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Abstract—In this paper, we study the problem of wireless
sensor network design by deploying a minimum number of
additional relay nodes (to minimize network design cost) at
a subset of given potential relay locations in order to convey
the data from already existing sensor nodes (hereafter
called source nodes) to a Base Station within a certain
specified mean delay bound. We formulate this problem in
two different ways, and show that the problem is NP-Hard.
For a problem in which the number of existing sensor nodes
and potential relay locations is n, we propose an O(n)
approximation algorithm of polynomial time complexity.
Results show that the algorithm performs efficiently (in
over 90% of the tested scenarios, it gave solutions that were
either optimal or exceeding optimal just by one relay) in
various randomly generated network scenarios.

I. INTRODUCTION

Large industrial establishments such as refineries,

power plants, and electric power distribution stations,

typically have a large number of sensors distributed over

distances of 100s of meters from the control center.

Individual wires carry the sensor readings to the control

center. Recently there has been increasing interest in

replacing these wireline networks with wireless packet

networks ([1], [2]). A similar problem arises in an

intrusion detection application using a fence of passive

infrared (PIR) sensors [3], where the event sensed by

several sensors has to be conveyed to a Base Station

(BS) quickly and reliably.

The communication range of the sensing nodes is

typically several tens of meters. Therefore, usually multi-

hop communication is needed to transmit the sensed

data to the BS. The problem then is to design a multi-

hop wireless mesh network with minimum deployment

cost, i.e., minimum number of additional relays, so as

to communicate from each sensing (source) node to a

central node, which we will call the BS (we shall use

the terms BS and sink interchangebly), while meeting a

certain performance objective such as a delay bound.

The relay placement problems can be broadly classi-

fied into two classes, namely, the unconstrained relay

placement problem, where the relay locations can be

anywhere in the 2-dim plane, and the constrained relay

Sensor Nodes

Sink

(also serve as relays)

Possible Relay Node Locations

Potential Links

Fig. 1. The constrained relay placement problem; circles indicate
sources, hexagons indicate potential relay locations. The edges denote
the useful links between the nodes.

placement problem, where the relays can be placed

only at certain pre-specified potential locations. In most

practical applications, due to the presence of obstacles

to radio propagation (e.g., a firewall, a large machine,

or a building), or due to taboo regions (e.g., a pond or

a ditch), we can not place relay nodes anywhere in the

plane, but only at certain designated locations. This leads

to the problem of constrained relay placement. In this

paper, we shall study the problem of constrained relay

placement subject to an end-to-end delay bound.

Figure 1 depicts the constrained relay placement prob-

lem.

• The source locations and possible relay locations

are specified.

• Only certain links are permitted. This is because

some links could be too long, leading to high

bit error rate and hence large packet delay. Other

potential links may not exist due to an obstacle,

e.g., a firewall, or a building.

• The problem is to obtain a subnetwork that con-

nects the source nodes to the base station with the

requirement that

1) A minimum number of relay nodes is used.



2) The mean delay is bounded by a given value

dmax.

In this paper, we address this problem for the case

in which (a) the nodes use the CSMA/CA Medium

Access Control (as standardized in IEEE 802.15.4), and

(b) the traffic from the source nodes is such that at any

point of time only one measurement packet flows from

a source in the network to the base station. We call this

the “lone packet traffic model”, which is realistic for

many applications where the time between successive

measurements being taken is sufficiently long so that the

measurements can be staggered so as not to occupy the

medium at the same time. Note that even if the traffic is

so infrequent, the end user may still like to constrain the

delay between when a measurement packet is generated

and when the packet is received. In applications, the

measurements are currently conveyed to the BS via a

wireline network. While replacing the wireline network

(which is expensive to install and maintain) with a wire-

less mesh network, we would like to constrain the end-

to-end performance achieved by the wireless network.

Moreover, we expect the design for the lone packet

model to serve for the case of continuous traffic from

all sources, under very light load.

A. Related Literature

We see that the problem we have chosen to address

belongs, broadly, to the class of Steiner Tree Problems

(STP) on graphs ([4], [5], [6]).

The classical STP is stated as: given an undirected

graph G = (V,E), with a non-negative weight asso-
ciated with each edge, and a set of required vertices

Q ⊆ V , find a minimum total edge cost subgraph of

G that spans Q, and may include vertices from the set

S := V − Q, called the Steiner vertices.

The classical STP dates back to Gauss and it has been

proven to be NP-Hard. Lin and Xue [7] proposed the

Steiner Tree Problem with Minimum Number of Steiner

Points and Bounded Edge Length (STP-MSPBEL). The

STP-MSPBEL was stated as: given a set of n terminal

points Q in 2-dimensional Euclidean plane, find a tree

spanning Q, and some additional Steiner points such that

each edge has length no more than R, and the number of

Steiner points is minimized. The problem was shown to

be NP-complete and a polynomial time 5-approximation

algorithm was presented. This problem was the first

well-studied problem on optimal relay placement (relay

locations unconstrained).

Cheng et al. [8] studied the same problem as Lin and

Xue, and proposed a 3-approximation algorithm and a

2.5-approximation algorithm.

Lloyd and Xue [9] studied a generalization of STP-

MSPBEL problem where each sensor node has range

r and each relay node has range R ≥ r. They pro-

vided a 7-approximation polynomial time algorithm.

They also studied the problem of minimum number of

relay placement such that there exists a path consisting

solely of relay nodes between each pair of sensors. For

this problem, they provided a (5 + ǫ)-approximation

algorithm. The problems studied by Lloyd and Xue, as

well as Cheng et al. fall in the category of unconstrained

relay placement problem.

Voss [10] studied the Steiner Tree Problem with Hop

Constraints (STPH). This problem is stated as: given a

directed connected graph G = (V,E), with non-negative
weight associated with each edge, consider a subset of

V , namely, Q = {0, 1, 2, . . . , n} with 0 being the root
vertex, and a positive integer H . The problem is to find

a minimum total edge cost subgraph T of G such that

there exists a path in T from 0 to each vertex in Q\{0}
not exceeding H arcs (possibly including vertices from

S := V −Q). We can call this problem the Rooted Steiner

Tree-Minimum Weight-Hop Constraint problem (RST-

MW-HC). This problem was shown to be NP-Hard,

and a Minimal Spanning Tree based heuristic algorithm

was proposed to obtain a good quality feasible solution,

followed by an improvement procedure using a variation

of Local Search method called the Tabu search heuristic.

No performance guarantee or complexity analysis of the

heuristic was provided.

Costa et al. [11] studied the Steiner Tree Problem

with revenue, budget, and hop constraints. Given a graph

G = (V,E), with a cost associated with each edge,

and a revenue associated with each vertex, the problem

is to determine a revenue maximizing tree subject to a

total edge cost constraint, and a hop constraint between

the root vertex and every other vertex in the tree. They

propose a greedy algorithm for initial solution followed

by destroy-and-repair or tabu search to improve the

initial solution.

Kim et al. [12] studied the Delay and Delay Variation

Constrained multicastng Steiner Tree Problem. The prob-

lem is similar to the one studied by Voss, with a delay

constraint instead of the hop constraint, and a constraint

on delay variation between two sources. With the delay

variation constraint relaxed, Kim’s problem becomes the

Rooted Steiner Tree-Minimum Weight-Delay Constraint

problem. They proposed a polynomial time heuristic

algorithm to obtain reasonably good feasible solutions,

but they did not provide any performance guarantee for

their algorithm.

Bredin et al. [13] studied the problem of optimal re-

lay placement (unconstrained) for k−connectivity. They

proposed an O(1) approximation algorithm for the prob-

lem with any fixed k ≥ 1.

Misra et al. [14] studied the constrained relay place-

ment problem for connectivity and survivability. They



provided O(1) approximation algorithms for both the

problems. We can call their first problem the Rooted

Steiner Tree-Minimum Relays problem, and their sec-

ond problem, the Rooted Steiner Tree-Minimum Relays-

Survivability problem. Although their formulation takes

into account an edge length bound, namely edge length≤
rc, which can model the link quality, the formulation

does not involve a path constraint such as the hop count

along the path; hence, there is no constraint on the end-

to-end delay.

We shall provide a brief comparison of our work with

some of the closely related works discussed here after

we have described our problem formulation in Section II.

The rest of the paper is organized as follows: in

Section II, we describe the assumptions made and the

two different problem formulations, and show that the

problems are NP-Hard. In Section III, we describe the

proposed algorithm, and provide a complete analysis

of the algorithm. In Section IV, we provide numerical

results for the algorithm applied to a set of random

scenarios. Finally, we conclude the paper in Section V.

II. ASSUMPTIONS AND PROBLEM FORMULATION

A. Assumptions

In several industrial telemetry applications, the rate at

which measurements are obtained from the sensors is

low, for example, as little as one reading per hour from

each sensor. We also assume that the alarm traffic is

so infrequent that it does not interfere with any regular

data transmission. Then, if the data transmission from the

sensors is staggered over the hour, it can be assumed that

each measurement packet flows over the network with

no interference from any other packet flow. Our work

in this paper is concerned with this “lone packet” traffic

model. We also assume that IEEE 802.15.4 standard [15,

p. 30-179, p. 640-643] is used for PHY and MAC layers.

Under the above assumptions, we can obtain an ex-

pression for the received signal to noise ratio (SNR) as

a function of the hop distance, given the transmit power

level, using the path loss model given in the standard,

and accounting for a shadow fade margin of 20 dB.

Hence, the bit error rate (ǫ) on a link can be obtained as a

function of hop distance, again by using a formula given

in the standard. Then, for a PHY packet data unit length

of L bytes, the packet error rate (PER) on a link can be

obtained as 1 − (1 − ǫ)L. Given the PER on a link as

a function of hop distance, we can obtain an expression

for the mean delay on that link as a function of hop

distance, using the backoff behavior and parameters of

IEEE 802.15.4 CSMA/CA MAC. We use this analysis

for Formulation 1 in Section II-B below. Also, given

the end-to-end distance from a source to the sink, and

assuming all hops to be of equal length from the source

to the sink, we can obtain the end-to-end mean delay as a
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Fig. 2. Upper panel: Mean single hop delay vs. hop distance. Lower
panel: Mean end-to-end delay vs. hop distance for an end-to-end
distance of 500m. All hops are assumed to be of equal length. On
each hop, unslotted CSMA/CA as defined in IEEE 802.15.4 is used. A
transmitted packet fails only due to channel errors, which are modeled
using standard formulas for the IEEE 802.15.4 PHY.

function of the single hop distance. Figure 2 shows a plot

of mean single hop delay as a function of hop distance,

and also a plot of mean end-to-end delay as a function

of hop distance for an end-to-end distance of 500 meters

and five different power levels, assuming a PHY packet

data unit of 90 bytes (corresponding to a network layer

packet length of 40 bytes), and a shadow fade margin of

20 dB. For a small hop distance, the mean single hop

delay is just the time taken to send a packet once on the

link; this time includes the mean initial back-off time in

IEEE 802.15.4 CSMA, and also any physical layer and

MAC layer overheads. The end-to-end delay, is large for

small hop length since there is a large number of hops,

although each hop has a small PER, and is again large

for a large hop length since the PER on each hop is

large, although the number of hops is small.



B. Problem Formulation

With the delay model obtained as above, we can

proceed to formulate our relay placement problem as

follows:

Formulation 1: Given the set of source nodes or

required vertices Q (including the BS) and the set of

potential relay locations R, also called Steiner vertices,

consider the complete graph G = (V,E), where V =
Q∪R and E consists of all feasible edges. For each edge

e ∈ E, assign to that edge an edge weight d(e) which is

the mean single hop delay on that edge, obtained from

the above delay model (see Figure 2, top panel). Then,

given the mean delay requirement dmax, the problem

is to form a spanning tree on Q, rooted at the sink,

using a minimum number of relays such that the mean

delay from each source node to the BS is bounded

by dmax. Let us call this problem the Rooted Steiner

Tree-Minimum Relays-Delay Constraint (RST-MR-DC)

problem.

Formulation 2: Given the maximum distance from a

source to the BS, lmax, and the transmit power used, we

can obtain the plot of the maximum end-to-end delay as

a function of hop distance, as shown in Figure 2. From

this plot, we can obtain the optimal hop distance rc,

and hence the hop count hmax, sufficient to maintain

the specified delay bound of dmax for the farthest

source. Then, we can construct a graph G = (V,E)
on V = Q ∪ R with E consisting of edges of length

≤ rc. Then the problem is again to extract from this

graph, a spanning tree on Q, rooted at the BS, using

minimum number of relays such that the hop count

from each source to the BS is ≤ hmax. Let us call this

problem the Rooted Steiner Tree-Minimum Relays-Hop

Constraint (RST-MR-HC) problem.

Remark: Evidently, the RST-MR-HC problem is a

special case of RST-MR-DC problem. To see this, con-

sider the complete graph on V = Q ∪ R and assign

an edge weight of one to each edge of length ≤ rc

and an edge weight of infinity to all other edges. Then,

on this weighted graph, the RST-MR-DC problem with

dmax = hmax is precisely the RST-MR-HC problem.

Hence we shall design our algorithm for the general

RST-MR-DC problem as it will apply without modifi-

cation to the other case.

Limitation: Note that in Formulation 2, the edge length

and hop count constraints provide a sufficient, but not

necessary, condition to meet the delay requirement for

the farthest source. Hence, for a given network scenario

and for a given delay requirement, it may turn out that

the RST-MR-HC problem is delay-infeasible, while the

RST-MR-DC problem is feasible, i.e., there exist paths

from each source to the BS satisfying the delay bound,

but they do not satisfy the edge length and/or hop count

bounds.

RST−MR

RST−MR−HC

RST−MR−DC

Fig. 3. Venn Diagram showing the relationship among RST-MR-DC,
RST-MR-HC, and RST-MR problems

C. Complexity of the Problem

Proposition 1. The RST-MR-DC and RST-MR-HC prob-

lems are NP-Hard.

Proof: Consider the RST-MR-HC problem. The

subset of RST-MR-HC problems where the hop count

bound is trivially satisfied is precisely the class of RST-

MR [14] problems (consider, for example, all RST-MR-

HC problems where |Q|+|R| = n, n being some positive

integer, and the hop count bound is hmax = n − 1.

Clearly, the hop count bound is trivially satisfied in these

problems). Thus, the RST-MR problem is a subclass of

the RST-MR-HC problem. This (and an earlier remark

in the previous subsection) leads to the situation shown

in Figure 3. But, the RST-MR problem is NP-Hard

(see [14]). Hence, the RST-MR-HC problem, being a

superclass of the RST-MR problem, is also NP-Hard [16,

p. 63, Section 3.2.1]. Since the RST-MR-HC problem is

a special case of the RST-MR-DC problem, the RST-

MR-DC problem is also NP-Hard.

D. A Comparison with Closely Related Works

In Table I, we present a brief comparison of the

problem under study with some of the closely related

problems studied in the literature.

TABLE I
A COMPARISON WITH CLOSELY RELATED LITERATURE; THE

“STARRED” PROBLEMS ARE THE ONES WE ADDRESS IN THIS PAPER

End-to-End Approximation

Problem Performance Complexity Guarantee of

Objective Proposed

Algorithm

RST-MR [14] × NP-Hard 6.2

RST-MW-HC [10] X NP-Hard ×
RST-MW-DC [12] X NP-Hard ×
RST-MR-DC∗ X NP-Hard polynomial factor

RST-MR-HC∗ X NP-Hard polynomial factor

III. PROPOSED ALGORITHM AND ITS ANALYSIS

We describe the proposed approximation algorithm for

the RST-MR-DC problem, where we are given the sets



Q, R, and the edge weighted (edge weight = hop delay

on that edge), undirected, complete graph G = (V,E).
Also given is the required mean delay bound dmax.

Since the RST-MR-HC problem is a special case of

the RST-MR-DC problem, the algorithm applies without

modification to the RST-MR-HC problem.

A. Shortest Path Tree (SPT) based Iterative Relay Prun-

ing Algorithm

1) The Zero Relay Case: Find the SPT on Q alone,

rooted at the sink. If the delay ≤ dmax for each

path, we are done; no relays are required in an

optimal solution. Else, go to the next step.

2) Find the Shortest Path Tree T on G, rooted at the

sink.

3) Checking Feasibility: If for any path in the SPT,

the path weight exceeds dmax, declare the problem

infeasible. (Clearly, if the shortest path from a node

to the sink does not meet the delay bound, no other

path from the node to the sink will meet the delay

bound). Else go to the next step.

Pruning the SPT:

4) Discard all nodes in R\T . Note that this step may

lead to suboptimality as some nodes in R\T could

be part of an optimal solution. See Figure 9 for

example.

5) For paths with path weight= dmax (binding paths),

declare the set of relays on those paths as the

locked set (L), i.e., none of those relays will be

removed in further iterations.

6) Now, for the remaining relay nodes in R, define

the weight of a relay node as the number of paths

in the SPT that use the node.

7) Arrange the paths in SPT, except the binding paths,

in increasing order of cost.

8) Choose the least cost path that contains relay

nodes. Arrange the relay nodes on this path in

increasing order of their weights as defined in (7).

9) Remove the least weight relay node and consider

the restriction of G to the remaining nodes in T .

Find an SPT on this graph. If in this SPT, path

cost exceeds dmax for any path, then discard this

SPT, replace the removed relay node, and repeat

this step with the next least weight relay node. If

all the relays in the least cost path have been tried

without success, move on to the next least cost

path, and repeat steps 8 and 9 for the relays in

this path that have not yet been tried.

10) If in the above step, the SPT obtained satisfies

the delay constraint for all the paths, then delete

the removed relay node permanently from R and

repeat steps 5 through 10. Note that as the al-

gorithm progresses, the locked set L may grow

(whenever Step 5 is repeated), as some more paths

may become binding.

11) Stop when all the relays excepting those in the set

L have been tried.

Discussion:

Step 1 of the above algorithm ensures that if the

optimal design does not use any relay node, then the

same goes true for our algorithm. That way we can make

sure that the algorithm does not do infinitely worse in

the sense that
Relayalgo

Relayopt
is finite.

The idea behind Steps 8, 9 and 10 is that choosing

to remove a relay from the path with most slack in cost

(i.e., delay or hop constraint), we stand a better chance

of still meeting the delay requirement with the remaining

relays. Also, removing a relay of less weight would mean

affecting the cost of less number of paths. So by pruning

relays in the manner as described in Steps 8, 9 and 10,

we aim for a better exploration of the search space.

B. Analysis of the Algorithm

1) Complexity: The complexity of determining the

shortest path tree on N nodes is N log N [17]. Let us

denote this function by gSPT (.). In Iteration 1 of the

algorithm, the complexity is gSPT (|Q|) and in iteration

2, it is gSPT (|Q| + |R|). In subsequent iterations, we

remove 1 relay node at a time and find the SPT on

the resultant complete graph; if no improvement is

found, we replace that node and continue. Thus, for

the kth iteration, the worst case complexity will be

(|R| − k + 3)gSPT (|Q| + |R| − k + 2), where in the

worst case, k = 3, 4, . . . , |R| + 1. Let g(.) denote the

overall complexity. Thus, the overall complexity will be

g(|Q| + |R|) = gSPT (|Q| + |R|)+

|R|∑

j=1

(gSPT (|Q| + |R| − j))(|R| − j + 1)

≤ (1 + |R|2)(gSPT (|Q| + |R|))

which is polynomial time.

2) Worst Case Approximation Factor: The worst case

occurs when the SPT obtained before we enter Step (4)

does not contain any relay node(s) that correspond to

some optimal design. If no relays are used in any optimal

design, then the algorithm will yield an optimal design

(Step (1)). Hence, the worst possibility is that the optimal

design uses just 1 relay node, whereas the SPT obtained

in Step (2) consists of all the remaining (|R|−1) relays,

and moreover, pruning any of these (|R| − 1) relays

will cause one or more paths in the resulting SPT to

violate the delay constraint. Thus, in the worst case, the

algorithm leads to a design with (|R|−1) relays instead

of the optimal design with one relay. Hence, we have

a polynomial factor worst case approximation guarantee

of (|R| − 1).
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BS

S1

S2 S3 Sn

R1
R2 R3 Rn

Fig. 4. A Sequence of Problems where the Worst Case Approximation
Guarantee is Strict

3) Sharp Examples: Let us now present a sequence of

problems of increasing complexity for which the approxi-

mation guarantee is strict, i.e., for these problems, the al-

gorithm ends up using |R|−1 relays, while the optimum

design uses one relay. Such examples are worthwhile

to explore as they help to show the correctness of the

performance analysis of a proposed algorithm. Consider

the situation shown in Figure 4. The green hexagons

denote the relay node locations and the black circles

represent the source node locations. Only the edges

shown (coloured or black) are permitted. Consider the

RST-MR-HC problem on this graph with hmax = 3.

Clearly the optimal solution will use only one relay, R1,

to reach from each source to the BS within the specified

hop count bound. The black dotted links correspond to

the optimal solution. The red link will belong to both

the optimal solution and the outcome of our algorithm

as it is a direct link between source S1 and the BS. Our

SPT based algorithm will calculate the shortest paths

and thus end up using relays R2, R3, . . . , Rn, leaving

out R1. The black solid links correspond to the solution

given by our algorithm. Clearly, in such problems, we

end up using |R| − 1 relays instead of just one.

Another sequence of problems of increasing complex-

ity for which the algorithm gives the optimal design can

be constructed as shown in Figure 5. Such examples

help to show that a proposed algorithm does perform

optimally at least in some scenarios.

As before, the green hexagons represent relay loca-

tions and the black dots represent source nodes. Suppose

hmax = 2. Then clearly, the optimal solution is as shown

in the figure. The algorithm, after calculating the SPT,

will end up with the same solution.

Note that since RST-MR-HC is a special case of RST-

MR-DC problem, the above sharp examples also hold for

the algorithm applied to the RST-MR-DC problem.

IV. NUMERICAL RESULTS

To test the algorithm, we generated 620 random net-

works as follows:

S1

S2

S3
Sn−1

Sn R1

R2

R3Rn−1

Rn BS

Fig. 5. A Sequence of Problems where the Algorithm gives Optimal
Solution

A 200m × 200m area is partitioned into square cells

of side 10m. Consider the lattice created by the corner

points of the cells. 10 source nodes are placed at ran-

dom over these lattice points. Then the potential relay

locations are obtained by selecting 60 points uniformly

randomly over the 200m × 200m region.

Given the outcome of the SPT based algorithm, the

optimal solution can be obtained as follows:

Suppose the SPT based algorithm uses n relays.

Then perform an exhaustive search over all possible

combinations of (n − 1) and fewer relays to check if

the performance constraints can still be met.

In 109 of the 620 scenarios tested, the delay constraint

turned out to be infeasible.The results for the remaining

511 scenarios are summarized in Table II.

TABLE II
EFFICIENCY OF THE SPT BASED ALGORITHM IN OBTAINING THE

OPTIMAL DESIGN

Scenarios Optimal Off by Off by Off by
Design one 2 to 4 5 or more

511 320 141 50 0

62.6%

27.6%

9.8%
Optimal

Off by one

Off by more than one

Fig. 6. Efficiency of the Algorithm as suggested by Test Results

The efficiency of the algorithm can be easily visual-

ized from the pie chart in Figure 6.



Observations

1) In over 90% of the tested scenarios, the algorithm

ends up giving optimal or near-optimal (exceeding

optimum just by one relay) solutions.

2) In the remaining cases, where it is off by more than

one relay, the maximum difference was found to

be 4 relays.

TABLE III
COMPARISON OF SPT BASED ALGORITHM WITH OPTIMUM DESIGN

FOR RST-MR-DC PROBLEM ON 12 RANDOM SCENARIOS

Scenario dmax Relay Count Execution Time in sec

in msec Algorithm Optimum Algorithm Optimum

1 22 4 4 0.655 1371.1

2 22 2 1 0.593 0.639

3 22 1 1 0.593 0.078

4 22 2 2 0.577 2.449

5 22 2 2 0.375 2.481

6 22 4 4 0.686 1379.5

7 22 3 3 0.78 70.902

8 22 4 3 0.796 369.22

9 22 2 2 0.889 2.481

10 22 3 3 0.687 70.419

11 22 2 2 0.718 2.496

12 22 3 3 0.905 70.715

In Table III, we take a closer look at the outcome

of the SPT based algorithm applied to the RST-MR-

DC problem on 12 random networks. As can be seen

from the table, in all those 12 cases, the algorithm gives

optimal or near optimal solutions within hundreds of

milliseconds. Note from the table that even after knowing

the outcome (say n) of the algorithm, computation of

the optimum by exhaustive search over (n − 1) or

fewer relays took as long as 23 mins in the worst case

(scenarios 1 and 6), as the search was over all possible

combinations of (4−1) = 3 relays out of 60, i.e., a total

of 34220 combinations.

TABLE IV
COMPARISON OF SPT BASED ALGORITHM WITH OPTIMUM DESIGN

FOR RST-MR-HC PROBLEM ON 12 RANDOM NETWORKS

Scenario hmax rc Relay Count
in meters Algorithm Optimum

1 6 64 5 5
2 6 64 1 1
3 6 64 3 2
4 6 64 3 3
5 6 70 2 2
6 6 64 3 3
7 6 64 3 3
8 6 64 3 3
9 8 70 2 2

10 6 64 3 3
11 6 64 4 3
12 8 70 2 2

In Table IV, we provide a snapshot of the application

of the algorithm to the RST-MR-HC problem on 12

random networks. Here also, we find that in all the

12 cases, the algorithm gives optimal or near optimal

solutions.

Fig. 7. RST-MR-DC problem on a random scenario where our
algorithm gives optimal design; Top panel: Source node locations and
potential relay locations. Bottom panel: The relay placements and paths
obtained by the algorithm; circles indicate relay locations

We show in Figure 7 the node placement and the

paths obtained by the algorithm for the RST-MR-DC

problem on a random scenario for which the algorithm

gives optimal design. In Figure 8, we show the node

placement and the paths obtained by the algorithm for

RST-MR-DC problem on a random scenario for which

the algorithm gives near optimal (off by one) design. In

these figures, the diamonds indicate source locations and

the circles indicate relay locations. Note that if we are

simply given the positions of the sources and potential

relays, it is not at all clear by inspection how to select the

relays to get an optimal design. A naive way to determine

an optimal design is to perform an exhaustive search,

which would require consideration of 260 combinations.

If each case took even 1 msec, it would take 260 msec

= 3.2× 1011 hours = 1.33× 1010 days = 36558901.08
years. This underlines the usefulness of our algorithm

in giving optimal or near optimal solutions within an

extremely reasonable time.

In Figure 9, we show the node placements and the

paths obtained by the algorithm for the RST-MR-DC



Fig. 8. RST-MR-DC problem on a random scenario where algorithm
gives near optimal design; Top panel: Source node locations and
potential relay locations. Middle panel: The relay placements and paths
obtained by the algorithm; circles indicate relay locations. Bottom
panel: An Optimal design

problem on a random scenario where the algorithm is

off from the optimal by 2.

Finally, in Figure 10, we present the relay placements

and paths obtained by the algorithm for the RST-MR-

HC problem on a random scenario where the algorithm

achieves optimal design.

Fig. 9. RST-MR-DC problem on a random scenario where algorithm
is off by more than one (2) from optimal design; Top panel: Source
node locations and potential relay locations. Middle panel: The relay
placements and paths obtained by the algorithm; circles indicate relay
locations (using 4 relays). Bottom Panel: An Optimal design (using 2
relays)

V. CONCLUSION

In this paper, we have studied the problem of deter-

mining an optimal relay node placement strategy such

that a certain performance objective (in this case, mean

delay) is met. We showed that the problem is NP-

Hard, and proposed a polynomial time approximation



Fig. 10. RST-MR-HC problem on a random scenario where algo-
rithm achieves optimal design; Top panel: Source node locations and
potential relay locations. Bottom panel: The relay placements and paths
obtained by the algorithm; circles indicate relay locations

algorithm, which, as can be concluded from numerical

experiments, gives solutions of reasonably good quality,

using extremely reasonable computation time. In the

worst case, the algorithm can do as bad as using all but

one potential relay locations instead of just one optimum

relay. The algorithm can not do infinitely worse, in the

sense that if the optimum design happens to use no relay

node, the algorithm does not use any relay node either.

The algorithm proposed here is basically a local search

algorithm where the starting solution is an SPT, and

then we search neighbourhoods of that SPT until a local

optimum is obtained. One might ask why this local

search algorithm works so well in the tested random

scenarios. The answer to this question is not immediately

obvious, but, for the RST-MR-HC problem, a formal

analysis of the properties of the underlying random

geometric graph might provide some useful insights into

the performance of this local search algorithm. We wish

to address this issue in our future work.
In this paper, we worked with a mean delay objec-

tive. In the future, we wish to extend this to cover a
probabilistic worst case delay guarantee, i.e., P (delay ≥

T ) ≤ ǫ. Also, so far we have only sought a tree with
certain properties. But for fault-tolerance purposes, it is
essential to seek an optimal relay placement to ensure k-
connectivity, while still meeting the delay requirement.
Further, we are working on extending the design to
traffic models more complex than the lone packet traffic
model considered here. This requires the analysis of
packet delays in a mesh network with more complex
traffic flows and the nodes accessing the medium using
CSMA/CA as defined in IEEE 802.15.4 [18].
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