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|. ABSTRACT

We develop scheduling strategies for carrying multimedia traffic over a polled multiple access wireless
network with fading. We consider a slotted system with three classes of traffic (voice, streaming media
and file transfers). A Markov model is used for the fading and also for modeling voice packet arrivals and
streaming arrivals. The performance objectives are a loss probability for voice, mean network delay for
streaming media, and time average throughput for file transfers. A central scheduler (e.g., the access point
in a single cell IEEE 802.11 wireless local area network (WLAN)) is assumed to be able to keep track of
all the available state information and make the scheduling decision in each slot (e.g., as would be the case
for PCF mode operation of the IEEE 802.11 WLAN). The problem is modeled as a constrained Markov
decision problem. By using constraint relaxations (a linear relaxation and Whittle type relaxations) an index
based policy is obtained. For the file transfers the decision problem turns out to be one with partial state in-
formation. Numerical comparisons are provided with the performance obtained from some simple policies.
Keywords: scheduling over fading wireless channels, indexability and index policies, QoS in 802.11 wire-
less LANSs.

Il. INTRODUCTION

We consider a home or office environment, where mobile stations (MSs) communicate with the external
world through a wired access point (AP) (e.g., an AP in an IEEE 802.11 WLAN) as shown in Figure 1.
Access to the Internet and the phone network is through a wired access link (e.g, DSL, T1-E1 or TV Cable;
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see Figure 1). We assume that at least over the wireless interface, the voice is packetised. The TV receives

streaming media over the wireless network; this could be broadcasts over the cable or it could serve pro-

gramming off the media server (e.g., in the home setting, the media server could record programs while the

family is away in the day time). Of course, Internet access from personal workstations or laptop comput-

ers would also be over the wireless local area network (WLAN). It is well known that the different types

of traffic we wish to carry (i.e., voice, streaming media and file transfers) have different quality of service

(QoS) requirements. The problem thus is to ensure that all the services being carried over the WLAN obtain

their required quality of service (Qo0S), and the system capacity is efficiently utilised. The main difficulty

in achieving this in the WLAN environment is the location dependent and time varying wireless channel

conditions, or fading, and the limited availability of information regarding the system state.

@ @ PBX & GW
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set-top box

DSL/T1-E1 or DOCSIS

to CO or Cable Service Provider

Fig. 1. A home or office wireless local area network being used for telephony, streaming media playback and Internet access.

All traffic will be assumed to be between the MSs and the AP. It is assumed that each MS has a separate

virtual device for a voice, streaming or a file transfer session. The following are the parameters, models and

performance objectives for each connection.

« Packet Voice Telephonylihere areVy, voice calls, each between an MS and the AP. We assume on-off

model for voice and a voice call, when active, produces periodic packets. Létirtge the (random)

voice packet delay for a connection, the performance requiremén{is, > T\/) < ey, whereTy, is a

delay bound (e.g., 30ms), andis a small probability (e.g., 0.01). Packets that exceed their delay target

are assumed to be lost. Though delays of the ordés@®Mms are tolerable, we assume that if the packet

is delayed by more thaih,, at MS or AP, it is going to exceed 150 ms till it reaches the destination

due to other network delays. We associate a cost, representing the number of packets dropped due to

violation of delay constraint, with each call and design policies to minimize a long run average cost.

« Streaming Media:There areNg streaming multimedia connections (e.g., video or audio). We will
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assume that a streaming media source generates packets according to a Markov process. Streaming
traffic can be buffered at the receiver for smooth playout, and the amount of buffering can be substantial
since the interactivity requirements are not particularly strict. When playing out a movie from a server
(see Figure 1) the user may wish to stop, fast forward or rewind. If excessive packets from a movie are
buffered in the AP and if a user command necessitates new packets be brought in from the server then
the queued packets will add to the command response time resulting in an annoying behavior. Thus we
associate with each streaming connection a holding cost indicative of the number of packets buffered
at the source. First, we look at the discounted packet holding cost with a discountdaetdp, 1)

and then in the limit as: — 1, this discount holding cost is equivalent to the mean queueing delay by
Little’s law. The mean queueing delay requirement for streaming traffig.is

« File Transfers:There areNr file transfers between the wired network and the MSs via the AP. These

will be taken to be large volume transfers. We are therefore interested in the throughput of such trans-
fers, and this will be denoted kyr. We associate a throughput reward with each session and wish to
maximize a long run average reward.

In this paper we assume that a polling station (PS) (collocated with the AP) provides centralized, contention-
free channel access, based on a poll-and-response mechanism. A virtual connection is established before
commencing a transfer requiring some parameterized quality of service (Qo0S). A set of traffic characteristics
are negotiated between the AP and the corresponding station. Accordingly, the AP implements an admis-
sion control algorithm to determine whether to admit a specific connection or not. Once a connection is set
up, the PS endeavors to provide the contracted QoS by allocating the required resources. In order to meet
the contracted QoS requirements, the PS needs to schedule the data and poll frame transmissions. Since
the wireless medium involves time-varying and location-dependent channel conditions, developing a good
scheduling algorithm is a challenging problem. A well designed scheduling algorithm can result in better
system performance, i.e., more traffic can be handled for given QoS requirements (See Figure 2). In a typical
frame exchange sequence, the PS polls a station asking for a pending frame. If the PS itself has pending
data for this station, it uses a combined data and poll frame by piggybacking the poll frame into the data
frame. Upon being polled, the polled station acknowledges the successful reception of the frame sent by the
PS along with data asked for by the PS. The PS then polls the next station as prescribed by the scheduling
algorithm based on the current system state.

With the above situation in mind we consider a model with periodic frames of equal length. The polling
decisions would be taken at the start of each frame. For each connection, there would be a queue at the
corresponding MS and a queue at the AP side. For each voice connection, one packet is generated per frame

during active period. The packet arrival model for streaming traffic is a Markov process embedded at the



Fig. 2. The schedulable region for voice and streaming

) media calls. For each point in the region the resources can
determined by

i be allocated or scheduled among that many traffic flows
QoS requirements g y

S0 as to meet QoS objectives for each connection. For a
given system, given traffic characteristics, and given per-
formance objectives, the network should operate in a way
that makes the schedulable region as large as possible.

no. of streaming calls
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frame boundaries. The file transfers are assumed to have backlogged data. In the queue on the side of the
file source, i.e., if the MS is downloading a file then the queue at the AP is backlogged, whereas if the MS is
uploading a file then the queue at the MS is backlogged. The channel gain between any transmitter-receiver
pair is constant over each frame but varies in a Markovian manner from frame to frame. We assume that the
channel gain seen during transmission from the AP to an MS is same as the one seen for transmission from
that MS to the AP in the same frame; this chameelprocityis valid since the communication is time divi-
sion duplex and hence the transmissions both ways take place at the same frequency. In this framework, our
aim is to develop dynamic scheduling policies that optimize certain long run performance objectives. A long
run performance objective do make sense as the call durations for the traffic classes under consideration are
fairly long. We model the system mathematically and analyse it using the dynamic programming approach.

The frame would be divided into three subframes; one for each traffic class (see Figure 3). Since the
channel is time varying, the actual time taken for transmission and hence the length of a subframe varies.
We introduce bounds on the minimum and the maximum time available for each subframe. These bounds
could then be tuned to satisfy the above said quality of service constraints. Note that this does not limit the
generality of the problem, since for example, we may say that all subframe lengths are upper bounded by
the frame length itself. There would be a priority order, with voice calls given the highest priority whereas
the file transfer traffic given the least. This is justified since the voice packets cannot be stored’Beyond
streaming packets cannot be stored for long and the file transfer traffic normally uses the available bandwidth.
Choosing a lower bound for the lowest priority traffic subframe length would provide a lower bound on its
performance. The time left over by a subframe of a higher priority class can be used by a lower priority
class.

The model discussed above has been widely considered in DOCSIS networks [2] and other TDMA based
networks such as satellite networks. In [5], Capone and Stavrakakis have considered a problem of designing
admission control and scheduling algorithms for time-division multiple access wireless systems support-

ing variable bit rate applications. The quality of service is expressed in terms of tolerable delay. Fading
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was not considered in the model. Similar problem has been looked at in [9] for DOCSIS networks. Re-
cently, there has been a lot of interest in delay optimal scheduling of transmissions over fading wireless
networks [4], [7], [15]. The optimal policies more often than not turn out to be too complicated. The major
contribution of this work is the development of index based polling strategies. This paper is organized as
follows. In Section Ill, we model the system under consideration. We formulate the problem mathemati-
cally in Section IV. We obtain polling strategy for the voice calls in Section V. We consider the performance
optimization problem for streaming calls in Section VI followed by a formulation of a relaxed version of
the problem in Section VI-B. This is followed by a detailed analysis of the relaxed problem using the
dynamic programing technique. An index based heuristic polling policy for streaming calls is obtained in

Section VI-E. We obtain an index policy for file transfers in Section VII.

Il. SYSTEM MODEL

Let there be a seV of virtual devices in the system. Time is divided into fixed length frames of duration
7 seconds each. The frame is divided into three subframes, one per class. The subframe length for the voice
class is upper bounded by and that for the file transfers is lower boundedry The subframe length for
the streaming traffic is thus upper boundedy 7. See Figure 3 for details. Voice traffic is given the
highest priority whereas the file transfers are given the least priority subject to the above subframe length
constraints. A voice connectianc Ny, when active, generates a packet of dizeer frame. A packet
generated during frame can only be sent in frame + 2 and if not sent in that frame it is considered
lost; this bounds the voice packet delay to three times the frame time. A streaming conneciidn (for
example a variable rate coded video source) places a random number of packets, each of, lengtits
transmitter buffer (of infinite capacity) at the start of each frame. We assume that the packet arrival process
A;[n] is a finite state Markov chain with a single ergodic class and the transition probability mamjﬁ? is
for i € Ng. The source side queue of a file transfer conneatienVr has infinite backlog of packets to be

sent (this could be the case if the file transfers are window controlled with large window as in TCP).

T
FRAME N-L | FRAME N | FRAME N+1
Y Ts ]
VOICE STREAMING FILE

Fig. 3. A typical frame showing voice, streaming and file transfer subframes.

A link is defined as a source and sink pair. The channel “power” gain process for a link is assumed to
remain constant over the duration of a frame and is modeled as a finite state Markov chain with a single

ergodic class, embedded at the frame boundaries, with transition probability Méttifor link i. The
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channel gain process is assumed to be independent from one link to another. Note that the channel is
reciprocal. A peak power constraint is generally imposed for all devices in a wireless environment (as in the
IEEE 802.11 standard). Based on the link gains, we can compute a maximum reliable transmission rate for
each device when transmitting at this peak power level. This is done using a well known mapping between
signal to noise ratio and the transmission rate for reliable transmissionz; kdtbe the transmission rate,

in terms of packets per second, from naakiring framen. It follows that the procesg;[n] for transmitter

i is also a finite Markov chain with transition matrB(E"). For simplicity, we assume thdt;[n] is strictly

positive for alli. See Figure 4
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Fig. 4. A typical configuration of a wireless local area netwatksS carries voice (V) connection on a linkand the rate process 2, [k].

M S, plays a movie (streaming connection S) off the media server orlimkd rate process iBz[k]. M Ss is engaged in a conference call
over the network (naturally a bidirectional transfer) using liRk]. M .Ss andM S5 are uploading and downloading files (shown T) over the
Internet. Thu§ M S1} € Ny, {MS2, MS3} € Ns and{MSs, MSs} € Nr.

At time instantnr,n = {0,1,2---}, the AP is provided with the information about the available trans-
mission rateqk[n] for all links that carry streaming and voice traffic. The information regarding the number
of packetsA[n] that arrive during the previous frame is also provided to the AP. Thus the AP would know
the buffer lengths at each streaming source and which of the voice sources have packet to send. We propose
to introduce a field in the packet header to convey the information. In a recent draft of IEEE 802.11e, a field
carrying the queue length information has already been added. A streaming or a voice source which is not
scheduled to transmit during a frame will also be polled to get the current information regarding the trans-
mission rates and the arrivals. Such a device will not send any data upon being polled except that the header
bits are set appropriately in the response packet to convey the desired information (e.g, use CF-Poll+CF-Ack
(no data) type frame (See [1])). Arrival information during framevill be communicated to AP during
framen + 1 and the decision process would include these packets while making polling decisions for the

framen + 2. Since the number of streaming and voice sessions are small in number as they are admission
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controlled, this way of polling each device is reasonable. But for file transfer sessions, of which there are
many, the exchange of these null packets could be waste of time. Thus we assume that only partial (delayed)
information is available regarding the available transmission rate for a link carrying a file transfers. For such
a session the AP knows the transmission rate at which the last transmission from that source occurred and
the time since last transmission. Thus, gives a probability measure over the channel transmission rates.
Based on the available information, the AP decides upon a subset of devices that can send and how much
they can send in the current frame, i.e., during the time pdried(n + 1)7). The objective of the AP,
which acts as a controller, is to obtain an optimal resource (frame time) allocation or polling strategy that
guarantees a desired quality of service for each device subject to the constraints imposed by the wireless
network. This policy would yield a schedulable region comprising of A&teaind s which can be handled
by the system so that each session obtains its desired Qo0S. Given that the number of admitted voice and
streaming calls belong to this region, we can find the maximum throughput available for the file transfer

traffic.

IV. PROBLEM FORMULATION

We associate with devicee N, a weightw; defining its priority over other devices. The voice call is
a two way communication. For example, there will be two packets generated per frame for each such call,
one at the MS and the other at the AP, if both sides are active. By reciprocity of the channel, we can view
it as one device with two packets to be transmitted per frame and the channel gain is the gain of the link
over which the call is handled. The number of voice packets generated per frame for a voice 84llis
Qin] € {0,1,2}; let S;[n] < Q;[n] be the number of packets transmitted in the frame at a ratez;[n],
i.e., during time[nt, (n + 1)7), wheren = {0,1,2,---}. If S;[n] = 1 and@;[n] = 2, one can choose
to transmit any one of the two packets as the frame cost would be the same. The objective of minimizing
the packet loss probability is captured by maximizing the expected number of packets transmitted. Given
Q;, R; for i € Ny, the controller objective is to maximize a weighted sum of the expected number of packets
transmitted subject to the subframe length constraint,

max { S wiSit Y ]i; < TV}. (2)

{Si<Qi ieNv} iENy ieNy

Based on the optimal actions above,1g¢tin] be the time occupied by voice packets in frameNext we
consider a streaming device Ng. Again there could be two queues per streaming call, one at the MS and
other at the AP. By reciprocity we can look at it as a single queue associated with the MS and the channel
gain seen for the transmission would be the link gain between the MS and the AP. If the solution turn out

to be to serve say packets in frame: for MS ¢, then how many packets would be served from each of
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the two queues can be defined arbitrarily as the cost would be the same (longest queue first policy may be
reasonable). Thus from analysis point of view, the two situations, first being that of two queues one at the AP
and other at the MS and second being a single queue at the MS with aggregate arrival process, are equivalent.
Let A,[n] be the number of packets that arrive durjig — 1)7, n7) (see Figure. 5). Note that it is the sum

of those arrived at the MS side and those at the AP side. Arriving packets are placed into the transmitter
buffer at the end of each frame. L@t[n| be the queue length at time instant for device:. Let S;[n| be

the number of packets transmitted in #ié& frame, i.e., duringnr, (n + 1)7). Obviously,S;[n] € [0, Q;[n]],

since one can transmit only up to whatever is available in the buffer. The transmitter queue evolves according

to the equatior);[n + 1] = @Q;[n] — Si[n] + A;[n] (see Figure 5).

Q[n] A[n] Q[n+1] A[n+1]

serve S[n] \ { serve S[n+1]ﬂ

| = atrae RIn] — |~ atrateR[n+1] |
nT (n+1)T (n+2)T

Fig. 5. Model for service to a streaming transfer

Focusing only on the streaming transfers, the quadriflet (Q,R, A, Ty ) defines the state of the
system, wheré) is the queue length and the is the transmission rate available. The quality of service
measure i$°7° , o*Q;[k], wherea € (0,1) is a discount factor. Ifv is small, the recent queue lengths have
more value than those in a distant future whereas i large, queue lengths in a distant future are also
important. The maximum subframe length available for streaming trafficiis; — Ty [k]. The controller
objective is to obtain a sequeng&;[k]}, ¢ € N that minimizes a weighted sum of the performance measure

subject to the subframe length constraint,
. = k Sz{k]
minq Y wiE{Za Ql[k]} DY <71 —7p—Ty[k]; Si[k] €{0,1,---,Qi[k]}; VE>0,, (2)
k=0 i€Ns R; [k]

i€ENs

where the measure over which the expectation opefaisitaken is conditioned on the state at titne- 0,
and the action§[k] = {S;[k],7 € N} are based on the history of the process. This is a Markov Decision
process with state dependent action space and a hard constraint in each step. Recall that the sequence o
actionsS;[k] are integer valued. As — 1, the control actions would minimize the mean packet transmission
delay.

Based on the optimal actions for streaming and voice traffid,Jgt| be the time occupied by a streaming
traffic during thek' frame. The available subframe length for file transfergig := = — Ty [k] — Ts[k].
Note that the lower bound on the subframe length for such traffic is satisfied. The channel state of the link
over which the file transfer traffic is carried is known at the AP only when the transmission actually takes

place. Since there is a large number of such sessions we would not be able to poll all devices with dummy
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packets as we did for streaming traffic. The controller instead can keep track of the rate at which the last
transmission for a particular session took place and the delay in terms of the number of frames since the last
transmission. Thus for each such connection, in any slot this state yields a probability distribution on the
available transmission rate. Let, at the beginning of the framgbe the rate at which the last transmission
took place for connectionandd; be the number of slots since the start of the last transmission. Thus at
time instantk, the probability distribution isr(r) := P (r). Thus we define the system state as a vector
(r,T,d). LetS; be the space of all possible pairs, d;).
Let S;[k] be the action, representing the number of packets transmitted by a file transfer sessioi'during
frame. The state evolution equation is given by,

o 1i[k+ 1] =r;[k]if S;[k] =0

o r;[k+ 1) = jif S;[k] > 0 and the packet is transmitted at rate

o dilk+ 1] = dilk]I{s,kj=0y + 1
Given the state vector = (r, 7', d), an actionS, yields a reward,;S;. The constraint on the subframe length
T'[k] should be satisfied. The objective is to obtain the pafidy] that would maximize the average reward

while the subframe boundary constraint is not violated.

V. ANALYSIS: VOICE CALLS

First, we consider the problem stated in Equation (1). This problem is identical to a knapsack prob-
lem where there are certain quantities of material of different densities, and different sizes having different
associated values per unit quantity. The number of items need to be chosen to fit into a container while
maximizing the aggregate value. During thé frame, the knapsack volume is the subframe timgthe
transmission time per packet for tfé call is ﬁn] and the value per packet associated withitheall is w;.

The following is a well known heuristic for the above said problem obtained from a linear relaxation of the
integer knapsack problem [6].

Order the devices in decreasing ordewgR; [n]; this can be interpreted as the reward per unit transmission
time for devicei. Determineny [n] so that themy [n] + 1) queue in this order can send at most one packet
without violating 7/, the subframe length constraint. Now, for a queéwenong the topn [n] queues in
this orderS;[n] = Q;[n], andS;[n] = 0 for the rest. Thémy [n] + 1) queue can send at most one packet
if possible. We could have sent a fraction of the packébat|n] + 1)* queue but this would violate our
modeling assumption that a packet cannot be fragmented. This policy yields a schedulable region for the
voice calls determined by the QoS requirements. Déffiré| the subframe time used by the voice traffic in

the k*" frame and is given by

my [k] Q[kz] [{S h]=1}
T k _ 1 _'_ my [k]+11V=
VI = 2 R Rl
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VI. ANALYSIS: STREAMING TRANSFERS

In view of the above result, the problem stated in Equation 2 can be restated as follows. For notational ease,
we denote the random process representing the frame time available for streaming transfers T\ k|
by T'[k]. A realization ofI'[k] will be denoted by. Note that the proces5[k| is a Markov chain with finite
state space sincg/[k] can assume only finitely many values. The state of the system is now a quadruplet
X = (Q,R,A,T). The controller objective is to obtain a sequefégn]},i € N that solves

min ) wiE[iain[k‘]}, subjectto > Silk] < T[k]; Silk] €{0,1,---,Q;[k]}, i € Ns (3)
1€ENg k=0 i€eNg R; [l{}

Using a heuristic based on the MDP formulation, we obtain an index based polling policy. A policy that
orders the transmissions in decreasing ordét.gf;¢; } is known to be stabilizing [3] for such a system. Note
that this policy is also an index policy. It should also be noted that while the property of being stabilising
is essential, not every stabilizing policy will perform well in terms of the objectives in Equation 3. We will
compare the performance of the stabilizing policy with that of the index policy that we would obtain based

on MDP formulation.

A. Index Policies and Whittle’s Relaxation

Let us look at the discounted cost value iteration algorithm for solving the problem (Equation 3) to mo-
tivate the approach that we will follow in the rest of the paper. For a given stat€q, r, a, t), define the
constraint seb(x) = {s : s € [0,q); Yieny 3 < t}. LetV(x) be the optimal expected discounted cost
when starting in state. Consider the following value iteration algorithm,

Vor1(x) = min { > wigitaFa[Va(a—s+ AR, A T)]}.
seS(x) iEN

whereE, .|| denotes the conditional expectation with respect to the arrival, the rate and the available time
processes and, (x) is a sequence of value function which will be later shown to converdgg1g. Let f,,

be the optimal policy for the'" stage problem. Initializ&;,(x) = 0. This impliesV;(x) = Y ;cn wid:.

Thus f5(x) is arg minges(x) { Ziens wi(@i(1 + o) — as; + aF,,[A])}. This is a knapsack problem. Using
Lagrangian approach, we associate a multipfieand thusf,(z, 3) equalsarg minscjo.q {>iens B —

w;as;}. The knapsack heuristic solution fs(z, 3)|; = ¢b;(rs, 3), whereb;(r;, 3) = I,ar,>p- The
parameters solves for the frame boundary constraint. In other words the solution is to order the users in
decreasing order ab;r; and the user with highest index transmits until the frame boundary constraint is
exceeded or there is no data for transmission. This is an index policy. The dndes essentially that

value of 5 at which the system makes a transition from an active action (“send something”) to passive action

(“send nothing”); i.e., if6 > w;r;a thend;(r;, 5) = 0 andb;(r;, 3) = 1 otherwise.
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The functionV;(x) is too complex to carry out any further iteration. Moreover, we are interested in
index based policies similar to the one obtained for the voice calls because of their ease in implementation.
There has been much work on obtaining index based policies for bandit problems. For multiarmed bandit
problems, it is well known that the policies based on Gittin’s indices are optimal [12]. Gittin showed that to
each project one could associate an indgx;), a function of the project and its stater; alone, and that
the optimal policy is to operate the one with the largest index.

Consider the “restless bandits” problem of designing an optimal sequential resource allocation policy for
a collection of stochastic projects (s&¥), each of which is modeled as a Markov decision chain having two
actions at each state with associated rewards; an active action, which corresponds to engaging the project,
and a passive action, which corresponds to letting it go. The passive projects can change state, in general
through a given transition rule and hence the word “restless”. A fixed number of resources needs to be
allocated; i.e., at each time instant a fixed number of projectsi(sase active. The performance objective
is to maximize the time-averaged reward rate. Whittle [14] presented a simple heuristic based on a tractable
optimal solution to a relaxed version, where instead of requiring Ah@attojects be active at any time,
projects are needed to be active on averabkeis yielded an upper bound on the optimal reward. Further the
heuristic policy is a priority index rule associated with each project, that engages thetojects at any
given point of time. The recent work of Nino-Mora [10] is nearly a complete reference for restless bandit
problems.

Motivated by the Whittle’s work on restless bandits, we introduce a relaxed problem. The state of the
systemis denoted by = (q,r,a,t) € X. The set of feasible actions in statés S(x) = [0, q]. LetII be the
space of all feasible policies. A deterministic, stationary Markov pofieyIl is a measurable mapping from
X to [0, q]. For every3 > 0, the Lagrange multiplier, define a cost functigyix, s) = 3=;cn (wig; + 32).

The term3?: can be seen as a relaxed frame boundary constraint. The Lagrange muti@gan economic
interpretation. The valuéj—zj is a penalty for transmitting more data and thus reducing the frame time
possibly available for other connection. There is a trade off. If more data is sent for a connection that
connections queue reduces but the connection is penalised for doing so. Obviously, the penalty increases
with s;. The relaxed problem is to obtain a poliey € II that minimizes the expected discounted cost
BT[>, afes(X[k], S[k])]. Note that the relaxed problem is separable. Thus we solve it for each connection

i. The amount of datg; that can be transmitted in a frame of leng#hould satisfy% < t, the residual frame
boundary constraint. We drop the subscriptéVithout loss of generality assume that= 1. Exploiting the

separability, the relaxed problem (RP) for each user is

V(z) = min ET Liak (Q[k:] +6;[[Z]]ﬂ , subjectto S[k] € {0,1,---,Q[k]}, =75 < T[k], Vk.
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Note that we have relaxed the sum constraint but not the individual constraint. The same problem holds for

each user. We now analyse this per user problem in order to obtain certain indices.

B. Analysis of the Relaxed Problem

The stater is the quadrupléq, r, a, t). Our model satisfies the nominal conditions (see [11], Proposition
2.1) required for the existence of the discount optimal stationary policy, and the value fuhttions
obtained as a solution to the following dynamic programming optimality equation. Defiae; — s and
U(x) = {uinteger: (¢ —tr)* < u < ¢}. The variable: is the residual number in the queue after the policy

has acted in an interval. Then

Vio.rat) = min a0+ 2) = 5%+ 0By, V(at AR AT @
ucU(x

DefineH (u,r,a,t) = E,,+V(u+ A R, AT).
Theorem VI.1:V (u, r, a,t) and hencéd (u, r, a, t) is convex nondecreasing in
Proof: See the Appendix. [ |
The unconstrained minimizer(r, a, t) in (4) is the value of: that solves the following inequalities,

H(u,r,a,t) — Hu—1,ra,t) < s < H(u+1,ra,t) — H(u,r, a,t).
r

Note that the unconstrained minimizer is not a functionyofThe solution for the constrained problem
(u e U(x))is,

e s(x)=0forq < u*(r,a,t), i _ler)
o s(x) = |tr] for g > u*(r,a,t) + |tr], o
e s(z) =q—u*(r,a,t) otherwise. VU* ‘ S ——

Observe that*(r, a,t) = q is the break point that will be used to define the indices as in [14] as it is the

boundary between not sending anything from the queue and sending something.

C. An Algorithm for Computing*(-)
Consider the discounted cost value iteration algorithm corresponding to the relaxed problem (4).

Va(qg,rma,t) =  min {q(l + f) — ﬁ% +aFE,, +Vao1(u+ A R, A, T)} (5)

u€S(q,r,a,t)

It follow from the proof of Theorem VI.1 that the functiod$, (u, r, a,t) are convex inu for eachn. Let

u; (r, a,t) be the value of; that solves the following inequalities,

H,(u,r,a,t) — Hy(u—1,7,a,t) < 5 < H,(u+1,r,a,t) — Hy(u,r, a,t).
ar
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Based on the above said constrained solution, we have,

o If q= <u (T a t) V 1(Q7T a t) Vn-i—l(q - 17Ta a, t) =1+ a(Hn(q>Ta a, t) - Hn(Q - 17T7a7t))
o Ifui(ryat) <q<|tr|+ul(r,a,t), Vial(grat)—Von(qg—1,ra,t)=1 +€
o Ifg>ul(r,a t) |tr],

Vosi(g,rya,t) = V(g — 1,ra,t) =1+ a(Hy(q — |tr],r,a,t) — Hy(q — |tr] — 1,7, a,t))

DefineW,,(q,r,a,t) = V,(q,r,a,t)—V,(qg—1,7,a,t). ThusH,(q,7,a,t)—H,(qg—1,7,a,t) = E, W, (q+
A, R, A,T). Then the iterative algorithm to computé(r, a, t) is as follows. InitializeWW,(q,r, a,t) = 0.

Letw}(r, a,t) be the value ofi that solves the following inequalities,

Eth(quARAT)<£<Eth(u+1+ARAT) (6)

ar

The following procedure then obtaif,, ., (-) from W, (-) anduw,,(-).
o Ifg<ui(ria,t), Wpii(q,r,a,t) =1+ aFE,, Wylqg+ A R,AT).
o Ifwi(ria,t) < q < [tr] +ui(r,a,t), Waii(g,r,a,t) =1+ 2.
o Ifg>ul(rya,t)+ [tr], Woii(g,mya,t) =1+ aEy . Wy(qg— tr] + A, R, A, T).
uy 1 (-) is thus calculated from Equation 6. The convergence of the value iteration algorithm (5) ensures that

this algorithm converges andg (r, a, t) converges to the optimal solutieri(r, a, t).

D. Indexability

Definition VI.1: (Indexability) [14]: The system is said to be indexable if the set of states where a passive
action is taken increases monotonically from an empty set to the full set as the pardmneteases fron
to oo. |
For our problem the requirement is natural. As the penalfigr using the frame time increases, we choose
to transmit less and less. We show that the relaxed problem is indexable in the sense of the above definition
and obtain indices associated with each state. Given the(gtate, ¢), based on the constrained solution,
an active action (a packet is transmitted) is takenif «*(r, a, t) and the action is passive (no transmission)
otherwise. Define,,.. as the maximum allowed transmission rate.

Theorem VI.2:As 3 — 0, the solutionu*(r, a,t) — 0 andu*(r, a,t) = oo for g > “mex,

Proof: (Sketch) Asg — 0, Equation 4 implies that the cost of serving decreases to zero except that

the constraint should be satisfied. Thus the solution would be to serve as much as possible,) i-e.,
min(q, [¢r|). Thus the action is active in any state where it is possible to do so. To show the other part, it

is enough to show that,,(q, 7, a,t) < . SinceWy(q,r,a,t) = 0,if 8 > 1% ryax, thenug(r,a,t) = oo
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andWi(q,r,a,t) = 1. LetW,(q,r,a,t) < ﬁ Thenu; (r,a,t) = co andW,,;1(q,7,a,t) <1+ %-. By
induction hypothesis it follows that (¢, r, a,t) < ﬁ andu*(r, a,t) = oo. Thus all actions are passivill
Given a stater = (¢, r,a,t) with ¢ > 0, the amount served(z) decreases to zero asincreases and
s(x) = 0for 3 > “rn.. This is natural to expect since the larger is thethe higher is penalty for
transmitting.
Theorem VI.3:If 3 < 4= then the solution*(r, a,t) = 0 for r = ryay.
Proof: (Sketch) Observe that for (the iteration index) satisfyinéf_—‘f; < G

uy(r,a,t) = oo andW,(q, 7, a,t) = . Sincef < @mmax k= min{pn : 2" >

l—«a l-aa — ar

, the optimal policy
It

1 «
follows thatu; (rmax, a,t) = 0 andWy1(q, 7, a t) > 1+ - ﬂ . SinceW,,(+) is increasing i, it can be

shown that ford < <=2x, W, (¢, 7, a,t) > 1+ ;= foralln > k This would imply that:) (rpax, a,t) = 0
for all n > k. Hence the results follows by |nduct|on. [ |
Lemma VI.1:W,,(q,r, a,t) is nondecreasing iq for eachn.
Proof: The result follows from the convexity df, (¢, 7, a, t) in g. [ |
Theorem VI.4:The unconstrained minimizet*(r, a, t) is monotonically nondecreasing with
Proof: We introduce the parametgras a variable in the functions defined earlier. Observe that the
recursive algorithm stated fo¥,,(q, r, a, t) in the previous section is equivalent to the following recursion
(obtained by dividing throughout by as > 0). Initialize Wy(q,r,a,t,3) = 0. Letu’(r, a,t, 3) be the

value ofu that solves the following inequalities,

OBy iWlu+ A, R AT, B) < = < aBEypWa(u+ 1+ A R AT, B). (7)

S | =

Furthermore,

o Ifg<wi(ria,t,B), Wyii(q, 7 a,t,3) = ﬁ+aEartW(q+ARATﬁ)

o Iful(r,a,t,B) <q<|tr]+ul(r,a,t,B), Waii1(q,7,a,t,3) = ﬁ—l—f

o It g>ui(ra,t,8) + [tr], Wari(g,7,a,t, B) = § + aBoyiWalg — [tr] + A, R, A, T, ).
Using Lemma V1.1, it follows from (7) that in order to show thgf(r, a, ¢, 3) is monotonically nondecreas-
ing in 3, it is enough to show that the functié#i, (¢, , a, t, 3) is nonincreasing i for all n. We show this
by induction. The functioy(u,r, a,t,3) = 0. Let W, (q,r,a,t, 3) be nonincreasing ir. This implies
E..+Wyn(q+ A, R, A, T, 3) is nonincreasing i andu’(r, a,t, 3) is monotone nondecreasing i Now,
given(q,r, a,t), the above recursion seen as a functiop &,

« Forgwhereu;(r,a,t,3) + [tr| < q, Wni1(q,7,a,t,3) = 3 L aE, . W, (q+A ltr], R, A, T, ).

« Forpgwhereu! (r,a,t,5) < q < [tr] +ul(r,a,t,3), Wnii1(q, 7, a,t,3) = ﬁ + 1.

« Forgwhereu?(r,a,t,5) > q, Woi1(q,r,a,t,3) = 3 L+ B, Walg+ A R AT,p).
It follows from the definition of the minimizer and (7) that for the domainjoivhere the first item holds,
@By Wy(q+ A—tr,R,AT,73) > + and for the domain oft where the third item holds £, ., W, (q +
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AR AT, B) < % Thus combining this with the hypothesis that, .1V, (¢ + A, R, A, T, 3) is nonincreas-
ing in g implies thatiV,,.1(q, r, a, t, 3) is nonincreasing i and the result follows. [ |
From Theorems V1.2 and V1.4 we obtain the following conclusion:
Corollary VI.1: The system is indexable. [ |
Given a statéq, r, a, t), define the index(q, r, a, t) as the largest value ¢f for which u*(r, a,t, 5) < q. It
is essentially that value gf where a transition is made from an active action to a passive action in the state
(¢,7,a,t). It follows from Theorems VI.2 and V1.3 that for = ry,.y, v(q,7,a,t) = 4™=. Note that the
index is independent of the queue lengths whenr,,,.
Lemma VI.2:The index associated with the stdter, a,t) when the weight isv, is v(q,r,a,t,w) =

wr(q,r,a,t). [ |

E. Index Based Heuristic Policy

The transition probability matrices associated with dev'/ia&ePi(’") andPi(“). Letv;(q;, 7, a;, t, w;) be the
index for devicei when it is in state¢;, r;, a;, t) and the weight isv;. Letu!(r;, a;,t, 3) be the solution in
that state for the relaxed problem. Given the state of the syRiema, t), the controller has to decide upon
who should send and how much in a frame of duratiseconds. Select a value fér The amount of data
served from useris s;(gi, 74, a;, t, 3). The time taken to transmit this datadig. v, “"(q”ria”” This could
exceed the frame boundary or fall short of it depending on the choige \&e know from Indexability that
for 3 arbitrary large, the solution(-) is infinite and thus;;(-) is zero implying that the frame time is zero.
While for 5 — 0, s;(-) — min(g;, |tr;]), the frame boundary could be exceeded depending on the choice
of ¢;. Since asj decreasess;(q;, 5, a;, t, 3) increases and thus the frame time utilized increases. Thus
the controller has to tuné such that the available frame time is maximally utilized or the frame boundary
constraint is met. An example is given in figure 6. Note thai;, ;, a;, t, 5) has only one degree of freedom
because fixing’ fixes s;(-) for all 7.

The tuning of53 is in general not an easy task. But sincér, a, ¢, 3) is monotone nondecreasingfwe
have a simpler form for the policy.
Index Policy: Given the statéq,r,a,t), a user with the largest value of(q; — 1,7;, a;, t, w;) transmits
one packet. Lej = argmax; v;(¢; — 1,74, a;,t,w;). The state changes {@ — e;,r, a, t), whereg; is the
unit vector with one at thg"* entry and rest are all zero. This continues till the frame boundary is exceeded
or there is no data in the buffers. The ties are broken probabilistically. The procedure is shown in Figure 7
for the example considered earlier and shown in Figure 6

Remark: Consider a case where the rate available for transmission is fixed but it can be different for

different devices. Let; be the transmission rate for devicel he index policy obtained above will order the
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Fig. 6. Consider two devices with stafq, r, a, t) with g = 12 andg. = 5 as shown in the figure. Let the transmission times be the same
for each packet. Suppose that a maximum of eight packets can be transmitted in the frame. The darker staircase function.éprésents
devicel while the other staircase corresponds to that of de¥icehe table shows the optimal choicesxafands,, the number of packets that
are sent in the frame from the two devices for various choicgs @he variable; represents the fraction of frame time utilized. Bor s, it
is optimal to serve nothing wheregs= 3, the frame constraint is violated @s> 1. Thus we operate & = 3, wheres; = s2 = 4 and the
frame boundary is also met.

104 [ 1| 42| Vo | 81| S2 n
jg’—lﬁ 3 12 5|135(235] 0] 1 |.125
o | - 124 [135[235| 0| 1] .25
st ‘ | j 123 |135]120| 1 | 0 |.375
| 113(135[120/ 1|0 5

| 103110120/ 0 | 1 |.625
o | 102|110 120] 0| 1] .75
5 101|110 45 | 1|0 |.875
os] 5 9| 1[110] 45 | 1|0 10
e T e 8| 1|85 |45 |0|0]| —

Fig. 7. The figure is a flipped version of figure 6 The table shows the index vajussdy, for the two users as the function of their queue

lengths calculated from the figure as per the definition of indices. The one with the larger index send one packet and the queue length changes.
The whole procedure as described earlier is shown as a table. The algorithm stopg whien;; = 8 andg. = 1. The procedure shown in

Figure 6 is equivalent to the one shown in this figure.

transmissions in decreasing orderwgf; and the one with the highest order transmits till it finishes or the
frame boundary is exceeded. Note that this is identical to the well kmpwale [12].

It is easy to verify the conditions for the existence of a stationary average cost optimal H8[icy
(refer [11]). Further, the conditions also imply that the average optimal policy is a limit of discount optimal
policies. Thus the average cost optimal policy also possess the structural properties of discount optimal

policies. The number of packets transmitted in a slot is nonincreasifg Thus we have indexability and
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the indices, as defined for the discounted cost problem, defines an index policy for the average cost (mean

delay) problem.

F. Numerical Results

Let us assume that there are no voice calls. The discount factor is@et .99 implying that the long
term evolution of the queue length process contribute significantly towards the performance measure. The
other parameters for the numerical computation of the policy are: the framé&tim&0ms, the transmission

rate sef{ 10, 3.3, 2.5} kbps. We consider two transition probability matrices for the rate process:

0 05 0.5 0 05 05
Pr=1099 001 0 ; P=10.01 0 099
0 0.99 0.01 0.01 099 0

For the rate process governed By, with a very large probability the rate increases from one of the lower
rates to the next higher rate and then goes to one of the lower rates with equal probability whereas for the rate
process governed b#,, the rate process switches between the two lower rate states with high probability.
Thus P, resembles a device operating far away from the AP and restricted mobility whereesembles a

device thatis highly mobile. The packet arrival process is assumed to independent and identically distributed,
on-off {0, 40} with probability{.5, .5}. Since the arrival process is i.i.d. and the frame time available is fixed

to 7' (no voice calls), the policy.*(r, a, t, 3) is independent of andt. Also u*(r,a,t,3) for r = ryax IS

amax — .9 x 10°. Figure 8 plots.* vs 3 for r = {3.3,2.5} kbps and the rate transition probability matrices

1
P andPQ.

1400 'T— 25kbps; P, ]
_ . 3.3 kbps; P1
\=.- 2.5 kbps; P,
o s e 3.3 kbps: P, T‘ Fig. 8. Plots are used for computing indicesFor ex-
1000 j ample consider two devices with the rate transition prob-
i ability matricesP; and P,. The weights ard for both
a /l’ the devicesg: = ¢2 = 600, 1 = 2.5 andry = 3.3
: o kbps. The indices; = 14.35 x 10* andv, = 8 x 10%.
> /,/ | This shows that devicé has priority over2 even when
400 Gy - § ro > r1. If one of the device has a rate b kbps, then
-7 the service effort is applied to it as much as possible since
200 1 theindex is the largest independent of the queue length.
° 215 é

For the scenario discussed above, we compared the performance of the index policy with that of a round

robin policy, a weighted round robin policy that serves three packets of devareeach packet of device
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1, a stabilizing policyw;q;r; [3]. For a fixed initial statez = (q,r) with ¢; = ¢ = 0 andr; = ro = 2.5
kbps, the costsl — a)V,,(z) are107, 398, 327 and128 respectively. Definé’s[k| as the time taken by the

streaming traffic during th&'* frame when using the index policy.

VII. ANALYSIS: FILE TRANSFERS

The subframe tim@[k] available for the file transfer sessions duriigframe isr — Ts[k] — Ty, [k]. Note
that7T'[k] > =r[k] and the proces$[k] is a finite state Markov chain. Ldt be the transition probability
matrix for T'[k|. A realization of the random variablg/k] is denoted by. The system model was discussed
in Section IV. First, we look at the problem where the data to be served is fluid rather than packet or that
the packets can be arbitrarily fragmented. Also assume that only one of the devices can transmit during the
subframe; since the queues are always backlogged no frame time is wasted. We will later use the results
obtained for the fluid model to provide index policies for the packet model discussed in the Section IV. In
these packets service policies more than one device would be able to transmit in a frame.

If a device transmits in a particular frame, the AP learns about that user channel state, or equivalently the
transmission rate; otherwise the information available at the AP is old information from when the device last
transmitted. Thus this is a case of a system with partial state information? ketP") be the transition
probability matrix for the rate process.rifis the rate at which devicdast transmitted, and; is the number
of frames since the last transmission, the AP has the information about the probability measure on the rate
space for channel to/from devi¢én any frame. The measuresis(r) = P%(r), a row corresponding to rate
r; of the matrixP%. The state of the system is representedby (r, ¢, d) wheret is the subframe time.

Let the action in framé be S;[k| whereS;[k] € {0,1}. If S;[k] = 1, the reward earned is the amount of
fluid released?;(x) = w; >, rtP% (r) while no reward is earned for an actiéik] = 0. The summation
above is over the rate set. To show the dependence of reward on the state, action and user, we use the
notationZ;(z;, S;) to represent the reward earned for usehen its state:; = (r;, ¢, d;) and an actiord; is
taken. The total reward is thus the sum of individual rewards. Alsq. S;[k] < 1 for all &, since only one
connection is scheduled to transmit in each frame.ILbe the space of all Markovian policies mapping the
system state to the action & 1}¥7. LetII¢ be a subset dfl that satisfies the above said constraint that at
the most one user can transmit in any frame.

The problem consists of finding a scheduling policye T1¢ that maximizes the long run time average
reward rate,Z*(1) = maxyene liminf, . L E; [ZZZO Yieny Z(Xilk], S; [k])} or the long run discounted
reward eamedz*(a) = maxqene Bx |52 0F Sien, Z(Xi[k], Silk])].

We use Whittle'’s relaxation and demand that at the most one user can transmit on the average. Thus the
optimal value for the relaxed problem is an upper bound for the original problem’s optimal value. We can

now decouple the above said problem and solve it for each device. Dropping the connectiof) fiodex



19

the decoupled problem the system state is a triplet d) wherer is the rate at which the last transmission
was made for this connection addepresents the time slots that have elapsed since the last transmission
for this connection and is the time available in the current frame. Lebe the Lagrange multiplier as-
sociated with the relaxed constraint, representing the reward offered for not transmitting. Without loss
of generality, takev = 1. The discounted cost objective is to obtain a sequef{ée that maximizes,
E [¥52, " (Z(X[k], S[k]) — vS[k])| or equivalently,E? |52, o* (3, (rT[k]S[k] Pl () — vS[k]) .
DefineV (r,t,d) as the optimal expected discounted reward earned when the initial state, i§). Let
V(d) be the matrix such that the entry corresponding tortheow andt"* column isV(r, ¢, d). Then the
expected reward with respect to the variahl&;[V (r, T', d)], is a element in the'” row and thet'” column
of V(d)I" whereC” denote the transpose of a mattix Then the expected reward with respect to the
variabler, E,.[V (R, t,d)], is ther” row and¢'" column of PV (d). Also [C]; ; represents thé" row and;*"
column of the matri>C.
Define a matriXM with rows representing rateand column representing subframe titraand sefM],., =
rt. Let 1 be the matrix with all entries equal to one. The discounted cost optimality equation for the said
relaxed problem isy/ (r, t,d) = max{[P4(M — v1 + oV (1)I')],.+, o[V (d + 1)TV],.. }. If we define that the

maximization is taken component wise, we can rewrite the above equation in a more compact form as,
V(d) = max{P*M — v1 + aV(1)IV),aV(d + 1)I'}. (8)

Observe from the above equation thatd) is given in terms ofV (d + 1). Thus we can expand the right

hand side of the above equation and get
V(d) = max{a P (M — v1 + aV ()4, (9)

Note that if we knowV (1) all others can be easily determined and hence so can the solution. Thus, the

objective is to first determin¥ (1).

V(1) = max{ce*'"P*(M — v1 + o V(1)I")I"* '}, (10)

k>1

Consider the corresponding discounted cost value iteration algorithm for evaldating
V(1) = max{a®'PHM — v1 + aV,_ (I, (11)

with V(1) = 0, the zero matrix. It is well known that thé,,(1) converges tov(1).
Recalling the Lagrange multiplier, note that a large value ofdiscourages transmissions (i.e., encour-
ages passivity). Let us associate a valie ¢, d) with state(r, ¢, d) representing the value of making a

transmission attempt when the statdist, d). The device with the highest such value will be polled for
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transmission. Since the channel is reciprocal, the device would estimate the channel on the polled frame and
transmit at the estimated rate. The AP would also come to know about the rate as the data transmission starts
from the device. The valug(r, t, d) is that choice of for which the optimal action in state, ¢, d) makes
a transition from active to passive, i.e., the maximizer in Equation 9 changes:fremd to some number
larger thand. This can be seen as that valueroivhich makes the choice d&f* = d andk* > d equally
attractive. In order to carry this out, we need to show indexability ( Definition VI.1).

Theorem VII.1:If v > max M then all the states are passive.

Proof: The hypothesis implies th&I — »1 < 0. Thus if V(1) = 0, then Equation 11 implies
thatV,(1) = 0 and the maximizer i$* = oco. Thus by induction it would follow tha¥ (1) = 0 and the
maximizer isk* = oco. Thus all the states are passive. [ |

Theorem VII.2:The optimal value functio’ (r, ¢, d) is convex nonincreasing in

Proof: Owing to the representation in Equation 9, it is enough to show the statement for thke-edse
We show that/(r, ¢, 1) has the said property by induction. In the matrix notation each function needs to
be shown to have the desired property. We know that the convex combination of convex nonincreasing
functions is convex nonincreasing. Singg(1) = 0, the statement holds. L&f,(1) have the said property.
Consider Equation 11. Note that each component of the matrix within the braces is convex nonincreasing
in v for eachk. AsV,,(1) is maximum over such functiond/,,(1) is also convex and nonincreasingin
Thus by induction hypothesi¥/(1) has the said property. [

Theorem VI1.3:The indices/(r, t, d) > [P‘M], .
Remark: Note that/P?M],, is the expected value dt[d] given that the system starts in statat time0
multiplied by the frame time.

Proof: If we show that in Equation &9V (1) > V(d + 1), then we are done since that would imply
that P4V (1)IV > V(d + 1)I". Thus all the states are active fBfM > v1. Hencev(r,t,d) should be
greater than or equal {®#M], ;. We have,

= max {P%PFYM - 11 + oV (D)D),
k>(d+1)

= max{P%* '"P*(M - v1+ V()" < PV(D).

k>1

where the last inequality follow from Equation 10 and Jensen’s inequality. [ |

The above results provide upper and lower bounds on the index value. Next we ask the question whether the
system is indexable, i.e, is it true that once a staté d) that has been made passive at sayt, d) = vy,

it cannot be made active by increasimg- v,. In following example we show that even for the case where

the proces§’[k] is constant, it is a difficult question to answer.
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Let T'[k] be constant, say, normalisedio The value functioriV (1) will now be a vector. LetR be the

vector of all possible transmission rates. The optimality equation is
V(d) = max{P(R —v1+aV(1)),aV(d+ 1)} = max{o"P*R —v1+aV(1))}.  (12)

Given a vector of integers say. Let A be a square matrix. DefinA™ as a matrix whosé!" row
is the " row of the matrixA™. Equation 12 fork = n andd = 1 can be written a3/ (1) = (I —
(aP)™)"(aP)*(R — v1). Thus,V(1) = max,>1 {i(l — (aP)™)" (R — yl)} — 1R —11).

Letny, ny be optimal values oi for v, v, respectively withv; < 5. Then

;a — (aP)™) (R - 11) — ;(R — 1) > ;(1 — (aP)™) (R — 1) — ;(R — 1),
;(I — (aP)"2) ' (R — 1) — ;(R —1pl) > ;(I — (aP)") (R — 1) — ;(R — 1pl).

Adding the above equations we gét,— (aP)™*) "' (vy — 1)1 > (I — (aP)™2)" (v, — 11)1. Equivalently,
(I—(aP)™) 11> (I— (aP)™2)7 1.

We now need to show that, < n,. Unfortunately this is not true. Consider the following counterexample.
Let o = 0.99, P = {0.01,0.99;0.99,0.01},n; = {2,1} andn, = {4,1}. Then(I — (aP)™)"'1 =
{5.2,4.8} and(I — (aP)"2)"'1 = {2.96, 3.67}.

Since the above condition is a sufficient condition for Indexability, the above counterexample does not
imply that the system is not indexable. But it is difficult to prove or disprove the Indexability. The following
definition weaken the indexability condition.

Definition VII.1: The system is said to lveeakly indexableif for each system statethere exists a value
v(x) such that a transition from active to passive is madega} and the optimal action in that state is passive
forall v > v(z). The valuev(z) defines the weak index for state |
Note that the definition is consistent, i.e., if the system is indexable then the weak index agrees with the
index. Further, weak indexability will be implied by the existence of a finitgsuch that for alv > v*, the
optimal action is passive, for all the system states. Thus in view of Theorem VII.1, the fluid system with

varying subframe lengths as considered earlier is weakly indexable.

A. Packet Model

Now consider the actual problem, where packets need to be sent instead of fluid. There is a trade off. The
polling stations can ask for only one packet per device until the subframe boundary is met. This way it could
get fresh channel state information for many links. But it could result in potentially lower throughput than
that available on good links since it would not efficiently utilize only those links that have a higher rate.

The system state s, ¢, d) with r; represents the number of packets that can be transmitted per unit time

if the whole service effort is applied to devige The schedule should decide up8f|, the number of
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packets from each device that should be transmitted in a subframe of lengiis. The sequencgS|n]}

should satisfy the subframe boundary constraint, h&./ R%}[ﬁ[n}

constraint. The approach is similar to the one carried out earlier. Given that the ratinéspenalty for

< 1 for all n. We relax the above

transmittings packets would be the fraction of subframe time ug€d whereas the reward is the number of
packets transmittesl Note thats € {0, 1,---, |rt|}. Based on the analysis for the fluid model, we have the

following optimality equation for the decoupled problem,

V(r,t,d) = max {Z P, ( max {3 — VS} +ad TVt 1)) ,aV(rt,d+ 1)} .
,r/ t/

1<s<|r't] r't

Note that the inner maximizer can either ber |r't| depending on the choice of If v > 't thens = 1,

whereas; = |r't| otherwise. Thug = rte is a crossover point. The optimality equation is,

V(r,t,d) = max {Z P, <max { (1 - r”f) , (Lr’t] - ”Ej;” ) } + a; LoV (¥, 1)) aV(rt,d+ 1)} .

Let us relate this equation to Equation 8. The malvixin Equation 8 has entriesl, ; = r¢. Define

another matriXM (v) such that

M), = max{(l _ :t) , (m _ ”Ef;”)}

The optimality equation can now be written in a compact form (similar to the one in Equation 8) as,
V(d) = max{P(M(v) + aV(1)I'),aV(d + D)T"}. (13)

The analysis approach is same the as that for the fluid model. On similar lines one can show that the system
is weakly indexable. Let,(r,t, d) be the weak indices for the above problem (Equation 13).

Then, given that a state, ¢, d) is active (transmit one packet), one has to decide between transmitting
only one packet or occupying the rest of the subframe=(1 or s = [7't]). As discussed earlier, the
transition froms = |r't] to s = 1 occurs atv = 7’t. Once a packet has been transmitted, the information
regarding the current transmission rate (i€),is available at the polling station. Thus givef) define
an index associated with transmitting= |7't| asv,(r,t,d,r"). Thusv,(r,t,d, ") = min(v,(r, t,d), r't).

But we demanded that the decisions have to be made at the start of the frame, and should not make use
of any information that is available subsequently during the frame. The above policy makes use of the
information’ that is only available after a packet has been transmitted. Thus the decisions do depend
upon the state evolution during the frame. If we restrict ourself to make all decisions at the start of the
frame itself, then the policy above needs to be appropriately modified. Though it would result in a loss
of throughput as fresh information which is potentially available is not being used. The modified policy is

va(r,t,d) = min(v,(r,t,d), t[PR)],). This is appropriate as the best possible information available about
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' at the start of the frame is the conditional expected rate conditiong¢cl @nh Also, along the lines of the
proof of Theorem VII.3, we have,(r,t,d) > t[PR],). Thusy,(r,t,d) = t[P‘R],).

Then the scheduling algorithm is as follows. Let devjchave weightw;. Let the system state be
{(rj,t,d;);5 = {1,2,---, Np}}. The index for devicg is a pair(w;v,(r;,t,d;),w;v,(r;, t,d;)). Stack the
indicesw,v,(r;,t,d;) in a table. First, the one with the largest entry in this table transmits one packet. In
case of a tie, the one with largest delay (absolute delay and not the number of slots) transmit a packet. Let
devicek have the maximum entry. Replace the eritrpy wiv,(rk, t, di). Repeat the procedure until the
subframe boundary is met. After completion of the subframe update the absolute delay values by the latest
time stamp of the start of a packet transmission from each device. We need to track the absolute delays in
order to break the ties. Update the rate vecttmr those who transmitted in the subframe. Also reket 1
for those who transmitted in the subframe wheréasd + 1 for those who did not transmit in the subframe.

Consider a scenario where information regarding the available transmission rates are known at all times.
The optimal policy would then be to transmit at the maximum rate available and the one who has the max-
Imum rate transmits. The ties can be broken probabilistically or the one among the tied node that has the
longest delay transmits. Letbe the steady state probability distribution of the transmission rates available
and letR be the random variable representing rates. Define a random vafiadeal to the maximum of
Nr independent random variabl& The average throughput per user would be the medt % round-
robin polling strategy that does not use any state information would yield an aggregate throughput equal to
the average of all the available transmission rates. We define another simple index policy called the “Con-
ditional expected rate policy” with the indices defined.és t, d) = t[PR], (the conditional expected rate
given (r,t,d)). Note that this is same ag(r,¢,d). This policy has been shown to be optimal [8] in the
case where the channel is modeled as being in one of the two states (good or bad), theTfjfdceas
fixed to sayl and some restrictions were imposed on the choice of the transition probability matrix and the
parametery. We provide numerical results for our index policy and compare its performance with that for

the round-robin policy, the policy with perfect state information and the conditional expected rate policy.

B. Numerical and Simulation Results

Let the subframe time available be fixed. Let there be three fai@s,4} (packets per frame). Let
a = 0.99. The transition probability matrix for the rate processfis= P, as defined in the numerical
example for streaming (Section VI). The plot for weak indices is shown in Figure 9. Also it was seen
numerically that the system is indexable and thus the weak indices are also indices.

We consider a case where the weightsare equal. Figure 10 plots the aggregate throughput versus
the number of sessions for the four policies: index policy, round-robin policy, the policy based on perfect

channel state information (state is known at all times) and the expected rate policy.
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Fig. 9. The indices,(r, d) andv,(r,d) as a function of
rater and the delayl. For example, if the rate at which
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and the number of frames since last transmission (delay)

is 1, the index values are,(4,1) = v.(4,1) = 6.9.
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VIIl. CONCLUSION

We have developed index based polling strategies for a multiaccess network over a fading wireless chan-
nel. Index policies are always desired for ease of implementation. We considered three classes of calls:
voice, streaming and file transfers. An index policy is obtained in terms the system state for each of the
three classes. At any time instant, the one with the highest current index transmits one packet. The perfor-
mance of the index policy is compared with other known policies such as a round-robin strategy, a policy
that stabilizes the system and some other intuitive policies. As part of future work we are interested in the
development of algorithms for on-line computation of the indices. Further, these policies take care of call
arrival and departures as they are index policies and indices do not change with the number of calls in the

system. This is in fact the motivation for having index policies.
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IX. APPENDIX

Proof of Theorem VI.1SinceH (¢, r, a, t) is a convex combination df (¢ + a, r, a, t), it suffices to show
that V' (g, r, a,t) is convex ing. Consider the value iteration algorithm (5). RFor= 0, Vy(q,r,a,t) = 0
hence convex. Assumé,_,(q,r,a,t) is convex ing. Fix ¢q. Letwu; andu, be the optimal policy foy — 1

andq + 1.

Vilg+ 1,7 a,t) + V(g — 1,7 a,t)

= 2(](1 + f) - ;(ul + Uz) + aEa,r,t[Vn—l(Ul + A, R, A, T) + Vn_l(UQ + A, R, A, T)],
> QQ(l + g) - ﬁ(ul + u2> + OéEa,r,tanl(l_WJ + A7 R7 A7 T) + aEa,r,tanl(’Vulgﬂ—‘ + Aa R> Aa T)a

r

&)

>* 2V,(q,7,a,t)

where the inequalityx) follows from the fact that the policies®$*2 | and[“£“2] are feasible for the state

(q,7,a,t). That the functions are nondecreasing can also be proved along similar lines.



