say BS 1, the sum utility

3 log gl + Eo,,(rfl)) — oo wheno? — 0. So BS 2 should be A, SINR-Equilibrium Association
placed very far away so that its cell is nearly empty. Syminetr . .
placements are therefore not optimal in general. Howeer, In the tW_O frequencies case, the SINR den?!?’,ie)en aL,BS
o — oo, interference from the other BS no longer plays g)r a mobile aty € A; can range fromW to
role. As in the single mobile decoding scenario, BSs shoufd’5", depending on the BS's decoding order. As before,
be placed to maximize the total power collected from thewe assume that each mobile first associates with a BS. The
respective cells. Thus symmetric locations:; = zo = % BSs then choose an arbitrary decoding order. In the absence
become optimal. of a clear policy for choosing the decoding order at the BSs,
Recall that there can be multiple SINR-equilibria for a givean optimistic mobile believes that it will be decoded lastl an
pair of BSs locations. Thus for the case of non-cooperatitigerefore expects to see an SINR density @f— ;) /0> with
BSs, the competitive equilibria are not well defined. We dBS j. This being monotonically decreasing in the distance
not pursue their study in this work. |y — x;|, the mobile simply associates to the nearest BS. If the
BSs are collocated, then either BS is chosen arbitrariljiriee
v = (21 4+ x2)/2. Then, the equilibrium cell partition isl; =
[—L,v], Ay = (v, L] if 21 < 2, A1 = [v,L], Ay =[-L,v)
In the absence of a clear policy for choosing the decodimg:ﬁ1 > x5, and an arbitrary choice at everyif z; = zo.
order at the BSs, mobiles might also think pessimistically, Remark 6.1:The result that in equilibrium mobiles asso-

i.e., each mobile makes an association decision assumatg §ate to the nearest BS, carries over to the case of more than
it will be decoded first (at the BS with which it associates) ggg gls0.

and ther(.efo-re expects to see an SINR denﬁ&% with
BS j. This is the same SINR-density as observed in the case
of single mobile decoding. Hence for given BS placementB, Hierarchical Equilibrium

SIN_R—equlhbn_um partltl_on will be_ identical to that in thease In the two frequencies case, BS utility with SIC decoding
of single mobile decoding (Section III-A). I E(z;,A;)\ - .
) ? . S . is 5 log(1 + =252, j =1,2 (see Appendix A).
For cooperating BSs, hierarchical equilibrium will be asym i - o tina b tationt thi the two BS
metric in general as in the case of optimistic mobiles. When ) Two cooperating base station IS case, the wo BSs

BSs are selfish, BS is interested in optimizing cooperate to maximize sum utility. ) )
Theorem 6.1:Consider the two-frequencies case with two

C. Pessimistically Behaving Mobiles

llog <1 E(z1, A1) > cooperating BSs that employ SIC decoding. The BS locations
2 E(x1,Az) + 02 that maximize sum throughput arer; = x5 = L/2.
1 E(21,41) Proof: Recall the notation used in the proof of Proposi-
= Zlog |1+ % : (10) tion 4.1 whereu; = E(x;, A;). The sum throughput may be
2 L= % upper bounded as
'ul'tri1||if |sfqug|val_ent_ to optlml_zngo((;%’_Jrlo_)2 _ which is the 22: 1 log (1 N u_J) < log (1 n up + u2>
y O 1 if single mobile decoding is employed. In 2 o2 202

the single mobile decoding case numerical examples irglicat 7=*
that there is a hierarchical equilibrium with symmetric BS
. 2

placements, sayz; = z; = «*, and cell partition(A4;, A2) = E(UL/2 (0, L))
([-L,0], (0, L)) (Section 11I-B2). Clearly, the same is a hier- = log(l+ ———5—).
archical equilibrium in the case of SIC decoding as well. &or 7
BS, the aggregate equilibrium utilities correspondingitme where the first inequality follows from Jensen’s inequality
mobile decoding and SIC decoding, are related as in (10). while the second follows as in the proof of Proposition 4.1,

Remark 5.2:Having discussed the two extreme decodingnd the third follows from Proposition D.1. Finally, the wgop
order beliefs, we are naturally led to the following intéheg bound is attained at-z; = 2o = L/2 with cell partition
problem. What decoding policy should a BS advertise in ordéi—L, 0], (0, L] ). This completes the proof. [ |

IN

log (1 + umax)
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2) Two non-cooperating base stationst this case, the two See Table Il to verify the first claim above. The second one
BSs play a non-cooperative game to maximize their respectiollows since mobiles associate to the nearest BS. These two
utilities. Definea := 2%/, Fora € [1,00), we haver € (1,4].  imply that if 2, < 21, thenzy ¢ BRy(z;). This is the desired
Recall that if the two BSs are not collocated, the cell boupdaresult. Similarly one can argue far, > 0, and subsequently
is (1 +x2)/2. Letr;(x1, z2) be the power collected by BS  for BR; (z2). [ |
The utility of each BS is a monotone function of the power Corollary 6.1: If (z1,z2) is an equilibrium strategy profile,
collected, and we may therefore assume thatjBoal is to then either (i)x; € [-L,0l,z2 € [0,L], or (i) =1 €
maximizer;(x1, xz2). LetBRo(z1) be the set of best responses0, L], z2 € [-L, 0].

of BS 2 toxy, i.e., Proof: If #; = 0, there is nothing to prove. First let
- z1 € [—L,0). The above lemma implies that £ x4, because

BRa(z1) = arggaxm(xl’m) ry = BRy(z1) > 21. Moreover,z, ¢ (z1,0), becauser; =

Define BR (z2) analogously. gi}lgfj hi;ln:szlefd?r 2 < 0. Thusz, € [0,1]. Case (i) .'S

Lemma 6.1:(i) For all z1, BRa(x1) C [-L, L]. An analo- . N
gous conclusion holds fdBR, (x2). We now characterize all the equilibria.

(i) If (x1,z2) is an equilibrium strategy profile, then , 2o € Th_eo_rem 6.2:() For L < va—1, there exists a unique
~L,1) equilibrium atz, = 25 = 0.
’Proof: We consider the following three cases (i) For L > v/a — 1, there exists a unique equilibrium (up to a
i o= L (_ 2 (a—1)2
1) If 21 € (=00, —L), thenrs(z1, —L) = E°(L). On the Permutation)at-z, =zp = 7= ( L++al?—(a—1) )

other hand if|zy| > L, thenry(zy,x2) < E(z2) < Proof: See Appendix E. _ .
E°(L). Thus if anz, ¢ [~L, L], thenzy ¢ BRo(1). Remark.6..2:(|). The .e_q.umbrla Ioca.tlons do not depend
_ on o. A similar insensitivity observation was made for the
2) If 1 € [-L, L], then o Y ST . _ .
equilibria in single mobile decoding case (Section IV-B2).
ra(z1,—L) > ra(x1,22), Vza € (—00,—L), (i) Note that
andT2($1,L) > Tg(,’El,(EQ), VI'Q S (L,OO) _L+\/m _L+\/m L L
Thus if anazs € (—oo,—L) U (L,0), then zo ¢ a—1 < a—1 :\/5+1<§'
BRQ(,Tl).

Again, as already seen in Sections Il1I-B2 and IV-B2 for the
case of single mobile decoding, the competitive equilitoriu
locations of BSs are closer to each other than the optimal
locations under cooperation.

. 3) Convergence to equilibriumWe consider the best re-
Zsebonse dynamics in which the location of each of the two
BSs is sequentially adjusted.

Theorem 6.3:Let L > v/a — 1. Assume that BSs follow the
Best response dynamics to adjust their positions. Themirgta
from arbitrary initial positionsz{ and z$, the best response
sequence converges to the unique equilibrium.

Proof: See Appendix F. |

Remark 6.3:When mobiles behave pessimistically, i.e.,
each mobile makes its association decision assuming that it

3) If 21 € (L,0), thenry(x1, L) = E°(L). On the other
hand if |z3| > L, thenry(x1, 22) < E°(x2) < E°(L).
Thus if anzy ¢ [—L, L], thenzy ¢ BRa(x1).

Similar arguments hold foBR, (z2) also.

that (z1,z2) is an equilibrium strategy profile if and only if
xr1 € BRl(,TQ) and:vg S BRQ(xl)

Thus, for equilibrium analysis, we only need to focus o
xr1,Ty € [—L,L] For x1,z9 € [—L,L], Tg(xl,xg) is as
given in Table I, with a similar table for, (21, z2) of BS 1.
Interestingly, the functions(x1,-) as a function ofzsy is
discontinuous at, = z1 unlessr; = 0. A similar observation
holds forry (-, x2).

TABLE II will be decoded first (at the BS with which it associates),
POWER RECEIVED ATBS 2:z1 € [~ L, L] SINR-equilibrium and hierarchical equilibrium resultsear
identical to those for the single mobile decoding in the two-
z2 € ra(@1,22) frequencies case given in Section IV. (See the discussion in

[~L,z1) | arctang (wl 5*2> + arctang (L + z2)
{1} E°(z1)/2
(z1,L] | arctang (L — x2) + arctang (12%)

Section V-C for a justification in the single-frequency dase

VII. CONCLUSIONS

Next we show that in an equilibrium, the two BSs are placed We studied combined BS placements and mobile associa-
on the opposite sides of the origin. tions in a game-setting where the utilities were determined

Lemma 6.2:If z; < 0, thenBRy (1) > z1. Similarly, if by SINR criteria. We saw that the SINR-equilibrium cells
21 > 0, thenBRy(z1) < 1. Analogous conclusions hold for €xhibited non-monotonicity and non-convexity propertiest

BR (z2) also. are not seen in the classical location game problems. These
Proof: Let z; < 0. If z; < —L, the result follows from unusual properties arise because the SINR density that de-
Lemma 6.1. For-L < z; < 0 termines association is a function of the distance between
a mobile and the BS it is associated with and also the BS

ra(r,af) > ra(wn,a), location. We studied hierarchical equilibria in the CDMA

andra(zy, —x2) > 7ro(x1,22), VIe < 7. single-frequency and two-frequencies cases. We saw eséden
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(via simulations in the CDMA single-frequency case and viahere the limit is taken as — oo. Similarly, the total received
analysis in the other case) of a unique optimal symmetgower from mobiles in a sett C [-L, L] is
pair of locations in the cooperative scenario. We also saw

evidence of a unique equilibrium pair of locations (up to En(z,4) = Zg(y—x)Ay
permutation) in the competitive scenario. For the SIC sng| yea

frequency case, we made some interesting observations. For _ / gy —x)dy = E(x,A).
the SIC two-frequencies case, we completely charactetized A

optimal cooperative locations and all competitive equidibln E(z,A) was defined in (2) andE°(z) was defined as
particular, we observed that in the noncooperative case tEwg% [—L, L)) immediately after.

BSs may be either collocated (at origin) or symmetrically  SINR density and throughputet I C [—L, L] denote the
located (on the opposite sides of the origin) depending @@t of locations that may be considered as interferer loosti
the span of the mobile base. Interestingly, in all scenarig$ie SINR is then
considered, the BS locations are closer to each other in the

competitive case than in the cooperative case, an obsemvati SINR, (y, z,I) =
whose proof has eluded us.

9y —x)Ay
0%+ ,er 9y — 2)Ay
As n — oo, the denominator tends t&(x,I) + o2, the
numerator goes to 0, and the ratio

APPENDIXA SINR.(y,z, 1) gy — )
PROPAGATION, PATH LOSS ANDFLUID MODELS Ay E(z,I)+ 02’

so that the latter may be thought of as SINR density (SINR per
Propagation model: A mobile transmitter is modeled unit distance). Using Shannon’s capacity formula for Gauss
as a point source that radiates in two-dimensional spaceabannels, the data rate for a mobile at locatiois
three-dimensional space. The wavefronts emanating fr@nm th 1 1
point source are circular (respectively, spherical in éare 5 log (1+ SINR,(y, z, 1)) ~ S SINR, (y, 2, 1)
dimensional space). We assume that the far field model holdﬁ . . .
and that antenna couplings between neighboring transmittd 1< < the natural logarithm is employed and the unit of

and between transmitters and receiver are negligible, (.Wenmformatlon is nats. (1 nat =1/_(10g_2) bits ~ 1.44 b't.s)' The
the limit as mobiles get closer to each other aggregate throughput of mobiles in a skt [—L, L] is

Path loss model:Under the far-field model for propa- Z lSINRn(y,I,I)
gation in two dimensions with circular wavefronts, a reegiv yed 2
at a distance from the point source and having aperture arc 1 gy — ) 1 E(z,A)
width s < 7 will capture onlys/(2nr) of the total transmitted - 3 /A E(z 1) + 02 y= 2E@ ) 02

power, so that propagation loss is proportional f@. If there o - ] )
is further dissipation in the medium (analogous to shadgwiVNich is taken as the utility of a BS in the continuum case.

and scattering of electromagnetic waves in three dimesgion ~ S!C decoding:Let the intervalA C [-L, L] denote a
we model the propagation loss as proportional fo®, where set of locations associated with the BSzatSuppose that the

a > 1. The path loss model/r® for three dimensional BS empI_oys SIC._ An arbitrary (_jecoding order is chosen and
propagation withn > 2 is of course the standard one. communicated with the transmitters. For concretenesgjdet

Fluid del: Consid biles located i tassume that mobiles are decoded in the decreasing order of
_Fuid moder: OES' ern mobiles located on a iin€ aly, 4 Then all mobiles inA that are to the left of a given user
positions—L+jAy+=2%, j =0,1,---,n—1 with separation

: . at y will become interferers tq,. The throughput for user at
spacingAy = % We use the lettey to represent the discrete i Y ghp

. L . : € A is therefore
location for finiten, and the continuum location € (—L, L) 4
whenn — oo. Each mobile has powefAAp(y) = Ay, so 110 1+ gy — x)Ay
that we may think of transmi_tted power _density per unit 508 ) +Zy/<y,y/e,49(y' —1)Ay
distancedp/dy as 1 power unit per unit distance, and the
total transmitted power a8 power units. Consider the BS 1 9
. . . = =log|o“+ Z gy’ —z)Ay
located atr at a height of 1 unit from the line. The path loss 2 : :

for a mobile aty is g(y —x) = [1 + (y — z)?] ~2 (see (1)). visyyed
The total received power at the BS, if all of these are in the 1 ) ,
same frequency band, is - §1Og 0"+ Z 9y’ — x)Ay
y'<y,y’'€A
L-Ay/2 Summing these up over discrejec A, and passing to the
E,(z) = Z g(y — x)Ay limit, we get the aggregate throughput of all the mobiles in

y=—L+Ay/2 set A to be

L

1 9(y —z)Ay 1 E(z, A
- gy —x)dy = E°(x), 5 log (1+Zy€A (2 : )—>—10g (1+7(x2 )),
_L o 2 o
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an expression that is used in Sections V and VI for the utilitywhere (15) follows from (11), and (16) via a change of varabl
of BS. Note that this remains the sum utility regardless ef thy — L < y in the first integral and) + L < y in the second.
decoding order chosen at the BS. Of course, the data ratesToe integrand in (16) is positive foy € [0, x]. This proves

each mobile will depend on its position in the decoding ardehe monotonicity. [ |
The sender and the receiver should agree on this data rate and
employ an appropriate code. APPENDIXC

Discussion: It should be noted that the two-dimensional THE RELAXED FIXED POINT ITERATION

propagation (wheny € [1,2)) and our treatment of mobiles  The algorithm: (i) First we determine the starting point.
as fluid particles on a line are merely caricatures of regle aim at finding a poinB, such that bothB, and F(B)
life propagation models. The purpose of their study is t0 gRé in (Buin, fmax). Recall that bothB and F(B) belong to
a qualitative feel for what one might expect in the thre€s, ;,, B,...] and F(B) is decreasing inB. Also, we can
dimensional propagation model with mobiles distributedin easily verify thatF (B) = By for all B in® [Buin, Bmin),

plane and receiver antennas placed at a height from the.plaf@d F'(B) = B, for all B in [Buax, Bmax]. A suitable choice

See also the extension in Appendix G. of B, depends on the order of the quantitis,, Bmasx, Fmin
and fn.x- The following are the four possible orders. (Note
APPENDIXB that the fixed point lies i Bumin, Bmax) N (Bmins Bmax), SO
PROPERTIES OFE°(x) the two intervals must intersect.)
It is straightforward to see via change of variables 1) If Gumin < Bmin < Bmax < Bmax, ChoOse aBy €
that (see (1) and (2)) (Brmin; Bmax)-
Lo arctan(L—z) 2) If Buin < Bmin < Bmax < Bmax, there are two
E°(z) = / g(y) dy = / (cos0)*~2 de. possibilities.
—L—z arctan(—L—z) (11) a) If F(Buax) > Bmin, €h00seBy € (Bumin, Bmax)-

b) If F(Bmax) < Bmin, Choose By €
(ﬁmina F_l(ﬁmin))-
3) If Bmin < Bmin < Bmax < Bmax, again there are two

Closed form expressions are available f6f when o takes
integer values. In particular, far = 2 we get

E°(z) = arctan(L — z) + arctan(L + x), (12) possibilities.
and fora = 1 we get a) If F(Bmin) < Bmax, ch00seBy € (Bmin, fmax)-
b) If F(Bumin) > Bmax, Choose By €
E°(x) = arcsin{L — z) + arcsiniL + x). (13) (F~(Bmax), Bmax)-
The above expressions motivate the following definitionheft ~ 4) If B{nin < ﬁmin1< Pmax < Bmax, Choose aB, €
a-parametric function (F7 (Bmax), F7 (Bmin))-
z SetB = F'(By). Our selection procedure ensures tiatand
arctan, () ::/ 9(y) dy, x € R. B are in (Bmin, fmax)- If B = By, it is the desired fixed
o a

point. So, assumeé3 > By; the caseB < By is handled
Then clearlyarctan, (-) is an odd functiofthat is increasing, similarly. From our earlier discussiof’(B) is bounded over
differentiable with derivativeg, and sigmoiddl We may [Bo, B] € (Bumin, Bmax), i.e., there is aD < oo such that

therefore write the received power at locatioras |F'(B)| < D for all B € [By, B]. Now, we focus only on this
Y interval.
E°(x) = arctan, (L — x) + arctan, (L + z) . (14) (ii) Choose ay < H%, and define
The following is a useful observation. 5
i . . . . B) :=~F(B 1—-~)B, B € |By,B]|. 17
Proposition B.1: E° is an even function with a unique G(B) :i=7F(B)+(1=7)B, B € [Bo, B] (47
maximum at0. Moreover, E°(|z|) monotonically decreases (i) Now iterate asB, 1 = G(B,), n=0,1,....
with |z|. Proposition C.1:The iterates converge to the fixed point of
Proof: That E° is an even function, is obvious from (14).F(B) = B.
To see the monotonicity, far > 0, write Proof: We prove that iterates as defined in Step 3) form

I Lix a nondecreasing sequence. From (17), it suffices to show that
E°(0) — E°(—z) = / g(y) dy _/ gly) dy (15) F(Bn) > By, for all n. We show this inductively. Sinc& >
-L —L+tw By, the claim is true form = 0. AssumeF(B,,) > B, for
—Lte Lote somen. From (17), we conclude thaB, ., > B,. Since
:/ g(y) dy_/L g(y) dy |FI(B)|§D, we get

—L
xr
- / lg(y— L) —g(y+L)] dy (16) F(Bn) — F(Bpt1) < D(Bpy1 — By). (18)
0 Moreover, our choice ofy (see Step (ii)) together with (17)
8It is an odd function becauserctany (—x) = — arctang (z). ensures that
4A function is sigmoidal, if it is non-decreasing, concavethe right of a
particular point called the inflection point and convex t® lift. The second D(Bn+1 - Bn) < F(Bn) — By
derivative ofarctang (z) = ¢’ (z) = —ax[14x2]~(1+a/2) The inflection

point for arctan,, (-) is therefore 0. 5la,b] =0 if a > b.
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Combining the above two inequalities we gBtB,,+1) > which implies
B,,+1. This completes the induction step. — -
Note that (18) requiresB,,, B,.1 < B which can also ) EEVE 1*_(“;1)(1_1),
be shown inductively, as follows. Sinc®; is a convex T2 = L2 (a—1) !

combination of By and B := F(By), B; < B. Now assume 2L
By < B; <...B, < B. This immediately implies that Now , it is easy to check theﬁ”a(g’z“) < 0forall 3 € (0, L],
~F(B,) + (1 —7)B, if L <+/a—1.Thus,BR,(0) = 0. Analogously,BR; (0) =

F(Bo)+(1—~)B 0. So, (0,0) is an equilibrium, providedl < /a —1. For
7, 0 v L>+a-—1,

=5 Or(0, x2)

Since the sequencB,,,n = 0,1,... is bounded and non- T Oxg
decreasing, it converges. Finally, sin€&€B) is a continuous

function of B, the limit point B* is a fixed point ofG(B) = B. =

Substituting in (17), we gef'(B*) = B*. ThereforeB* is the

desired fixed point. [ |

Bn-l—l

IN

9(0) —g(L)

1
1+ L2

o :0+

N~ N

> 0.

HenceBR»(0) # 0. Thus(0,0) can not be an equilibrium.
APPENDIXD Part 2: Next, let(z1,x2) # (0,0). Then, by assumption,
TwoO-FREQUENCIESCASE: SUM RECEIVED POWER we havexr, > x;. From (19), a best responsg to BS 1's

Proposition D.1: Let #; < x5 and letv = (z; + a5)/2 0cationa: should satisfy
denote the mid-point. Then following results hold. 2y — 11\ 2
(i) Let (A1, Ay) denote a partition of—L, L]. Then (L—x)*+1=ua |1+ ( 5 ) ] . (20)

(A1) Flow A Bl 42) Similarly, a best response; to BS 2's locationz, should
< E(z1,[—L,v]) + E(x2, (v, L]). satisfy

(i) Furthermore,E(x1, [— L, v]) + E(x2, (v, L]) is maximized
at —z; = x2 = L/2. The cell partition in this case is-L, 0]

(L+z1)°+1=a

1+ (Ir‘;‘“ﬂ . (1)

and (0, L]. o
Proof: The first statement is obvious once we write odt©®mPining (20) and (21) we get
the integrals and recognize that the integrand is non-iegat (21 + x2)(x2 — 21 — 2L0) = 0

symmetric, andj(y) is decreasing iry|. For the same reason,
we may upper bound the sum in the second statement, lbyr2 — 21 = 2L, the only feasible candidate ig1,z2) =
E(xy, 1)+ E(x2, I,) wherel, is an interval of length +v (=L, L). But, this contradicts (21). Hence, = —z;. Again,
centered at:; and; is an interval of length. — v centered at from (21), we have

x2. ((I1,I2) may not be a partition of—L, L]). Constraining

the sum of interval lengths to b2L, the upper bound is

further maximized when the intervals are of equal length which implies
But this upper bound is achieved whenr; = xo = L/2.

(L+x1)>+1=a(l+23)

The corresponding intervals-L, 0] and (0, L] constitute a r = L+ yal?—(a— 1)2.
cell partition, as required. This concludes the proof. = a—1
Sincez; € [—L,0], we must have,/aL? — (a —1)?> > L,
APPENDIXE so there will be no feasible solution fol. < +/a — 1.
PROOF OFTHEOREMG6.2 Furthermore,

Let (x1,2z2) be an equilibrium. We may assume, without B 1 I \/ﬁ
loss of generality, that; € [—L,0],z, € [0, L] (see Corol- T1==%=""" (_ +val?—(a—-1) )

lary 6.1). Differentiatingr, (v, 2) with respect tor;, we get unique feasible candidate for> +/a — 1. Finally, let

Ora (w1, x2) _ lg <$2 - Il) — (L =) (19) = L (—L +al? - (a— 1)2). We now show that

Oz 2 2 T, = —x9 = 2* is indeed an equilibrium ifL. > /a — 1.
The rest of the proof is divided into two parts. To see this, note that
Part 1: We first check whether; = 2o = 0 is an 8%ry(a*, ) 1
equilibrium. Note thatr,(0,z2) is an even, continuous and 26 5 2 = Zg’(—:z:*) +¢ (L+12*) <0,
differentiable function ofry. From (19) T2 T2=—2*
becauser* < 0 and L + z* > 0. This assures thatz* is
Or2(0,z2) ) . o -
o 0 indeed a maximum point, i.esx* = BRy(z*). Similarly, one

) a ) can verify thatz* = BR;(—x").
= 3 (1 - Z) —2Lxs+ L7 = (a—1) =0, Parts 1 and 2 together complete the proof.
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APPENDIXF
PROOF OFTHEOREMG6.3

Lemma 6.1 implies that it is sufficient to show the result
for the case wheng?,2§ € [-L,L]. Assumez; < 0.
Solving (20), we get

Furthermore, in case of a strict inequality above, the set is
disc with center

and radiusy/72 — 1.

Note that in the one-dimensional case, the BS with higher
interference had an interval as its cell. The complementisf t
) _ . . interval joined the second BS. The analog of the intervakty
For a € (1,4), the solution to. (20) W|th the positive SI9Ncq| in two dimensions is a disc-type cell. Further, observe
leads tox; > L. We therefore discard it, becauB®s (1) € that we did not make any assumptions on the population

[0, L]. The other candidate is the, in (22) which satisfies yengjty. The cell partition is always a disc and its compleme

xy — x1B% y2 — 1 B2
1-BZ ' 1-B2

4L—a11—2\/a(L—m1)2+(4—a)(a—1)
s 7
2(L—I]) )

Tro =

a € (1,4)
L;zl 4 (22)

a1 < xp < L. This further implies that However, the population density does affect the interfegen
O*ro(z1,22) 1g, <x2 -1 and therefore the actual parameters of the cell partition.
Ox3 2

4
Hencex, as given in (22) is indee®Ra(z1). Now, it can
also be seen thar < QBL@ < 1 — € wheree > 0 depends
on a. An analogous result holds far; > 0 also. Analogous
results also hold for%g%im. Thus a small change in the [
position of a BS causes an even smaller change (in the same
direction) in the position of the other BS. The best respsnsem
thus constitute a contraction map and the dynamics conserge
to the equilibrium. [4]

(5]

> + g (L —x3) <0.

(1]

APPENDIXG
CDMA SINGLE-FREQUENCY CASE: EXTENSION TOTWO
DIMENSIONS [6]

A large number of mobiles are located uniformly over they7,
two dimensional plain. Two BSs are placed @t,y1,1)
and (z2,y2,1) respectively. The BSs operate on the sam;gl
frequency band. The path loss model is as before. The SINR-
equilibrium association can be defined in a similar way as in
Definition 2.1. Here, we provide closed form expressions fof°!
cell boundaries in the equilibrium. As in Section IlI-A, we

E°(x1,11) 4 0

define
1/«
By = .
(E°($27y2)+02) [11]

When the two BSs are collocated, every association profile is
an SINR-equilibrium. If(x1,y1) # (72,y2) and still B, =1, [17]
there is unique SINR-equilibrium association in which nebi
associate with the BS which is closer. To study the asymmetf' 3
scenarios, without loss of generality assume Bat< 1, i.e.,
the interference at BS Z;°(x2, y2), is more than that at BS 1,
E°(x1,y1). Mobiles at(z,y) connect to BS 2 only if they do
not have a lower SINR density &t-,y2), i.e.,

[(x— 22)? + (y — y2)* + 1] /2
E°(z2,y2) + 02
[(x—21)? + (y —y1)? + 1] /2
E°(z1,y1) +0?

[10]

[14]

[15]

[16]

2 [17]

which is equivalent to
(z—22)?+(y—12)’+1 < (( —21)* + (y —y1)* + 1) B2

This inequality straightforwardly yields that the set centing
to BS 2 is nonempty only if

o V(1 —22)2 + (y1 — y2)2Ba
' 1- B2

(18]

> 1.
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