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Abstract—The work in this paper is motivated by the idea of maximising computing rate, for given task objectives and
of using randomly deployed wireless networks of miniature constraints

smart sensors to serve as distributed instrumentation. In such The computing rate of a given task, however, cannot be

applications, often the objective of the sensor network is to directl timised tin simol Eirst b findi
repeatedly compute and, if required, deliver to an observer iréctly optimised except in SIimp'eé cases. First because finding

some result based on the values measured at the sensors. W@. funCtional fOI‘m fOI‘ |t iS a formidable taSk Since |t depends
argue that in such applications it is important for the sensors on, among other things, the way the computation is “arranged”
to self-organise in a way that optimises network throughput. ysing a distributed algorithm. Secondly, even if such a form
We identify and discuss two main problems of optimal self- g \nown optimising it would be a centralised problem since

organisation: (i) building an optimal topology, and (ii) tuning . . . . .
network access parameters, such as the transmission attemptindividual sensors will hardly have any notion of the global

rate. We consider a simple random access model for sensorcomputing rate. Therefore, the optimisation problem must be

networks and formulate these problems as optimisation problems. based only on objectives local to the sensors. Note that, a

We then present centralized as well as distributed algorithms for global computation proceeds in steps comprising of certain

solving them. Results show that the performance improvement is |4c4| computations at each sensor. Thus, the faster the sensors

substantial and implementation of such optimal self-organisation lete their sh £ | tati the hiah il

techniques may be worth the additional complexity. complete their s ar_e or loca CO”‘P“ ations the '9 e_r wi
the global computation rate be. A simple class of distributed
computing algorithms will require each sensor to periodically

|. INTRODUCTION exchange the measurements and/or partial results of local

. . . : computation with the other sensors. The more frequently
Equipped with a microprocessor, memory, radio and @

. . . ; ._exchanges of results among neighbouring sensors can occur,
battery, miniature sensing devices nhow combine the functi g g neig 9

ops . . )
. ! . SN hie more rapidly will the overall computation converge. The
of sensing, computing, and wireless communication gmhart pidly P 9

sensors A smart sensor mav have onlv modest com utinmore rapid the progress of the computation the faster the
Y y PUliNg riations of a spatio-temporal process that can be tracked.

power but the ability to communicate will allow a group Otrhus sensors must organise themselves in such a way as to

sensors to organise themselves into a network and collabo-. ™. : A
. ) op{imise their communication throughput. They can do so by
rate to execute tasks more complex than just sensing . . ; .
orming an optimal network topology and tuning to optimal

forward|_n g the information, for example, on "T‘e d.'smbme?ransmssmn attempt rates since these are the crucial factors
processing of the sensed data. By processing information . o
. o . at determine the throughput. It is in these two aspects that
collaboratively within the network, smart sensors will not onl : . . L
. . . . e investigate optimal self-organisation of sensor networks.
be able to monitor the physical environment but manipulate it SO : 4 .
: Our objective in this paper is to analytically formulate the
as well ([1], [2]). Thus the smart sensing technology portends .. . P ; I
; . . . notion of optimal network organisation, investigate distributed
the new dimension oémbedded computing and contiato

distributed instrumentation ([3]). The decisive factor, howevealgomhms leading to it and study the achievable performance

I, . .
. . ) aqams. To this end, we propose an analytical model for sensor
is the rate at which sensors can collaboratively process daia . . ; .

networks involved in processing data continuously or over

since the physical process being monitored will have certgin : o : : o
: . . ; . long, possibly critical, active periods. We formulate the optimi-
processing requirements, and unlike conventional distributed,: o
. : . : .~ sation problems of self-organisation in our model and present
processing machines, which have high speed commumcat;joqn

; Istributed algorithms for solving them. Our results show
buses between a pair of processors, a sensor network has g 9

speed wireless links, lacks centralised control, is ad hoc Iﬁ}ﬂ the performance improvements are substantial, therefore,
P ' ; . ! . implementation of such self-organisation techniques is worth
nature and energy constrained. It is, therefore, imperative thﬁl - : )
: X : the additional complexity. In this respect, our work should be
sensors not only self-organise but do so optimally, in the sense . .
Seen as a step towards eventually understanding algorithms for
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sketched in Section IX. .

Il. RELATED WORK local I
measurements !

In recent years, literature on sensor networks has growon T T/ T
tremendously. Self-organisation of sensor networks, in partic- ! !
ular, has received wide attention. Its various aspects, namelyyaes | S
topology discovery and control, scheduling, localisation and fqp
energy efficiency have been addressed in the previous papersgighbours: .5
their main focus being the protocol design. For example, | algorithm neightours )
topology formation and scheduling for ad hoc networks have N - sensor 2 |
been discussed in [4], [5]; note that the generation of sched-
ules is an impractical task for large random networks. A | m—
survey on topology control in sensor network is presented R s ’
in [6]. [7] presents a message efficient clustering algorithﬁi]g. 1. Atraffic model for sensors carrying out measurements and distributed
for sensor networks. [8] describes various self-organisirgmputation.

procedures. Specific protocols are discussed in [9]. [10] reports

experimental performance studies of a protocol for formation

of a connected topology of sensor networks. Localisatiguch improvement a scheme like RTS-CTS will lead to in
aspects have been addressed in [11], [12]. [13] discussegedse networks. In addition distributed TDMA scheduling
protocol which allows nodes to build transmission schedul@gs certain limitations, such as scalability, fault tolerance,
to conserve energy. Impact of energy conservation techniquesexibility to traffic conditions, dependency on simplistic
(sleep/active schedules) on the performance of sensors ififerference models, etc. ([16]). Therefore, random access is an
terms of delivery delay) has been studied in [14]. attractive MAC for large ad hoc sensor networks. We assume
Our work differs from the previous work in the followingsiot synchronization among sensors. Time synchronization is
aspects. In contrast to typical data aggregation applicatiopfal for some sensing tasks ([17]); hence our slotted time
we consider applications where sensors are engaged in ‘#gsumption may not be very restrictive. Moreover, even in the
network” computing. Such applications would typically deabsence of time synchronization, slot synchronization can be
mand certain performance (computing rate or delay) frogthieved by distributed algorithms ([18]). The following are
the network; hence we viewerformance optimisation asthe elements of our model.
the _objective fqr self-organisatioramd_our algorithms are Deployment: We assume that a large number (denoted by
motivated by this goal. The current literature, on the othw) of static sensor nodes are placed (possibly randomly) in
hand, has largely overlooked this issue of optimality of thg region. The sensors are engaged in a generic sensing-and-

performance of the resulting network organisation. We be”e\é%mputing task such as monitoring the level of some chemical
that our analytical approach and formulations are the first gfntaminant.

their kind in this area. We also substantiate our results
simulations.

packet queue 3

updates to

l("yommunication: All sensors transmit on a common carrier
frequency using omni-directional antennas and a fixed (com-
mon) transmit power. A sensor cannot transmit and receive
I1l. A'M ODEL FORSENSORNETWORKS simultaneously. We consider only the path loss with exponent
In many applications the sensors will monitor (and possir Letting dy denote the near field crossover distance, the
bly manipulate) the environmemiutonomously by in-network power received at a distaneefrom a transmitter,P(r) =
computing For ease of implementation and robustness the/do)~" if r > do and Ps(r) = 1 if r < do. We say that a
computational algorithms will be based on strictly local intetransmission can be “decoded” when its signal to interference
actions among sensors (e.g., [12], [15]). Our work focuses &afio (SIR) exceeds a given threshqbd(based on the BER
this paradigm. We, therefore, model only the local computifgquirement). Transmission range (denotedRby is defined
and communication since a sink and, therefore, directed traffig¢ the maximum distance at which a receiver can decode a
flows are not prerequisites in this set-up. This, however, doé&gnsmitter in the absence of any co-channel interference. Thus
not exclude all together the applications in which comput&er a transmission to be decoded a receiver not only needs to
tional results need to be delivered to a sink. For examplee within Ry from a transmitter but the SIR needs to be above
delivering the maximum of sensed values to the sink can Beas well. Time is slotted and channel access is random, i.e.,
seen as a computation in itself and is, thus, addressed by Bugach slot, sensar decides to transmit with probability;
model ([21]). In other scenarios the computational results mapd decides to receive with probability — «;) independent
percolate to the sink rather than through explicit flows; fa@f anything elseq; is called theattempt probabilityof sensor
example, in gossip based computation the sink can actually
be part of the network participating in the local exchange€omputation: We assume that processing in the network is
We consider a random access communication model. \&kher continuous or over long activity periods after durations
believe that an elaborate MAC may not be suitable due ¢d dormancy ([20]); “continuous” does not mean that all the
control data overheads and moreover, it is not clear hagnsors are always ON (see Section VI for further discussion).



Figure 1 shows a traffic model for a fragment of a sensor  °® ' ' '
network engaged in distributed computation. A local algorithm
running on each sensor uses the local measurements and up- oo
dates from the other sensors to perform certain computations.
The nodes within the transmission range of a sensor with _ .}
whom it communicates the local data (raw measurements,
computational results) are designated asniggyhbours The

local data to be sent to the neighbours are queued up in a:
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packet queue. The algorithm is such that sensors communicate; '

randomly with each other. In particular we assume that if [/

a sensor decides to transmit, the destination of the head-of- S e e

the-line packet is equally likely to be any of the neighbours. ~ °*f,,

A transmission is successful when the sensor to which it is ' T e Ty
addressed is in the receive mode, and is able to decode the ot - ” - - 0?8 B =
transmission. If a transmission is successful, the corresponding Attempt probailty

packet is removed from the queue, i.e., instantaneous acknowl-
edgements are assumed. A successfully received packet %g?z_:
sensor invokes a new computation thayresult in an update

being sent to a neighbour. We model this probabilistically, i.e.,

the successful reception of a packet generates another pa

Saturation throughpupks)) variation with attempt probability«()
1 and2 perm?2. R equalsl or 2m.

. . - ﬁjl(géered by updates from the neighbours form an arrival
to be sent to a neighbour with probability %ocess into the queue (see Figure 1). Therefore, this sampling

Some important remarks are in order. Transmission rate cannot exceed the rate at which packets are drained from

each neighbour with equal probability in our computation1e queue. More precisely, assume that= a for eachi
mOdel is motivated by easy—to-|mp!ement asynchronou_s a!ggr—]d that each sensor has all the nodes within a fixed distance,
rithms based on random (and strictly local) communication : iah h hat +f
among sensors (gossip algorithms). The assumptions of omsnellyR < o as its neighbours. In [21], we show that y
directional antenna and a fixed OWer level are made to id(_anotes the arrival rate of measurements at each sensor, then
P or a given sample path of the Poisson distributed sensor field

pose minimal hardware requirements. With simple harqwaroef‘mtensny)\ (denoted by\) the packet queue at sensi
sensors may have few power levels to choose from, if ng : (s) (s)
- - Stable ify < p; (A, a; N) — (1 — o)v wherep,” (A, o; N)
a sophisticated power control. Though we do not consider it \ 1 .
. X . enotes the probability of successful transmission (subsgript
multiple power levels, we believe that our techniques can be sensofi in a slot in saturation (superscript)), i.e., when
extended in that direction. The motivation for considering on P T

. . . : e head-of-the-line packet, after its successful transmission,
the path loss on wireless links is that in short-path flat-terraljg immediatelv replaced bv another packet at each queue
fixed wireless channel, temporal variations are very slow ang, _y P y . P -q '

(A, a; ) is also called thesaturation throughputNow in

there is a strong LOS path ([19]). Nevertheless, the algorithist

we develop for self-organization areeasurement-based anoapplications in which the sensors are used in a control loop or

not model-basedi.e., they are based on the estimates of {fven to detect critical phenomena they will need to sample and
- cess data at faster time-scales. The “traffic” carried by their

guantities of interest (e.g., sensor throughputs or transmissfyf ) oo e .
success probability on a link) obtained through on-line meQ?tWork et S|tuat|ons.may not be “light”. .It will also be

surements, rather than on any particular analytical form fgpverned.by the computa}tmnal accuracy reqwrements. l‘\‘/lore-
them. It will be clear from Section V and Section VI that man;?ver’ a wweless'networlf IS a ql“Jeuel'ng SySI?m with the *load
of the stated assumptions, in particular SIR-based deCOdiH Pendent service rate”. The “service rate” is also affected

communication without multipath effects, equal transmissid ersely by the sensor density; a high density would be of

ranges, transmission to each neighbour with equal probébilitI terest for capturmg the spatial propertlgs of a spatial Process.
ce, even if the sensors are sampling at a slower time-

instantaneous acknowledgements, probabilistic updates u le. th Il traffic which includes the * tational”

reception, are not essential for the algorithms per se. The m ff_e, € O\I/Iera ra tlcb w“||.c ht’l’nc ud es E cort1'r11pu a ,'[O”ak

utility of these suppositions is to make the analysis tractabfi@c as well may not be “light” and may have the networ
near saturation. We, therefore, argue that in our model, the

IV. OPTIMAL SELF-ORGANISATION: FORMULATION saturation throughput can be a good measure of performance.

In order to capture the temporal properties of a spatiazg)'o capture the random dispersion of sensors, we average
process being monitored, sensors need to sample it at a fate(A, «;\V) over all sensors and sample paths, and denote it
akin to a Nyquist rate These samples along with the packetsy pgs)()\, «). This work is particularly motivated by Figure 2

A o . which shows the variation op§5>(x,a) with «; we have

This, we think, is a reasonable assumption to construct a topolc;%y . .
because even before discovering its neighbours a sensor cannot determirdggumed thaty; = « for eachi. We use 1000 Poisson
communication pattern. It may, however, be unnecessary once the topolaligtributed points as sensors on the plane for= 1 and

's determined. , 2 per m?. We taken = 4, 3 = 10 dB, Ry = 6m and
We draw an analogy between the Nyquist rate and the local measurem

rate of a sensor, however, we do not assume that the traffic generate yequals 1. or 2m. Throughputs are averaged_ ovenoo
sensors is necessarily regular or periodic. random point placements. Observe that, for a fixed value of



A, pff)()\,a) decreases aR increases and for a fixed valuea*(G*). However, modifying topology in search of an optimal
of R, pts)(A,a) decreases as increases. Thus, high valuesone is practically infeasible. Moreover, tuning to a common
of pgs) (A, «) decree small values oR, however, arbitrarily value ofa* in a distributed way is difficult; more importantly,
small values ofR result into a disconnected network. Notdlifferent sensors may need different valuescoto counter
also from Figure 2 that, for a fixed and R, there is a the local inhomogeneities in the node placemetence, our
value of o which maximiseSptS)(A7a). Thus, sensors needapproach will be to formulate the problems (hence the notions
to form a network that is “optimally connected”, and operate®f optimality) and the algorithms for topology and attempt
at an “optimal attempt rate”. Since the transmission powers &fte separatelyDue to this “decoupling” the algorithms for
sensors are assumed fixed, our notion of optimal connectiigPology can be used for any;’s and the algorithms for
is that of “interconnecting sensors” so as to build an efficiegtempt probabilities can be used on any topology. This way
distributed computing machine and not of forming a topolog§ensors can form a topology motivated by the computational
by controlling the transmission powers. The transmissidggquirements and then tune their attempt probabilities. In
attempt rate, unlike power, can be easily modified. Section V, we undertake the problem of defining and building
Instead of addressing connectedness in terms of “connecfi Optimal topology and in Section VI, the problem of defining
ity range” we migrate to a more general concept of topolog§nd tuning to optimal attempt probabilities.
Some notation is in order. L&k denote a connected weighted
graph with vertex set/ (|[V| = N), edge setF and weight V. OPTIMAL NETWORK TOPOLOGY
function W : E — Ry. The weight of an edge¢i,j) € E'is  Let G’ := (V’, E’) denote a subgraph of a given connected
denoted byw(i, j). G can be a directed or an undirected graplyraphG. Fori € V', let d;(G’) denote the out-degree of node
If G is connectivity refers to strong connectivity, denotes ; in G’. For alli € V7, let
the set of sensors; each elementiinis a triplet of the form 1
(i,2;,y;) wherei € {1,2,..., N} is the sensor index, and »i(G') == PR(eD Z w(i, 5) (2)
andy; are the x-coordinate and y-coordinateiakespectively. ' (4,§)EE
Definition 4.1: The transmission graphGg,, is the sym- if d,(G') > 0 otherwise ¢;(G') = 0. Define a func-
metric directed graph witfV; as its vertex set, anfi, j) € o, poon G as (G = ..y i(G') and let G =
Er, if sensorj is within a distanceR, of sensqrz. O arg maxgec,. V(G where,GC:eis the set of all connected
For randomly locatedV sensors the trgnsmlssmn gragtk, spanning sut;z:]raphs @. G.. is nonempty since? € G...
is a geometric random graph. We will assun@ego t_o be a G maximises the measur¢ over all connected spanning
connected graph Thus, Gg, lays out the possible “'mercon'subgraphs ofz. We call G the maximum average-weighted
nections” of sensors and each subgrapltzgf specifies one spanning subgrap{MAWSS) of G. We will use the term
such interconnection or in other words a computing topolo AWSS to also denote an algorithm for determining an
i.e., a set oheighbourdor each sensor. In Section IV, we CONAWSS.
sidered only special subgraphs@r, obtained by connecting In (1) all thea's are the same. Here we will allow different

sensors within? < R, of each other as the network topology, s for gifferent sensors as well. Denote bythe vector of
Let M(G’,«) denote the network throughput, i.e., the sum g o, .— (a1,as,...,an). Leta be fixed and let fofi, j) €

. - . . g 1 y =
of/ |nd|V|dgaI sensor throughputs with topology specified bERO’ pi;(c) denote the probability of successful transmission
GM('GNS;’V_ if all the sensors always have packets to send thef, sensor to j undera. Recall that, we are assuming that
N Is the average saturation throughput of the network sensors have packets to send. Therefore, according to our

Then the discussion so far motivates the following problemy,qel

max M(G, o) (1) (%)*ﬁ
{GeG.s,0<a<1} pij(a) = (1 — a;)P ( L > ﬁ) (3)
where,G,; is the set of all connected spanning subgraphs of 2oz (G ) Yo
GR,- Note thatGr, € Ges. The last term in (3) is?(I';; > () wherel';; denotes the SIR
Proposition 4.1:For everyG C G, M(G,a) is a strictly  of a transmission froni to j°. dy; is the distance between
quasiconcave function af. andj, dy is the near-field crossover distance adis 1 if &
Proof: See Section IX. O transmits,0 otherwise. Since;;(a) depends on the geometry

Gcs is a finite set. Therefore, for a fixed there is a of interferers of Sensoj‘, p]l(g) need not equapu(g) in a
G* which maximisesM. On the other hand, for a fixed;andom network.
topology, G, a unique maximiser” (&) of M (G, a) exists | et V;(G’) (respectivelyn;(G’)) denote the set of neigh-
by Proposition 4.1. However, neithel* nor o*(G) can pours (respectively the number of neighbours} isf topology
be computed a priori and used in the field owing to thg’ Now for eachi define,

random deployment of sensbréience, sensors must learn an 1
optimal topology and optimak on their own. The previous Mi(Ga)=—— Y pij(a) (4)
discussion suggests an iterative approach to fi¥d and ni(G) FJENI(GY)

3GRO can also be taken as the giant component in the random sensor fielPA dense sensor network is an interference constrained system so that
4Even for a known placement of sensors, computation of these valueghsrmal noise can be ignored from SIR. Thus, SIR does not depend on actual
difficult if not impossible. transmit powers.



Thus, M;(G’, a) equals the time average throughput of serAlgorithm 1 Algorithm for finding an approximatiot to the
sori and M(G',a) = Zf\il M;(G’,a) We have used our MAWSS of a directed Graplt

assumption that in transmit mode a sensor transmits a packet jf (V, E1(G)) is strongly connectethen

to one of its neighbours with probabilit%. Note that, o (G = (V, E1(G))

the “out-degree” of a sensor i@’ is simply the number of its 3. else

neighboursp; (G’). It, thus, follows by comparing (2) and (4) 4:  For all (i,5) € E, w(i,j) := w;(1) — w(i,j) and set
that for a fixeda if G’ is a subgraph of7g,, and if for all G=(V,E,W)

(i,§) € ER,, w(i,j) equalsp;;(a), theny(G') is M(G',a). 5. Foralli eV, find G:,, = (V,E:,,), the minimum
Since a sensor network needs to be connected, it follows from  weight out-branching ot rooted at;

our formulation in Section IV thatthe optimal topology of a 6 G = (V,Uiev EL ;)

sensor network is the MAWSS of dts;, .

Proposition 5.1: MAWSS for directed and undirected

graph.s is NP-complete. by advertising their ids which can be simply their indices.
Proof: See Section IX. Let « and the locations of the sensors be fixed. At tilméhe

In the following, we discuss directed graphs in partiCUIaEensors start broadcasting their ids. Ggt = (V,,, E,,) denote
and propose a heuristic algorithm for obtaining an f:lpproxim{ch—e subgraph of?, discovered until imes, i.e.,V,, = V, and

tiqn to the MA.WSS' For_g_eneric computing tasks, a topolog%’j) € E, if there exists a time slat: < n in which sensoy
V,V'th symmetr|c connectivity WOUId,be preferred (ifhas a successfully received a transmission frerfor the first time.
link to 7, j has to have the reverse link). Note that, symmetr@0 — (V., ). Note thatG,, is a random graph. In addition to

topology problem is also NP-complete since MAWSS 108 ing ids of its neighbours, a sensor atsmints the number

undirected graphs is a special case of it. We call the optimgljes it received a particular icthe larger this number, the
symmetric MAWSS topology the SYMMAWSS. For the lackyjgher is the probability of successful transmission from that

for space we omit the discussion of SYMMAWSS; for th%ode toi. To make it precise, lef;;(n) denote the number
details see [21].

of times sensoy successfully receivedtill time n. Then the
following holds.

A. A Centralized MAWSS Algorithm Proposition 5.3:Let 0 < «; < 1 for eachi. ThenG,, —
Some notation is in order. For node ¢;(k) denotes the Gg, andS“T(") — p;;(a) with probability 1.
k" heaviest outgoing edge and (k) denotes its weight. Ties Proof: See Section IX. O

are resolved arbitrarilyE, (G) := {e;(1)|[i € G}, is the set ~ The convergence of the discovery process is in itself an
of maximum weight outgoing edges of all the nodesdn interesting problem since how faSt, converges ta g, or in
The basic idea is the following. It is clear that the MAWS®ther words how fast sensors “discover” each other depends
containsF1 (G). Hence if (V, E1(G)) is strongly connected, on a. Though finding an optimal, in the sense of minimising
we are done. If not, we convert the “maximum average weighte discovery time, value at is difficult, a value which will
problem to the “minimum sum of weights” problem by eexpedite discovery is of practical importance since it would
suitable transformation ab (i, j) to w(i, 7). We consider the be pre-configured at the time of deployment; we denote it
transformationw (4, j) = w;(1) — w(i,j) and and denote this by a4 (subscript ‘d’ denotes discovery) ([21]). Practically,
weight function byl¥. We, then, construct minimum weightsensors will carry out the discovery process for either a pre-
out-branching (directed tree or arborescence) usirig j) programmed number of slots, or during the discovery phase
rooted at each. Recall that, any out-branching rooted at #hey will detect when the graph is connected and then stop. For
given node contains one and only one edge incoming to evéhys discussion we will assume that eitl@p,, or a connected
other node. The minimum weight branchings pick out edgegbgraph of it has been discovered and senkas an estimate
with smallw(i, j) which are the edges with large(i, j). The of p;;(a) for each(i,j) discovered;j counts the number of
resulting graph is taken as an approximation to the MAWSS8mes it received the id from and sends back the number
An optimal algorithm for constructing optimal branchings 4o ; 4 divides it by the number of slots to form an estimate.
presented in ([22]). The advantage of underlying trees is thiligorithm 1 can be distributed ([24]). The algorithm works
they are efficient for information transport and in a variety dfy formation of node clusters, detection of cycles, selection
scenarios where the computing and the communication tasksminimum weight cluster incoming edge in a distributed
can be merged, for example, calculation of the maximum &#shion. We omit the details.
the sensed values ([23]).

Proposition 5.2: The outputG of Algorithm 1 is a strongly ¢. Results
connected spanning subgraph@f
Proof: Note that Algorithm 1 constructs a route from every,
node to every other node.

The setup is as explained in Section MO0 sensors form
Poisson field on the plane with= 1. In this set of results,
we use the same value of attempt probability for each sensor.
o ] Further, two “types” of’s need to be distinguished. The first,
B. A Distributed MAWSS Algorithm is ag, the attempt probability sensors use whiliscovering

At the time of deployment, neithe€r, nor p;;(e) is the topologyWe useay = 0.05. For this value ofag, the
known to sensors. Over time, sensors “discover” each othiiscovered graph is connected withii@0 slots. Figure 3 shows
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Fig. 6.  Saturation Throughput variation with attempt probability) for
different topologies discovered using; = 0.05: G500, G1000, MAWSS,
and SYMMAWSS.

Gso0; recall that G, denotes the discovered graph at slot
n. Figure 4 and Figure 5 respectively show MAWSS and
SYMMAWSS constructed frond7sq0; MAWSS here refers to
the graph obtained from Algorithm 1.

Once the topology formation is complete, sensors switch to
an “operational value” of the attempt probability. Figure 6
shows the variation of average saturation throughput of a
sensor with the operational valueswfor network topologies
given by G509, G100, MAWSS and SYMMAWSS. Recall
that, for a given topologyG’ and o, M(G’, ) denotes the
network throughput. The average saturation throughput which
we plot in Figure 6 is simpIW(GT/’g). Note that the throughput
of G0 is lower thanGsg, since it includes more edges of
low probability of success discovered during additiofl
slots. MAWSS and SYMMAWSS, on the other hand, eliminate
edges with low probability of success while maintaining the
connectivity; hence, the maximum throughput achieved by
them is almost 5 times of the corresponding discovered graphs.
Since symmetric edges are considered in SYMMAWSS, there
is slight throughput reduction for SYMMAWSS as compared
to MAWSS.

VI. OPTIMAL ATTEMPT PROBABILITIES

A crucial observation from Figure 6 is that the throughput
is maximised at a different operational value @fthan a.
For example, the throughput is maximisedcat= 0.25 for
MAWSS and is almost four times of that obtained with =
0.05, thereby, implying that it is indeed essential to operate at
such a value. However, as argued in Section IV a distributed
implementation warrants optimisation over a vector of attempt
probabilities,«. This leads to a peculiar problem thatwhich
maximises the average throughput is degenerate, i.e. some
sensors havey; = 1 and the remaining have; = 0 ([21]).
This necessitates a new look at the problem formulation.
Consider a sensor network in whicti sensors are connected
to a fusion center. The fusion center combines all the sensor
readings into a computation of a statistic of the process being
monitored; e.g., the time-varying average. Now the number of



computations it can complete in tinie equals the minimum Algorithm 2 An MMTAP algorithm using generalised gradi-
of the number of readings of each sensor collected by €&ft ascent.

in that duration. It follows that the computing rate equals

the minimum sensor throughput. In a spatially distributed @ 0,1, j=1,2,....N

sensor network in which the global computation is arranged u(k) = min M;(a(k)), k>0

—~
(en)

N
m

on a tree (as in MAWSS), a sensor will update and transmit B — 1§i§Z < N M (k) = ulk

its result after receiving corresponding results/measurements U(k) = {ill <i< N, Mi(a(k)) = u(k)}
from its children. Thus it locally acts a fusion center and a;(k) OM; (a(k))
the rate at which it can complete its local computation is®;(k+1) = II |a;(k)+ \(;(k)| > Dor
constrained by the minimum of its children’s throughputs. icU(k) !
Thus in many computing scenarios it is imperative to improve Jj=L12...,N

the minimum of sensor throughputs since few faster (in the
sense of throughput) sensors cannot in general expedite the
convergence of a global objective. This motivates the problem
of maximising the minimum of sensor throughputs

In order to get some insight into throughput functions(c;i<e *(O<’11) for all 4, My(G,e) > 0,1 < ¢ < N. HencDe,
M; , recall thatV; respectivelyn; denotes the = =& ==&
(G,a) (&) (respectivelyn;()) Consider firstV collocated sensors; by collocated we mean

set of neighbours (respectively number of r"aithCJlJrs)"Ofthat in any slot at most one transmission can be successful
Let a*/ denote the vectow with entriesa; and «; omitted. y i Ty '
Then MZ(Q) = Q4 Hj?gz(l — Ctj), 1<i<N anda,i =5

Proposition 6.1:For a fixed topology G, n and 4, which is an intuitive and desirable operating for sensors in this

= 1 _ (1 — a)as (o
M”(?\;’QC): - j’u(G) %IJEM(@ ‘?‘;1(1 tﬁj)g” (Q_ jt)' For ?agh scenario. Secondly, even when sensors are spatially distributed,
j € Ni(G), gij(.) either equalsl or there exists a sef; C g equalises the throughputs, i.e.,

Vs\{¢, 7} such thay;;(.) is a decreasing and affine function o Proposition 6.3:0 < a* < 1 = Mi(a®) = M;(a*), 1 <
ax, k € I;; and does not depend upon, k ¢ I,;. Moreover, ij<N

lgij (l]Z_ZSO agd gé‘_j (Q)I; 1. Proof: See Section IX. O
rgof-_ >ee :i_'ﬁ” N locations be fixed. Then for 1€ throughput equalizing propertynakes the MMTAP
efinition ©.1: Let the sensor locations be fixed. Then 1o, ey jarly important since with MMTAP sensors operate at

f|xed B 1 gnd G J 'TQ‘ .caIIed an mterferer .Of it M;(G, Q.) equal processing rates which is desirable in applications where
is decreasing imy;. j is called a primary interferer of if computations are iterative

M;(G, @) = 0 whenevera is such thaty; = 1.

Thus, a neighbour of sensaris also its interferer. Further, ) ] )

sensorj is a primary interferer of if it must be silent, i.e., in B- A Generalised Gradient MMTAP Algorithm

receive mode, for any neighbour éfto receive successfully Consider an iterative scheme to tuaeto the MMTAP in

from i. Denote byI; the set of interferers of senser Let Algorithm 2. IT denotes projection of), 1] and |U (k)| the

S; = {i|j € I,}. Note thatS; includes sensors which havecardinality of setU(k). a;(k) is the step size in the'

sensor;j as their neighbour. iteration at sensoy. Algorithm 2 is a “generalised gradient

aisce(rj]t” algorithmf[;nﬁ z(:LE(USI;) Wé((;()k?[ b;—z)ing fa ger|1|er—

alised gradient ofmin; M;(a(k)) at a(k) ([25]). Informally

A. The MAXMIN Throughput the iterations can be explained as followd k) denotes the set
For a given network topology~, consider the following of sensors whose throughput is the minimum under operating

optimisation problem. pointa(k). If j ¢ U(k), thena; is reduced in the next iteration
. OM;(a . . " .
max  min M;(G, ) (5) smr.;eTj .< 0,17 # j (see Pr_oposmon 6._1). This leads to
a€[0,1]N 1<i<N an increase in the throughput o€ U (k). If j € U(k), then

. " 4 ) «a; is increased or decreased based on how it affects others
It is clear from Proposition 6.1 thad/;(G,.), 1 < i < and how others affect its throughput. Thus the algorithm tries

N are continuous functions ak, and so ismin; M;(G,.). . .
. . to equalize as well as maximise the sensor throughputs.
Therefore, an optimum exists for the MAXMIN problem (5) Proposition 6.4:Let a;(k) = a(k), 1< j < N, k > 0. If
. ¥l - ) = = ) i .

by Welerstras§ Theorem. Slnc_e topollc(@ys fixed, henceforth “ F) satisfy limy,_ > a(k) = 0 and >_;—, a(k) = oo, then
we suppress it from the notation. It is, however, assumed t orithm 2 converaes to the MMTAP.
G is connected. Letr* denote an optimum of MAXMIN J 9 )

. : i . O
and M* denotemin; M;(a*). We will call «*, the MAXMIN Proof: See Section IX
throughput attempt probabilitieeMMTAP). By 0 < o* < 1, o ) )
we mean) < a; < 1, i=1,2,...,N. C. A Distributed Stochastic MMTAP Algorithm
Proposition 6.2:If every sensor is a primary interferer of Though fixed in form for a given placement of nodes,
at least one sensor, thén< o™ < 1. M;(.) is not known at sensoi and being a steady-state

Proof: If af = 0 for somei then clearlyM;(a*) = 0. If average, onlynoisy measurementsf M;(.) are available for
o = 1 for somei then M;(a*) = 0, i € P; where P; are Algorithm 2. An unbiased estimator af/;(.), denoted by
the primary interferers ofi. Proposition 6.1 implies that if M;(.), is %Z;Zl X;(j) where X;(j) = 1 if 4 transmits



Fig. 7. Transmission grapl@;r,, of a random100 node sensor network. Fig. 8. SYMMAWSS of the sensor network in Figure 7.

0.04

successfully in slotj, otherwise 0. 7 is the number of
estimation slots. Sensors also needesiimate the gradient 0035 ]
of M;(.) in order to use Algorithm 2. Since we need a
distributed algorithm we consider simultaneous perturbation
(SP, [26]) based gradient estimation. Instead of perturbing
one component, i.eq; at a time to obtain the estimates of
partial derivatives, in SP ally;s can be perturbed simulta- 0025
neously given that perturbations for each are zero mean
independent random variables with some additional conditions ooz
([26]). This way,by choosing the perturbation amount locally,
sensors can simultaneously estimate the derivatireghe
kth iteration, let A(k) denote a vector ofV independent
Bernoulli random variables taking values{r1, 1} such that

0.015 -

0.01 - L L

{A(k)} is an independent sequence wilifx) independent of 0 1000 2000 200 w000 5000
a(0),a(1),...,a(k). Then the “central-difference estimator”

f OM; () (k) o Mi(a(k)+c(k)A(k))—M;(a(k)—ck)A(k)) h Fig. 9. Evolution of theestimatedminimum sensor throughput in th0
0 Oa; IS 2¢c(k)A; (k) WNETe  ode sensor network.

c(k) is a scalar. SP requiresk) — 0 so that the estimator is
asymptotically unbiased.
Proposition 6.5: Let in Algorithm 2, the partial derivatives Figure 8 is distance inn. n = 4, 8 = 7dB and7 = 1000
of M;(.), 1 <i < N be replaced by their estimates (biaseglots.;(0) = 0.1, 1 <4 < 100. We chooseu(k) = 5507
or unbiased). Lew;(k) = a(k), 1 < j < N, k> 0and andc(k) = W Figure 9 shows the evolution of the
a(k) satisfy > 7, a(k) = oo and Y 72, a(k)? < oo. Then minimum sensor throughput in the network with iterations;
the generated sequenge(k), k¥ > 1} converges a.s. to thethe actual estimates of sensor throughputs are used and the
MMTAP. resulting graph is smoothed by 5-point adjacent averaging
Proof: See Section IX. O to show the trend. The algorithm appears to have reached a
For a complete distributed implementation we now onlthroughput value 0f).032 — 0.035 packets/slot starting from
need a way of obtaining an estimate W for each 0.015 packets/slot, a more tha®0% increase.
i € U(k) at every sensojy in iteration k. This itself can be

arranged as a computation on the underlying MAWSS tree. VII. DiscussioN

We omit the details. It is essential that after their deployment, sensors organise
into an optimal network as fast as possible. This is particu-

D. Results larly true of the network topology. The time (and message)

We consider a network afo0 sensors, each of transmissioncomplexny of the distributed MAWSS algorithm discussed

range4m, deployed randomly in a square field of arg@m?. in Section V-B which findsV" branchings equals)(N?)

The MMTAP are unknown for this netwotkFigure 8 shows ([24]). This cost appears to be imperative for forming a
throughput optimal topology. In return, as seen from Fig-

the G'r, and SYMMAWSS corresponding to it; scale "ure 6, the performance gain is substantial. Algorithm V-B

SWe have verified the MMTAP algorithm on networks simple enough t@.lSO ConStrUCt_S direCt?d trees rooted .at each S_ensor' which
deduceM;(.)'s (hence the MMTAP) easily ([21]. can be used in a variety of computational algorithms (e.g.,



MMTAP) and for control information propagation. We expecthroughput. We obtained an optimal topology by the maximum
that our approach can be also extended directly to additiorsalerage weight (MAWSS) formulation and optimal attempt
topological requirements such @sconnectedness. Learningprobabilities by maximising the minimum sensor throughput
an optimala is an important but much harder problem. Ou(MMTAP). The MMTAP were found to have an important
algorithm is fairly simple and makes use of measurementwoughput-equalizing property. The MAWSS algorithm is
made locally. Its major complexity is in obtaining the estimatedistributed and uses connectivity and probability of successful
of partial derivatives of throughputs at each sensor. Being cdransmission information obtained locally. We presented a
strained by the bias-variance dilemma ([27]) convergence ®fnchronous distributed stochastic algorithm for driving a
our stochastic algorithms can be improved by careful selectisansor network to the MMTAP. The algorithm uses local
of the parameters. It is also possible for the sensors to chotis®ughput measurements and yields substantial performance
a good starting point from the knowledge of the probability dfmprovement even within few iterations. The performance im-
successful transmission obtained during the discovery phagmvement is at the price of algorithmic complexity. However,
Moreover, Figure 9 indicates that the improvement within fewhis work shows that the performance gains from optimal self-
iterations may be significant. organisation can be substantial and the adaptive techniques
The most important point regarding our algorithms is thatiscussed in this paper need to be considered during the
they aremeasurement-based not model-baséuds means that protocol design.
instead of particular analytical forms, they employ estimates
of sensor throughputs or probabilities of success over different IX. PROOES
Islzlr(n(:)tt)i?rlgei(rj] tggoctt’i%?] ?”'lr'g:ar:;?r?glggnr:]ﬁ]r&tﬁi'c;zg;ezgrg’ tg? a_S'Definition 9.1: A function f : R — R is called strictly
based decoding, communication without multipath effect ’uez;\s(g:olr;(.:ave if(Az + (1 = ANy) > min{f(z), f(y)} foDr
etc.) and computation (e.g., transmission to each neighboui_em’ma 9.1:Consider functionf(z) = zg(x) wherex ¢

with equal probability, etc.) are not essential for the algorlthn@bl] and g(z) is a strictly decreasing function af. Then f

per se. Moreover, it may be possible to extend our approachIS strictly quasiconcave.

other access schemes as well. Interestingly, these algorit )
can be seen as a tool by which tmetwork slowly and rf?(gxc;f(.yVi/ex)s h:%.t??;)fzx}%x)err](géps’y; ((5)) ;xJ; Eig?

continuously keeps on improving and adapting itsélfis enotes the derivative’ (x) — g’ (x)+g(x). SUppose: > y.

aspect is particularly important from the point of view o en zg(y) > ygly) > zg(x). Thus, z(g(y) — g(z)) >
device failures and task reconfiguration. The other important <’ v yay . Iy 7Y g
y)(x —y). Now y — = = —z¢'(z) > g(x). Thus

advantage of our MMTAP algorithm is that the throughptﬂ 2) + 2¢'(z) < 0 which implies (z¢'(z) + g(2))(y — 2) >
at each sensor is measured using real transmissions an ﬂq v <y yoly) > xg(zx) > zg(y). This, similar to
special packet transmlsglons are required. Hence, there isyfQ previous derivation, yieldg(z) + zg'(z) > 0. Hence,
extra energy consumption. F_urther, they can work evend@ '(x) + g(@))(y — &) > 0. The strict inequality in one
the presence of energy saving techniques such as ran AHable case implies strict quasi-concavity -
sleep time and can account for energy constraints direc toof of Proposition 4.1: Recall thata; : o for all i
for example, by upper bouqding the attempF prObabi.“ti(.a?\lote that (4), is of the fOIrrT.Zlyg(a) Where_gEa) combines tHe
In ([21]), we apply our algorithms to a realistic scenario ir eceiving part’ (L — a) and the “interference part’ (see (3))
which sensors, by organising themselves optimally, are ab[ '

o : ; «) is strictly decreasing iny; g(1) = 0, g(0) = 1 and
to compute accurately as well as efficiently, i.e., at hlghg(a) >0, a € (0,1). Therefore, by Lemma 9.14:(G, o)

sampling rates with low computational delay. ._is strictly quasiconcave. The proof concludes by noting that

We designed algorithms so as to achieve the optlm%lr G € Goy M(G,a) = EN M;(G, ) has the same form
performance and found correspondingly higher algorithmic (@) “ ’ =1 A .
complexity. Our future work, therefore, is to develop asyn- Lemma 9.2:Consider the problem of maximising(k) —
chronous algorithms with strictly local information exchange 1 1 bi : -

- . e e e = ect to the constraints th
for scalability. This paper lends support to any such effort sin +i J2r §2}+f10:r1 <J.r§z’+1af:j]3 kot +ks_ ;)) S(p >th)€
it shows a way to obtain globally optimal performance again E” 7 =t=p 12 R = 9 -

which the performance of other algorithms can be compar%.seggﬁli {é%) e;nz th é r:;td—lz 2?;;'2'\/ te(;joby & which hasg

Proof: Relax the integer constraints © < k; < 3 for

VIIl. CONCLUSION i = 1,...,p. Denote byk* any k which hasq k;s equal
7. _ (3 3
We viewed performance optimisation as the objective &P 3 and the resp — ¢ equal t00 and byk = (?q’ T ?q)‘

self-organisation in sensor networks and argued that the rateen(k*, &) and(k, ;ﬁpf;)z) are the stationary points of the
at which a sensor network can process data in a distribue@grangian of the relaxed problem. Single (linear) constraint
fashion is governed by its communication throughput; hengeplies that either of the two must be the maximuf(k”) =
sensors must organise themselves in such a way as to opti- %‘1 > f(k) = =Z—. Moreover,k* is an integer solution

mise their communication throughput. Using a simple modethich implies that it is the optimal solution of the problem
we showed that the network topology and the transmissi@ith integer constraints as well. |

attempt rate are the critical factors which determine tHeroof of Proposition 5.1: The proof for undirected graphs
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of edges between a vertexe A and X, Y and Z; by our
constructior) < k; < 3 and distinct vertices iX (similarly in

q Y andZ?) are connected to distinct vertices.ih Hence, from
Lemma 9.2 it follows that the assignment of edges between
A and X, Y and Z which maximises)M is such that out of
p vertices inA, ¢ have 3 edges (one each frol, Y and 2)
while the restp—¢) have none connected 15, Y andZ. The
subgraph with this particular arrangement of edges ambng

a X,Y andZ has the maximurd/ (= (1+3q)+ 22 + (p— 22))
overG.,. Therefore, if there is a connected subgraphiafith
M = (1+3q) + % + (p — 22), then the matching existg
points with edges fronX, Y, Z is the required matching.

Fig. 10. Gadget for proving NP-completeness of undirected MAWSS 3DM is, thus, reducible to MAWSS proving NP-
completeness of MAWSS for undirected graphs. NP-
completeness of MAWSS for directed graphs is established

uses transformation from 3DM (3-dimensional matchindy noting that STA (strong connectivity augmentation, [29])
which is known to be NP-complete [28]), to MAWSS. AniS its special case. o

MAWSS instance is a weighted connected graph = proof of Proposition 5.3: Since0 < a; < 1 for eachi,
_(V,_E,W), and a positive integeB and the question we askpij (a) > 0 for each(i, j) € Eg,. Therefore, the probability
Is, is there a graplir; € G.s such thath (G1) > B? Onthe nat ;. 5) is discovered in finite time ig. Since N is finite,
other hand, a 3DM instance is a SeC X x Y x Z, [S| =p, G, — Gy, in finite time with probabilityl. The second limit
where X, Y and Z are disjoint sets having the same numb&g|iows from the strong law of large numbers. O
q of elements and the question is ddegontain a matching? . _ _
Consider the gadget in Figure 1®,, X, R,, Y, R. and Proof of Prop_osmon 6.1: Let th_e sensor locations be fl_xed.
Z denote the sets of vertices each whereas is a set of Recall Equation 3 and Equation 4. Note thai;(a”/) is
p vertices p > q). q vertices inR, and X are paired; the ©'(I'ij = 5) with dy; fixed; recall thatl’;; denotes the SIR
corresponding vertices have an edge of weight 1. Similarf 4 transmission fron to j. If () " >3 ie.,
for R,, Y andR., Z. R contains a single vertex which has o D s (2) TN .
one edge of weight 1 from each vertex it . The setsX, the SIR of a transmission fromto j is above th_e required
Y, Z and S in an instance of 3DM correspond to the sdireshold even if all the other sensors are simultaneously

of vertices X, Y, Z and A respectively in Figure 10. Thus, ransmitting, then clearly;;(a’’) = 1. If not, let v denote

for each(z,y, z) in S, there are edges from verticese X, an N dimensional vector each component of which is either
9 ) il H d

yeYandz e Ztoavertexindand|[A| =p=|S[. Each o 1 et Vv = Jou- (:TU’ - > 6\ Then
edge between a vertex iX (similarly in Y and Z) and a ' T D, (D) Tkt No T ’

vertex in A has weight0. We denote the resulting graph byp(rij > B) = Y ,ev Mg japk (1 — ak)(lka) Letv_,,
G. In G, each vertex inRk,, R,, R. and R has an average denote a vector withnt" entry omitted and le{v_,,, v,)
weight of 1. The vertices in, Y and Z have the average representy. Then for eachk +# i,j, P(T'y; > 8) = apay +
weights according to the connections resulting frémEach (1 _ o, )5, wherea;, = 3 O - 0}1(1 —qy)(-w)
. ! ve(v_,,1) THFL kY l
vertex in A has 4 edges (one each from a vertexin Y, andby, = ° M. . ”1;(1 — ap)a=)_ If for ever
Z and R) and an average weight f. The claim is that a B = 2awe(v_, ,0) HlAFLIEN x ' y

matching exists if and only it7 has a connected spanning?—#>0) € V, (v_y,1) € V, thena, = by.. Hence,P(I's; > )
subgraph withd = (1 + 3¢) + %q +(p— 37q> does not depend ok. Let I;; be the set of sensors for which

. . . this condition fails. Then fork € I;;, by > aj since if
Suppose that a matching exists. Then consider subdgraph . oy .
PP g P (v_p,1) € V then so is(v_,,0), i.e., each term in the sum

of G such that out op, ¢ vertices inA have 3 edges each of . . ; iy s .
weight 0 from X, Y and Z corresponding to the matching,for aj; IS also indg. Thus it follows thalg;; (o) is decreasing
1 edge toR and the resip — ¢ vertices have only 1 edge and affine inoy, k € ;. =
connected toR. Thus, the sum of the average weights of Lemma 9.3:If 0 < o* < 1 then af‘ggﬁ*) = 0 if and only
vertices inX (similarly Y and Z7) is 4 whereas that inA jf ; ¢5S;. ’

is(p—q)+qx i =p— %. It follows that G, is a connected
graph withM = (1 +3q) + 2 + (p — 34).

For the converse, note that the subgraph& @i which each Proof of Proposition 6.3: Note that MAXMIN is equivalent to
vertex in X, Y and Z has exactly one edge connected to the constrained optimisation problem of maximisingubject
vertex in A are connected. Under such a condition the verticés M;(a) > z, i = 1,2,...,N, z > 0, ando; € [0,1], i =
in X, Y andZ attain their maximum average Weight§).flt is 1,2,...,N. Let Z := (x,«a). By hypothesis0 < o* < 1.
easy to see that only such a subgraplGofvill maximise M Hencez* = M* > 0. Moreover, the Mangasarian-Fromowitz
over G.;. Now M for these subgraphs will be determined byonstraint qualification holds at*. Therefore, by KKT The-
their connections at the vertices.ih Let k; denote the number orem ([30]) there exists a vector of multipligs;” > 0, such

Proof: Follows from Proposition 6.1. O



that pf (M;(a*) — 2*) = 0, and [4]

OL(i*, ") Z

- = = — * = 5
o 1 ; =0 (6) 8]

OL(z*, u¥) N oM, (oY) [6]
80[47‘ o ; Hi aaj - 0 (7) [7]

Let uj = 0 for somej. Then Equation 7 corresponding fo

implies that)_, ;. u;‘%f*) = 0. Recall that/; denotes the
set of interferers of sensarand S; = {i|j € I;}. S; = ¢

means that no sensor transmitsjtand j is not interferer of
any sensorsj is thus an isolated sensor and cannot belo h)

to a connected network. Using Lemma 9.3 (7) reduces to

(8]

El

«OMi(a™) _ . OM;(a")
Zmesj 1 =5, = 0. For each such, ;T?i”*) < 0 and 1]
; * A (&
wi > 0. It follows that for alli € S;, uj —5,= = 0 and

thereforep = 0 i.e., for each sensarthat transmits tgj, or
is interfered with byj, u; = 0. Continuing the argument for [12]
each suchi and further, letA denote the final sefi|u; = 0}.
Let B = {klk ¢ A}. Then any such: does not transmit [13]
to any node inA and no sensor i is an interferer ofk. [14]
SinceG is a (strongly) connected topology, this implies that
forall k € B, k ¢ G. Thus, for alli € G, pj = 0. This
contradicts (6). Thereforey; > 0,1 < i < N implying that
M;(a*)—M*=0,1<i<N. O
Definition 9.2: ([31]). A function f : R — R is called
generalised differentiable at € R™ if in a vicinity of z
there exists upper semicontinuous multivalued mappimgth
convex compact valuesf (z) such thatf(y) = f(z)+g” (y—
z) + o(z,y,g), whereg € df(x) andlimy, % =0
for any sequenceg(k) — z, g(k) — g, g(k) € df(y(k)). O
Consider the problem of minimising a generalised differer)
tiable functionf(x) over X C R™. Let X* := {z € X|0 €
Of(x)} and f* == {f(z)[z € X*}. -
Lemma 9.4:([25]). The cluster points of the iterative
scheme,

(16]

(17]
(18]

(19]

(22]

z(k+1) = Hz(k) — a(k)g(k)], k>0 (23]
where, IT denotes the projectioX, a(k) are nonnegative
numbers,z(0) € X and g(k) € 9f(z(k)), belong to a
connected subset 6f* and{ f(z(k))} has a limit inf* if f*
is finite, andlimy,_ o a(k) = 0 with 37 ja(k) =c0. O
Proof of Proposition 6.4: F(a) := mini<;<n M;(a)
is generalised differentiable. Lej(k) be a vector whose [26]
j™" component is iy ZZ.GU(,C)%.%('“)). Then g(k) €
OF(a(k)), k > 0. Since the constraint sdb, 1]V is a [27]
Cartesian product of set®,1], projection can be obtained
component-wise. Convergence follows from Lemma 9.41
Proof of Proposition 6.5: See [21], [25] for details. O

(24]

(25]

(28]

[29]

[30]

[31]

[1] B. Sinopoli, B. Sharp, C. Schenato, L. Schaffert, and S. Sastry, “Dis-
tributed Control Applications within Sensor Network$roc. of the
IEEE, vol. 91, no. 3, pp. 1235-1246, 2003.

[2] A. Knaian, “A Wireless Sensor Network for Smart Roadbeds and
Intelligent Transportation Systems,” Master of Engg. thesis, MIT, 2000.

[3] S. Graham and P. R. Kumar, “The Convergence of Control, Communi-
cation, and Computation,” iPWG 2003.

REFERENCES

11

D. Baker and A. Ephremides, “The Architectural Organization of a
Mobile Radio Network via a Distributed AlgorithmJEEE Trans. on
Commn, vol. 29, no. 11, November 1981.

M. Post, A. Kershenbaum, and P. Sarachik, “A Distributed Evolution-
ary Algorithm for Reorganizing Network Communications,” IBEE
MILCOM, 1985.

P. Santi, “Topology Control in Wireless Ad Hoc and Sensor Networks,”
ACM Comp. Surveysyol. 37, no. 2, pp. 164-194, 2005.

R. Krishnan and D. Starobinski, “Message-Efficient Self-Organization
of Wireless Sensor Networks,” IEEE WCNC, 2003.

L. Clare, G. Pottie, and J. Agre, “Self-organizing Distributed Sensor
Networks,” in SPIE - The Intl. Soc. for Optical Enggl999, pp. 229—
237.

K. Sohrabi, J. Gao, V. Ailawadhi, and G. Pottie, “Protocols for Self-
organization of a Wireless Sensor NetworlEEE Personal Communi-
cations vol. 7, no. 5, pp. 16—27, October 2000.

A. Cerpa and D. Estrin, “ASCENT: Adaptive Self-Configuring Sensor
Network Topologies,” UCLA Technical Report UCLA/CSD-TR 01-
0009, May 2001.

R. Nagpal, H. Shrobe, and J. Bachrach, “Organising a Global Coordinate
System from Local Information on an Ad Hoc Sensor Networks2ria

Intl. Workshop on Information Processing in Sensor Networks (IPSN)
2003.

A. Karnik and A. Kumar, “Iterative Localisation in Ad Hoc Wireless
Sensor Networks: One-dimensional Case,'SIRCOM 2004.

K. Sohrabi and G. Pottie, “Performance of a Novel Self-Organisation
Protocol for Wireless Ad Hoc Sensor Networks,”lBEE VTG 1999.

C. Chiasserini and M. Garetto, “Modeling the Performance of Wireless
Sensor Networks,” iHINFOCOM, 2004.

] S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah, “Gossip Algorithms:

Design, Analysis and Applications,” iiNFOCOM, 2005.

I. Demirkol, C. Ersoy, and F. Alagoz, “MAC Protocols for Wireless
Sensor Networks: A Survey,JEEE Communications Magazingo
appear.

K. Romer, “Time Synchronization in Ad Hoc Networks,” MobiHog
2001.

A. Ebner, H. Rohling, M. Lott, and R. Halfmann, “Decentralized Slot
Synchronization in Highly Dynamic Ad Hoc Networks,” intl. Symp.
Wireless Personal Multimedia Comm&002, pp. 27-30.

A. Domazetovic, L. Greenstein, N. Mandayam, and |. Sekar, “Estimating
the Doppler Spectrum of a Short-Range Fixed Wireless Channel,
accepted to IEEE Commn. Letters 2002.

S. Tilak, N. Abu-Ghazaleh, and W. Heinzelman, “A Taxonomy of Sensor
Network Communication ModelsMobile Computing and Communica-
tion Review vol. 6, no. 2, April 2002.

A. Karnik, “Optimal Self-organisation of Ad Hoc Wireless Sensor
Networks,” Ph.D. dissertation, Indian Institute of Science, 2004.

R. E. Tarjan, “Finding Optimal BranchingsNetworks vol. 7, pp. 25—
35, 1977.

N. Khude, A. Kumar, and A. Karnik, “Time and Energy Complexity
of Distributed Computation in Wireless Sensor Networks,” accepted for
INFOCOM, 2005.

P. Humblet, “A Distributed Algorithm for Minimum Weight Directed
Spanning TreesEEE Trans. on Commnvol. 31, no. 6, pp. 756-762,
June 1983.

Y. Ermoliev and V. Norkin, “Stochastic Generalized Gradient method
with Application to Insurance Risk Management,” Tech. Rep. Interna-
tional Institute for Applied Systems Analysis IR-97-021, 1997.

J. Spall, “Multivariate Stochastic Approximation Using a Simultaneous
Perturbation Gradient ApproximationEEE Trans. on Automatic Con-
trol, vol. 37, no. 3, pp. 332-341, March 1992.

B. Bharath and V. Borkar, “Stochastic Approximation Algorithms:
Overview and Recent TrendsSadhanavol. 24, pp. 425-452, 1999.

M. Garey and D. Johnso@omputers and Intractability W. H. Freeman
and company, 1979.

G. Frederickson and J. Ja'Ja, “Approximation Algorithms for Several
Graph Augmentation Problems3IAM Journal of Computingvol. 10,

no. 2, pp. 270-283, May 1981.

D. BertsekasNonlinear Programming Athena Scientific, 1995.

V. Norkin, “On Nonlocal Algorithms for Optimization of Nonsmooth
Functions,”Cyberneticsvol. 14, no. 5, pp. 704-707, 1978.



PLACE
PHOTO
HERE

PLACE
PHOTO
HERE

sation problems arising in communication networks and distributed systems.

A ditya Karnik got his B.E. (Elec. and Teleomm.
Engg.) from the University of Pune, India, and M.E.
and Ph.D. (both in Elec. Commn. engg.) from the
Indian Institute of Science, India. He is currently a
postdoctoral fellow in the dept. of Elec. and Com-
puter Engg. at the University of Waterloo, Canada.
During his Ph.D. he was a recipient of the IBM
Research Fellowship. His research interests are in
performance evaluation, optimization and control of
communication networks.

A nurag Kumar obtained his B.Tech. degree in
Electrical Engineering from the Indian Institute of
Technology at Kanpur. He then obtained the Ph.D.
degree from Cornell University. He was then with
Bell Laboratories, Holmdel, N.J., for over 6 years.
Since 1988 he has been with the Indian Institute of
Science (l1Sc), Bangalore, in the Dept. of Electrical
Communication Engineering, where he is now a Pro-
fessor, and is also the Chairman of the department.
His area of research is Communication Networking;
specifically, modeling, analysis, control and optimi-

He is a Fellow of the IEEE, the Indian National Science Academy (INSA), and
the Indian National Academy of Engineering (INAE). He is an Area Editor

for IEEE Transactions on Networking, and for IEEE Communications Surveys
and Tutorials. He is a coauthor of the textbook Communication Networking:
An Analytical Approach, published by Morgan Kaufmann in 2004.

12



