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Abstract—Our work is motivated by geographical forwarding of sporadic alarm packets to a base station in a wireless sensor network
(WSN), where the nodes are sleep-wake cycling periodically and asynchronously. We seek to develop local forwarding algorithms that
can be tuned so as to trade-off the end-to-end delay against a total cost, such as the hop count or total energy. Our approach is to
solve, at each forwarding node enroute to the sink, the local forwarding problem of minimizing one-hop waiting delay subject to a lower
bound constraint on a suitable reward offered by the next-hop relay ; the constraint serves to tune the trade-off. The reward metric used
for the local problem is based on the end-to-end total cost objective (for instance, when the total cost is hop count, we choose to use
the progress towards sink made by a relay as the reward). The forwarding node, to begin with, is uncertain about the number of relays,
their wake-up times, and the reward values, but knows the probability distributions of these quantities. At each relay wake-up instant,
when a relay reveals its reward value, the forwarding node’s problem is to forward the packet or to wait for further relays to wake-up.
In terms of the operations research literature, our work can be considered as a variant of the asset selling problem. We formulate
our local forwarding problem as a partially observable Markov decision process (POMDP) and obtain inner and outer bounds for the
optimal policy. Motivated by the computational complexity involved in the policies derived out of these bounds, we formulate an alternate
simplified model, the optimal policy for which is a simple threshold rule. We provide simulation results to compare the performance
of the inner and outer bound policies against the simple policy, and also against the optimal policy when the source knows the exact
number of relays. Observing the good performance and the ease of implementation of the simple policy, we apply it to our motivating
problem, i.e., local geographical routing of sporadic alarm packets in a large WSN. We compare the end-to-end performance (i.e.,
average total delay and average total cost) obtained by the simple policy, when used for local geographical forwarding, against that
obtained by the globally optimal forwarding algorithm proposed by Kim et al. [1].

Index Terms—Relay selection, wireless sensor networks, sleep-wake cycling, geographical forwarding, asset selling problem, wireless
networks with intermittent links, opportunistic forwarding.
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1 INTRODUCTION

We are interested in the problem of packet forwarding
in a class of wireless sensor networks (WSNs) in which
local inferences based on sensor measurements could
result in the generation of occasional “alarm” packets
that need to be routed to a base-station, where some
sort of action could be taken [1], [2], [3]. Such a situation
could arise, for example, in a WSN for human intrusion
detection or fire detection in a large region. Such WSNs
often need to run on batteries or on harvested energy
and, hence, must be energy conscious in all their op-
erations. To conserve energy and also since the events
are rare, it is best if the nodes are allowed to sleep-
wake cycle, waking up only periodically to perform
their tasks. In this work we consider asynchronous sleep-
wake cycling [1], [4], where the sleep-wake process of
each node is statistically independent of the sleep-wake
process of any other node in the network.

Due to the asynchronous sleep-wake behaviour of the
nodes, an alarm packet has to incur a random waiting
delay at each hop enroute to the sink. The end-to-end
performance metrics we are interested in are the average
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Fig. 1. Illustration of the local forwarding problem.
total delay and an average total cost (e.g., hop count, to-
tal power etc.,). To optimize the performance metrics one
could use a distributed Bellman-Ford algorithm, e.g., the
LOCAL-OPT algorthm proposed by Kim et al. [1]. How-
ever such a global solution requires a pre-configuration
phase during which a globally optimal forwarding policy
is obtained, and involves substantial control packets
exchange. The focus of our research is, instead, towards
designing simple forwarding rules based only on the local
information available at a forwarding node (see Fig. 1).
Towards this end the approach of geographical forwarding
turns out to be useful. In geographical forwarding ([5],
[6]) nodes know their own locations and that of the sink,
and forward packets to neighbors that are closer to sink,
i.e., to neighbors within the forwarding region (which is
the hatched area in Fig. 1).
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The local problem setting is the following. Somewhere
in the network a node has just received a packet to
forward (refer Fig. 1); for the local problem we refer to this
forwarding node as the source and think of the time at
which it gets the packet as 0. There is an unknown number
of relays in the forwarding region of the source. In the
geographical forwarding context, this lack of information
on the number of relays could model the fact that the
neighborhood of a forwarding node could vary over
time due, for example, to node failures, variation in
channel conditions, or (in a mobile network) the entry
or exit of mobile relays. The source desires to forward
the packet within the interval (0, T ), while knowing that
the relays wake-up independently and uniformly over
(0, T ). When a neighbor node wakes up, the source
can evaluate it for its use as a relay, e.g., in terms of
the progress it makes towards the destination node, the
quality of the channel to the relay, the energy level of the
relay, etc., (see [7], [8] for different routing metrics based
on the above mentioned quantities). We think of this as a
reward offered by the potential relay. Thus, at each relay
wake-up instant, given the reward values of the relays
that have woken up thus far, the source is faced with the
sequential decision problem of whether to forward the
packet or wait for further relays to wake-up.

By solving the local problem using a “suitable” re-
ward metric, and then applying its solution at each
hop towards the sink, we expect to capture the end-
to-end problem of minimizing total delay subject to a
constraint on an end-to-end total cost metric (e.g., hop
count or total power). For instance, if the constraint is
on hop count then it is reasonable to choose the local
reward metric to be the progress, towards sink, made by
a relay. Smaller end-to-end hop count can be achieved
by using a larger progress constraint at each hop and
vice versa. For total-power constraint we find that using
a combination of one-hop power and progress as a
reward for the local problem performs well for the end-
to-end problem. We will formally introduce our local
forwarding problem in Section 2 and discuss the end-to-
end results in Section 7.2. Next we discuss related work
and highlight our contributions.

1.1 Related Work

Although our work has been motivated by the geo-
graphical forwarding problem, outlined earlier, the local
forwarding problem that we study also arises during
channel selection in cognitive radio networks. Further,
the local problem belongs to the class of asset selling
problems, studied in the operations research literature.
For completeness, we review the related literature from
these areas as well.

Geographical forwarding problems: In our prior work
[4] we have considered a simple model where the num-
ber of relays is a constant which is known to the source.
There the reward is simply the progress made by a relay
node towards the sink. In the current work we have

generalized our earlier model by allowing the number
of relays to be not known to the source. Also, here we
allow a general reward structure.

There has been other work in the context of geo-
graphical forwarding and anycast routing, where the
problem of choosing one among several neighboring
nodes arises. Zorzi and Rao [9] propose a distributed
relaying algorithm called GeRaF (Geographical Random
Forwarding) whose objective is to carry a packet to its
destination in as few hops as possible, by making as
large progress as possible at each relaying stage. These
authors do not consider the trade-off between the relay
selection delay and the reward gained by selecting a
relay, which is a major contribution of our work. Liu
et al. [10] propose a relay selection approach as a part of
CMAC, a protocol for geographical packet forwarding.
Under CMAC, node i chooses an r0 that minimizes the
expected normalized latency (which is the average ratio
of one-hop delay and progress). The Random Asyn-
chronous Wakeup (RAW) protocol [11] also considers
transmitting to the first node to wake-up that makes a
progress of greater than a threshold. Interestingly, this
is the structure of the optimal policy for our simplified
model in Section 6. Thus we have provided analytical
support for using such a threshold policy.

For a sleep-wake cycling network, Kim et al. in [1]
have considered the problem of minimizing average
end-to-end delay as a stochastic shortest path problem
and have developed a distributed Bellman-Ford algo-
rithm (referred to as the LOCAL-OPT) which yields
optimal forwarding strategies for each node. However
a major drawback is that a pre-configuration phase is
required to run the LOCAL-OPT algorithm. We will
discuss the work of Kim et al. [1] in detail in Section 7.2.

Channel selection problems: Akin to the relay selection
problem is the problem of channel selection. The authors
in [12], [13] consider a model where there are several
channels available to choose from. The transmitter has to
probe the channels to learn their quality. Probing many
channels may yield one with a good gain but reduces
the effective time for transmission within the channel
coherence period. The problem is to obtain optimal
strategies to decide when to stop probing and start
transmitting. Here the number of channels is known and
all the channels are available at the very beginning of the
decision process. In our problem the number of relays is
not known, and they become available at random times.

Asset selling problems: The basic asset selling problem
[14], [15], comprises N offers that arrive sequentially
over discrete time slots. The offers are independent and
identically distributed (iid). As the offers arrive, the
seller has to decide whether to take an offer or wait
for future ones. The seller has to pay a cost to observe
the next offer. Previous offers cannot be recalled. The
decision process ends with the seller choosing an offer.
Over the years, several variants of the basic problem
have been studied, both with and without recalling the
previous offers. Recently Kang [16] has considered a
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model where a cost has to be paid to recall the previous
best offer. Further, the previous best offer can be lost at
the next time instant with some probability. See [16] for
further references to literature on models with uncertain
recall. In [17], the authors consider a model in which the
offers arrive at the points of a renewal process. In these
models, either the number of potential offers is known
or is infinite. In [18], a variant is studied in which the
asset selling process can reach a deadline in the next slot
with some fixed probability, provided that the process
has proceeded upto the present slot.

In our work the number of offers (i.e., relays) is not
known. Also the successive instants at which the offers
arrive are the order statistics of an unknown number
of iid uniform random variables over an interval (0, T ).
After observing a relay, the probability that there are
no more relays to go (which is the probability that the
present stage is the last one) is not fixed. This probability
has to be updated depending on the previous such
probabilities and the inter wake-up times between the
sucessive relays. Although our problem falls in the class
of asset selling problems, to the best of our knowledge
the particular setting we have considered in this paper
has not been studied before.

1.2 Outline and Our Contributions

In Section 2 we formally describe our local forwarding
problem of choosing a relay when the number of relays
in the forwarding region is unknown. We then formulate
it as a POMDP in Section 3. Before analysing the POMDP
case, in Section 4 we recall, from our earlier work [4], the
solution for the COMDP (Completely Observable MDP)
version of the problem where the number of relays in
the forwarding region is known to the source. For the
POMDP, the optimal policy is characterized in terms of
optimum stopping sets (Section 5). The main technical
contributions are,

1) We prove that the the optimum stopping sets are
convex (Section 5.1), and provide inner (subset, Sec-
tion 5.2) and outer bounds (superset, Section 5.3) for it.

2) The computational complexity of the above bounds
motivates us to consider a simplified model (Section 6).
We prove that the optimal policy for this simplified
model is a simple threshold rule.

3) We first perform one-hop simulations (Section 7.1)
to compare the performance of the various policies de-
rived out of the analysis. The performance of the simple
policy turns out to be close to optimal.

4) Finally, we simulate a large WSN with sleep-wake
cycling nodes and apply our simple policy at each hop
enroute to the sink (Section 7.2). We compare the average
total delay and average total cost obtained by the simple
policy with that obtained by a distributed Bellman-Ford
algorithm proposed by Kim et al. [1].

For the ease of presentation, we do not provide any
proofs here. An interested reader can refer to our tech-
nical report [19].

2 LOCAL FORWARDING PROBLEM

Recall that our local problem is motivated by the end-to-
end problem of minimizing total delay subject to a total
cost constraint. The total (end-to-end) cost is translated
into a reward metric for the local problem. Formally, the
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Fig. 2. When there are N = n relays, then, for k =
1, 2, · · · , n, (Wk, Rk) represents the wake-up instant and
reward repectively, of the kth relay. These are shown as
points in [0, T ]× [0, R].

local forwarding problem we consider is the following.
A node in the network has just received a packet to
forward. Abusing terminology, we call this node the
“source” and the nodes that it could potentially forward
the packet to are called “relays.” The local problem is
taken to start at time 0, and some of the associated
processes are depicted in Fig. 2.

There is a nonempty set of N relay nodes, labeled by
the indices 1, 2, · · · , N . N is a random variable bounded
above by K, a system parameter that is known to the
source node, i.e., the support of N is {1, 2, · · · ,K}. The
source does not know N , but knows the bound K, and
a probability mass function (pmf) p0 on {1, 2, · · · ,K},
which is the initial pmf of N . A relay node i, 1 ≤ i ≤ N ,
becomes available to the source at the instant Ti. The
source knows that the instants {Ti} are iid uniformly
distributed on (0, T )1. We call Ti the wake-up instant of
relay i. Given that N = n (throughout this discussion
we will focus on the event (N = n)), let W1,W2, · · · ,Wn

represent the order statistics of T1, T2, · · · , Tn, i.e., the
{Wk} sequence is the {Ti} sequence sorted in the in-
creasing order. Let W0 = 0 and define Uk = Wk −Wk−1

for k = 1, 2, · · · , n. Uk are the inter-wake-up time instants
between the consecutive nodes (see Fig. 2).

Definition 1: For Simplicity we will use the following
notations to denote the conditional pdf of Uk+1 (k =
0, 1, · · · , n − 1) and the conditional expectation (both
conditioned on Wk and N ),

fk(u|w, n) := fUk+1|Wk,N (u|w, n),
Ek[·|w, n] := E[·|Wk = w,N = n].

1. Such a model would arise if each node wakes up periodically with
period T , and the point processes of the wake up instants across the
nodes are stationary and independent versions of the wake-up process
with period T .
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If the source forwards the packet to the relay i, then a
reward of Ri is accrued. The rewards Ri, i = 1, 2, · · · , n,
are iid random variables with probability density func-
tion (pdf) fR. The support of fR is [0, R]. The source
knows this statistical characterisation of the rewards,
and also that the {Ri} are independent of the wake-up
instants {Ti}. When a relay wakes up at Ti and reveals its
reward Ri, the source has to decide whether to transmit
to relay i or to wait for further relays. If the source decides
to wait, then it instructs the relay with the best reward to
stay awake, while letting the rest go back to sleep. This way
the source can always forward to a relay with the best
reward among those that have woken up so far.

Since the reward sequence R1, R2, · · · , Rn is iid and
independent of the wake-up instants T1, T2, · · · , Tn,
we write (Wk, Rk) as the pairs of ordered wake-
up instants and the corresponding rewards. Evidently,
fRk+1|Wk,N (r|w, n) = fR(r) for k = 0, 1, · · · , n−1. Further
we define (when N = n) Wn+1 := T , Un+1 := (T −Wn)
and Rn+1 := 0. Also En[Un+1|w, n] := T − w. All these
variables are depicted in Fig. 2.

Decision Instants and Actions: We assume that
the time instants at which the relays wake-up, i.e.,
W1,W2, · · · , constitute the decision instants or stages2. At
each decision instant, there are two possible actions
available to the source, denoted 0 and 1, where
• 0 represents the action to continue waiting for more

relays to wake-up, and
• 1 represents the action to stop and forward the

packet to the relay that provides the best reward
among those that have woken up thus far.

Since there can be at most K relays, the total number of
possible decision instants is K.

Stopping Rules and the Optimization Problem: If the
source has not forwarded the packet until stage k − 1
then define, Ik := (p0, (W1, R1), · · · , (Wk, Rk)) to be the
information vector (or the history) available at the source
when the k-th relay (provided N ≥ k) wakes up. Now,
the source’s decision whether to stop or continue should
be based on Ik. Formally, define a stopping rule or a
policy, π, as a sequence of mappings (µ1, · · · , µK) where
each µk maps Ik to the action set {0, 1}. Let Π represent
the set of all policies. The delay, Dπ , incurred using
policy π is the instant at which the source forwards the
packet. It could be either one of the Wk, or the instant
T (which is possible if, even at WN , the source decides
to continue, not knowing that it has seen all the relays).
The reward Rπ is the reward associated with the relay
to which the packet is forwarded. It is possible for the
source to maximize the reward by waiting until time T
(incurring maximum delay) and then choosing the best
relay. On the other hand, the source can minimize the

2. A better choice for the decision instants may be to allow the source
to take decision at any time t ∈ (0, T ]. When N is known to the source
it can be argued that it is optimal to take decisions only at relay wake-
up instances. However, this may not hold for our case where N is
unknown. In this paper we proceed with our restriction on the decision
instants and consider the general case as a topic for future work.

delay by forwarding to the first relay, irrespective of its
reward value, but at the expense of depriving itself of
an opportunity to choose a better relay that could wake-
up later. Thus, there is a trade-off between these two
quantities which we are interested in studying. Formally,
the problem we are interested in is the following,

min
π∈Π

EDπ

Subject to ERπ ≥ γ. (1)

We introduce a Lagrange multiplier η > 0 and consider
solving the following unconstrained problem,

min
π∈Π

(
EDπ − ηERπ

)
. (2)

The following lemma relates both the problems,
Lemma 1: Let π∗ be an optimal policy for the uncon-

strained problem in (2). Suppose the chosen η is such
that ERπ∗ = γ, then π∗ is optimal for the main problem
in (1) as well.

Proof: See [19, Lemma 1].

3 POMDP FORMULATION

With the number of relays being unknown, the natural
approach is to formulate the problem as a partially
observed Markov decision process (POMDP). A POMDP
is a generalization of an MDP, where at each stage
the actual internal state of the system is not available
to the controller. Instead, the controller can observe
a value from an observation space. The observation
probabilistically depends on the current actual state and
the previous action. In some cases, a POMDP can be
converted to an equivalent MDP by regarding a belief
(i.e., a probability distribution) on the state space as the
state of the equivalent MDP. For a survey of POMDPs
see [20], [21, Chapter 5]. In this section we will set up
the unconstrained problem in (2) as a POMDP.

3.1 Belief State and Belief State Transition
Since the source does not know the actual number
of relays N , the state is only partially observable. As
mentioned earlier the source’s decision should be based
on the entire history of the information vector Ik =
(p0, (w1, b1), · · · , (wk, bk)) where w1, · · · , wk represents
the wake-up instants of relays waking up at stages
1, · · · , k, and b1, · · · , bk are the corresponding best re-
wards. Define pk to be the belief state about N at stage k
given the information vector Ik, i.e., pk(n) = P(N = n|Ik)
for n = k, k+ 1, · · · ,K (note that pk(k) is the probability
that the k th relay is the last one). Thus, pk is a pmf in the
K − k dimensional probability simplex. Let us denote this
simplex as Pk.

Definition 2: For k = 1, 2, · · · ,K, let Pk:= set of all
pmfs on the set {k, k + 1, · · · ,K}. Pk is the K − k
dimensional probability simplex in <K−k+1. �

The “observation” (wk, bk) at stage k is a part of the ac-
tual state (N,wk, bk). For a general POMDP problem the
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ck,n(p, w, b) = Ek
[
Uk+1 + Jk+1

(
τk+1(p, w, Uk+1), w + Uk+1,max{b, Rk+1}

)∣∣∣∣w, n] (3)

observation can belong to a completely different space
than the actual state space. Moreover the distribution
of the observation at any stage can in general depend
on all the previous states, observations, actions and
disturbances. Suppose this distribution depends only
on the state, action and disturbance of the immediately
preceding stage, then a belief on the actual state given
the entire history turns out to be sufficient for taking
decisions [21, Chapter 5]. For our case, this condition
is met and hence at stage k, (pk, wk, bk) is a sufficient
statistic to take decision. Hence the state space at stage
k = 1, 2 · · · ,K, for our POMDP problem is

Sk =
{

(p, w, b) : p ∈ Pk, w ∈ (0, T ], b ∈ [0, R]
}
∪ {ψ}, (4)

with the initial state (i.e., state at stage 0) being (p0, 0, 0).
Here ψ is the terminating state. The state at stage k will be
ψ, if the source has already forwarded the packet at an
earlier stage. The decision process ends once the system
enters ψ.

After seeing k relays, suppose the source chooses not
to forward the packet, then upon the next relay waking
up (if any), the source needs to update its belief about
the number of relays. Formally, if (p, w, b) ∈ Sk is the
state at stage k and (w+u) is the wake-up instant of the
next relay then, using Bayes rule, the next belief state
can be obtained via the following belief state transition
function which yields a pmf in Pk+1,

τk+1(p, w, u)(n) =
p(n)fk(u|w, n)∑K

`=k+1 p(`)fk(u|w, `)
(5)

for n = k + 1, · · · ,K. Note that this function does not
depend on b. Thus, if at stage k ∈ {0, 1, · · · ,K − 1}, the
state is (p, w, b) ∈ Sk, then the next state is

sk+1 =


ψ if w = T and/or ak = 1(
τk+1(p, w, Uk+1), w + Uk+1,max{b, Rk+1}

)
otherwise,

(6)
When the action ak = 1 the source enters ψ. Further the
source decides to stop (i.e., enter ψ) even when w = T .
This is because it knows that the wake-up time of each
relay is strictly less than T . Such a situation can arise
when, at stage k, the actual number of relays happened
to be k and the source decides to continue (possible
because the source does not know the actual number).
Then the source will end up waiting until time T and
then transmit to the relay with the best reward.

3.2 One-Step Costs
The objective in (2) can be seen as accumulating ad-
ditively over each step. If the decision at a stage is to
continue then the delay until the next relay wakes up
(or until T ) gets added to the cost. On the other hand if
the decision is to stop then the source collects the reward

offered by the relay to which it forwards the packet and
the decision process enters the state ψ. The cost in state
ψ is 0. Suppose (p, w, b) is the state at stage k. Then the
one-step-cost function is, for k = 0, 1, · · · ,K − 1,

gk

(
(p, w, b), ak

)
=

{
−ηb if w = T and/or ak = 1
Uk+1 otherwise.

(7)
The cost of termination is gK(p, w, b) = −ηb. Also note
that for k = 0, the possible state is (p0, 0, 0) and the only
possible action is a0 = 1, so that g0

(
(p, 0, 0), a0

)
= U1.

Note that, for a given policy π if sk represent the state
at stage k then,

∑K
k=0 gk(sk, µk(sk)) = Dπ − ηRπ .

3.3 Optimal Cost-to-go Functions
For k = 1, 2, · · · ,K, let Jk(·) represent the optimal cost-to-
go function at stage k. For any state sk ∈ Sk, Jk(sk) can
be written as,

Jk(sk) = min{stopping cost, continuing cost}, (8)

where stopping cost (continuing cost) represents the av-
erage cost incurred, if the source, at the current stage
decides to stop (continue), and takes optimal action at
the subsequent stages. For the termination state, since
the one step cost is zero and since the system remains in
ψ in all the subsequent stages, we have Jk(ψ) = 0. For
a state (p, w, b) ∈ Sk, we next evaluate the two costs.

First let us obtain the stopping cost. Suppose that there
were K relay nodes and the source has seen them all.
In such a case if (p, w, b) ∈ SK (note that p will just be a
point mass on K) is the state at stage K then the optimal
cost is simply the cost of termination, i.e., JK(p, w, b) =
gK(p, w, b) = −ηb. For k = 1, 2, · · · ,K− 1, if the action is
to stop then the one step cost is −ηb and the next state
is ψ so that the further cost is Jk+1(ψ) = 0. Therefore,
the stopping cost at any stage is simply −ηb.

On the other hand the cost for continuing, when
the state at stage k is (p, w, b) ∈ Sk, using the total
expectation law, can be written as,

ck(p, w, b) =

p(k)
(
T − w − ηb

)
+

K∑
n=k+1

p(n)ck,n(p, w, b) (9)

where ck,n(p, w, b) is the average cost to continue con-
ditioned on the event (N = n) (see (3)), the probability
of which is p(n). Referring to (3), Uk+1 is the (random)
time until the next relay wakes up (Uk+1 is the one step
cost) and Jk+1(·) is the optimal cost-to-go from the next
stage onwards (Jk+1(·) constitutes the future cost). The
next state is obtained via the state transition equation
(6). The term (T − w − ηb) in (9) associated with p(k)
is the cost of continuing when the number of relays
happen to be k, i.e., (N = k) and there are no more
relays to go. Recall that we had defined (in Section 2)
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φ`(w, b) = EK−`
[

max

{
b, R, φ`−1

(
w + U,max{b, R}

)}
− U

η

∣∣∣∣w,K] (10)

Uk+1 = T − w and Rk+1 = 0 when the actual number
of relays is N = k. Therefore T − w is the one step cost
when N = k. Also w + Uk+1 = T and max{b, Rk+1} = b
so that at the next stage (which occurs at T ) the process
will terminate (enter ψ) with a cost of −ηb (see (6) and
(7)), which represents the future cost.

Thus the optimal cost-to-go function (8) at stage k =
1, 2, · · · ,K − 1, can be written as,

Jk(p, w, b) = min
{
− ηb, ck(p, w, b)

}
. (11)

From (11) it is clear that at stage k when the state is
(p, w, b), the source has to compare the stopping cost,
−ηb, with the cost of continuing, ck(p, w, b), and stop iff
−ηb ≤ ck(p, w, b). Later in Section 5, we will use this
condition (−ηb ≤ ck(p, w, b)) and define, the optimum
stopping set. We will prove that the continuing cost,
ck(p, w, b), is concave in p, leading to the result that
the optimum stopping set is convex. (9) and (11) are
extensively used in the subsequent development.

4 RELATIONSHIP WITH THE CASE WHERE N
IS KNOWN (THE COMDP VERSION)
In the previous section (Section 3) we detailed our
problem formulation as a POMDP. The state is partially
observable because the source does not know the exact
number of relays. It is interesting to first consider the
simpler case where this number is known, which is the
contribution of our earlier work in [4]. Hence, in this
section, we will consider the case when the initial pmf,
p0, has all the mass only on some n, i.e., p0(n) = 1. We
call this, the COMDP version of the problem.

First we define a sequence of threshold functions
which will be useful in the subsequent proofs. These
are the same threshold functions that characterize the
optimal policy for our model in [4].

Definition 3: For (w, b) ∈ (0, T ) × [0, R], define {φ` :
` = 0, 1, · · · ,K − 1} inductively as follows: for all (w, b)
φ0(w, b) = 0 and for ` = 1, 2, · · · ,K − 1 (recall Defini-
tion 1), φ`(w, b) as in (10). In (10) we have suppressed
the subscript K − ` + 1 for R and U for simplicity. The
pdf used to take the expectation in the above expression
is fR(·)fK−`(·|w,K) (again recall Definition 1). �

We will need the following simple property of the
threshold functions in a later section.

Lemma 2: For ` = 1, 2, · · · ,K − 1, −ηφ`(w, b) ≤ (T −
w − ηb).

Proof: See [19, Appendix I.A].
Next we state the main lemma of this section. We call

this the One-point Lemma, because it gives the optimal
cost, Jk(pk, w, b), at stage k when the belief state pk ∈ Pk
is such that it has all the mass on some n ≥ k.

Lemma 3 (One-point): Fix some n ∈ {1, 2, · · · ,K} and
(w, b) ∈ (0, T )× [0, R]. For any k = 1, 2, · · · , n, if pk ∈ Pk

is such that pk(n) = 1 then,

Jk(pk, w, b) = min
{
− ηb,−ηφn−k(w, b)

}
.

Proof: The proof is by induction. We make use of the
fact that if at some stage k < n the belief state pk is such
that pk(n) = 1 then the next belief state pk+1(∈ Pk+1),
obtained by using the belief transition equation (5), is
also of the form pk+1(n) = 1. We complete the proof by
using Definition 3 and the induction hypothesis. For a
complete proof, see [19, Appendix I.B].

Discussion of Lemma 3: At stage k if the state is
(pk, w, b), where pk is such that pk(n) = 1 for some
n ≥ k, then from the One-point Lemma it follows that the
optimal policy is to stop and transmit iff b ≥ φn−k(w, b).
The subscript n− k of the function φn−k signifies the
number of more relays to go. For instance, if we know
that there are exactly 4 more relays to go then the
threshold to be used is φ4. Suppose at stage k if it was
optimal to continue, then from (5) it follows that the next
belief state pk+1 ∈ Pk+1 also has mass only on (N = n)
and hence at this stage it is optimal to use the threshold
function φn−(k+1). Therefore, if we begin with an intial
belief p0 ∈ P1 such that p0(n) = 1 for some n, then the
optimal policy is to stop at the first stage k such that
b ≥ φn−k(w, b) where Wk = w is the wake-up instant of
the k th relay and Bk = max{R1, · · · , Rk} = b. Note that,
since at stage n the threshold to be used is φ0(w, b) = 0
(see Definition 3), we invariably have to stop at stage
n if we have not terminated earlier. This is exactly the
same as our optimal policy in [4], where the number of
relays is known to the source (instead of knowing the
number wp1, as in our One-point Lemma here). �

5 POMDP VERSION: BOUNDS ON THE OPTI-
MUM STOPPING SET
In this section we will consider the general case de-
veloped in Section 3 where the number of relays N is
not known to the source. There are several algorithms
available to exactly obtain the optimal policy for a
POMDP problem when the actual state space is finite
[22], starting from the seminal work of Smallwood and
Sondik [23]. However when the number of states is
large, these algorithms are computationally intensive. In
general, it is not easy to obtain an optimal policy for
a POMDP. In this section, we have characterized the
optimal policy in terms of optimum stopping sets and
prove inner and outer bounds for this set.

Definition 4 (Optimum stopping set): For 1 ≤ k ≤ K−1,
let Ck(w, b) =

{
p ∈ Pk : −ηb ≤ ck(p, w, b)

}
. Referring to

(11) it follows that, for a given (w, b), Ck(w, b) represents
the set of all beliefs p ∈ Pk at stage k at which it is
optimal to stop. We call Ck(w, b) the optimum stopping set
at stage k when the delay (Wk) and best reward (Bk)
values are w and b, respectively. �
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p
(K−1)
K−2

p(K − 2)

p
(K)
K−2

p
(K−2)
K−2

p(K)

p(K − 1)

(a)

0 1

continue

p(n)

ck(p, w, b)
T − w − ηb

δn−k

−ηφn−k(w, b)

−ηb

stop

(b)

0 1

ck(p, w, b)

stop

−ηb
−ηφn−k(w, b)

T − w − ηb

p(n)δn−k

(c)

Fig. 3. (a) Probability simplex, PK−2 at stage K − 2. A belief at stage K − 2 is a pmf on the points K − 2, K − 1
and K (i.e., no-more, one-more and two-more relays to go, respectively). Thus PK−2 is a two dimensional simplex in
<3. (b) and (c): ck(p, w, b) in (13) is plotted as a function of p(n). Also shown is the constant function −ηb which is the
stopping cost. δn−k is the point of intersection of these two functions. (b) When b ≤ φn−k. (c) When b > φn−k(w, b).

5.1 Convexity of the Optimum Stopping Sets
We will prove (in Lemma 4) that the continuing cost,
ck(p, w, b), in (3) is concave in p ∈ Pk. From the form of
the stopping set Ck(w, b), a simple consequence of this
lemma will be that the optimum stopping set is convex.
We further extend the concavity result of ck(p, w, b) for
p ∈ Pk, where Pk is the affine set containing Pk (to be
defined shortly in this section).

Lemma 4: For k = 1, 2, · · · ,K − 1, and any given
(w, b), the cost of continuing (defined in (3)), ck(·, w, b),
is concave on Pk.

Proof: The essence of the proof is same as that in
[24, Lemma 1]. Formal proof is available in our technical
report [19, Appendix II.A].

The following corollary is a straight forward applica-
tion of the above lemma.

Corollary 1: For k = 1, 2, · · · ,K − 1, and any given
(w, b), Ck(w, b)(⊆ Pk) is a convex set.

Proof: From Lemma 4 we know that ck(p, w, b) is
a concave function of p ∈ Pk. Hence Ck(w, b) (see
Definition 4), being a super level set of a concave function,
is convex [25].

In the next section while proving an inner bound for
the stopping set Ck(w, b), we will identify a set of points
that could lie outside the probability simplex Pk. We can
obtain a better inner bound if we extend the concavity
result to the affine set, Pk =

{
p ∈ <K−k+1 : 〈p, 1〉 = 1

}
,

where 〈p, 1〉 =
∑K
n=k p(n), i.e., in Pk the vectors sum

to one, but we do not require non-negativity of the
vectors. This can be done as follows. Define τk+1(p, w, u)
using (5) for every p ∈ Pk. Then τk+1(., w, u) as a
function of p, is the extension of τk+1(., w, u) from Pk
to Pk. Similarly, for every p ∈ Pk, define ck(p, w, b) and
Jk(p, w, b) using (3) and (11). These are the extensions of
ck(·, w, b) and Jk(·, w, b) respectively. Then again, using
the proof technique same as that in Lemma 4, we can
obtain the following corollary,

Corollary 2: For k = 1, 2, · · · ,K − 1, and any given
(w, b), ck(·, w, b) is concave on the affine set Pk. �
Using the above corollary, Ck(w, b) can be written as,

Ck(w, b) = Pk ∩
{
p ∈ <K−k+1 : 〈p, 1〉 = 1,

−ηb ≤ ck(p, w, b)
}

. (12)

5.2 Inner Bound on the Optimum Stopping Set

We have showed that the optimum stopping set is
convex. In this section, we will identify points that lie
along certain edges of the simplex Pk. A convex hull of
these points will yield an inner bound to the optimum
stopping set. This will first require us to prove the fol-
lowing lemma, referred to as the Two-points Lemma, and
is a generalization of the One-point Lemma (Lemma 3). It
gives the optimal cost, Jk(p, w, b), at stage k when p ∈ Pk
is such that it places all its mass on k and on some n > k,
i.e., p(k)+p(n) = 1. Throughout this and the next section
(on an outer bound) (Wk, Bk) = (w, b) is fixed and hence,
for the ease of presentation (and readability), we drop
(w, b) from the notations δ`(w, b), a`k(w, b) and b`k(w, b) (to
appear in these sections later). However it is understood
that these thresholds are, in general, functions of (w, b).

Lemma 5 (Two-points): For k = 1, 2, · · · ,K−1, if p ∈ Pk
is such that p(k) + p(n) = 1, where k < n ≤ K then,

Jk(p, w, b) = min
{
− ηb, p(k)

(
T − w − ηb

)
+

p(n)
(
− ηφn−k(w, b)

)}
.

Proof: Available in our technical report [19,
Lemma 5].

Discussion of Lemma 5: The Two-points Lemma
(Lemma 5) can be used to obtain certain threshold points
in the following way. When p ∈ Pk has mass only on k
and on some n, k < n ≤ K, then using Lemma 5, the
continuing cost can be written as a function of p(n) as,

ck(p, w, b) =
(
T − w − ηb

)
−

p(n)
(
T − w − η

(
b− φn−k(w, b)

))
.(13)

From Lemma 2, it follows that ck(p, w, b) in (13) is a
decreasing function of p(n). Let p(k)

k and p
(n)
k be pmfs

in Pk with mass only on N = k and N = n respectively.
These are two of the corner points of the simplex Pk
(as an example, Fig. 3(a) illustrates the simplex and the
corner points for stage k = K − 2. With at most two
more nodes to go, PK−2 is a two dimensional simplex
in <3. p(K−2)

K−2 , p(K−1)
K−2 and p

(K)
K−2 are the corner points of

this simplex).
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At stage k as we move along the line joining the
points p

(k)
k and p

(n)
k (Fig. 3(b) and 3(c) illustrates this

as p(n) going from 0 to 1), the cost of continuing in
(13) decreases and there is a threshold below which it
is optimal to transmit and beyond which it is optimal
to continue. The value of this threshold is that value of
p(n) in (13) at which the continuing cost becomes equal
to −ηb. Let δn−k denote this threshold value, then

δn−k =
T − w

T − w − η
(
b− φn−k(w, b)

) .

The cost of continuing in (13) as a function of p(n) along
with the stopping cost, −ηb, is shown in Fig. 3(b) and
3(c). The threshold δn−k is the point of intersection of
these two cost functions. The value of the continuing
cost ck(p, w, b) at p(n) = 1 is −ηφn−k(w, b). Note that in
the case when b > φn−k(w, b) the threshold δn−k will be
greater than 1 in which case it is optimal to stop for any
p on the line joining p

(k)
k and p

(n)
k . �

There are similar thresholds along each edge of the
simplex Pk starting from the corner point p(k)

k . In general,
let us define for ` = 1, 2, · · · ,K,

δ` =
T − w

T − w − η
(
b− φ`(w, b)

) . (14)

Remark: Note that (13) will also hold for the extended
function ck(p, w, b), where now p ∈ Pk. In terms of the
extended function, δn−k represents the value of p(n) (in
(13) with ck replaced by ck) at which ck(p, w, b) = −ηb.

Recall that (from Lemma 5) the above discussion
began with a p ∈ Pk such that p(k) + p(n) = 1. At the
threshold of interest we have p(n) = δn−k and hence
p(k) = 1−δn−k, and the rest of the components are zero.
We denote this vector as an−kk . For instance in Fig. 4,
where the face of the two dimensional simplex PK−2 is
shown, the threshold along the lower edge of the simplex
is a1

K−2 = [1− δ1, δ1, 0] and that along the other edge is
a2
K−2 = [1 − δ2, 0, δ2]. Since it is possible for δn−k > 1,

therefore the vector threshold an−kk is not restricted to lie
in the simplex Pk, however it always stays in the affine
set Pk. We formally define these thresholds next.

Definition 5: For a given k ∈ {1, 2, · · · ,K−1}, for each
` = 1, 2, · · · ,K − k define a`k as a K − k+ 1 dimensional
point with the first and the `+1 th components equal to
1− δ` and δ` respectively, the rest of the components are
zeros. As mentioned before, a`k lies on the line joining
p

(k)
k and p

(k+`)
k . At stage k there are K − k such points,

one corresponding to each edge in Pk emanating from
the corner point p(k)

k . For an illustration of these points
see Fig. 4 for the case k = K − 2. �

Referring to Fig. 4(a) (which depicts the case, k =
K − 2), suppose all the vector thresholds, alk, lie within
the simplex Pk then, since at these points the stopping
cost (−ηb) is equal to the continuing cost (ck(alk, w, b)),
all these points lie in the optimum stopping set Ck(w, b).
Note that the corner point p(k)

k (belief with all the mass

p
(K)
K−2

p
(K−1)
K−2

a2K−2

p
(K−2)
K−2 a1K−2

(a)

p
(K)
K−2

p
(K−2)
K−2 a1K−2p

(K−1)
K−2

a2K−2

(b)

p
(K)
K−2

p
(K−2)
K−2 p

(K−1)
K−2 a1K−2

a2K−2

(c)

p
(K)
K−2

p

q

p
(K−2)
K−2 p

(K−1)
K−2a1K−2

a2K−2

b2K−2

(d)

Fig. 4. Illustration of the inner and outer bounds. In all
the above figures, only the face of the simplex, PK−2 (in
Fig. 3(a)) is shown. The shaded regions in Fig. (a), (b),
and (c) are the inner bound when (a) δ1 and δ2 are both
less than 1 (b) δ1 > 1 and δ2 < 1 and (c) δ1 > 1 and
δ2 > 1, respectively. The outer bound is the union of the
light and the dark shaded regions in Fig. (d).

on no-more relays to go) also lies in Ck(w, b). Since we
have already shown that Ck(w, b) is convex, the convex
hull of these points will yield an inner bound. However
as mentioned earlier (and as depicted in Fig. 4(b) and
4(c)) it is possible for some or all the thresholds alk
to lie outside the simplex (and hence these thresholds
do not belong to Ck(w, b)). This is where we will use
Corollary 2, where the concavity result of the continuing
cost, ck(p, w, b), is extended to the affine set Pk. We next
state this inner bound theorem:

Theorem 1 (Inner bound): For k = 1, 2, · · · ,K − 1, Re-
calling that p(k)

k is the pmf in Pk with point mass on k,
define

Ck(w, b) := Pk ∩ conv
{
p

(k)
k , a1

k, · · · , aK−kk

}
,

where conv denotes the convex hull of the given points.
Then Ck(w, b) ⊆ Ck(w, b).

Proof: See our technical report [19, Theorem 1].
In Fig. 4, for stage k = K−2, we illustrate the various

cases that can arise. In each of the figures the shaded
region is the inner bound. In Fig. 4(a) all the thresholds
lie within the simplex and simply the convex hull of
these points gives the inner bound. When some or all
the thresholds lie outside the simplex, as in Fig. 4(b) and
4(c), then the inner bound is obtained by intersecting
the convex hull of the thresholds with the simplex. In
Fig. 4(c), where all the thresholds lie outside the simplex,
the inner bound is the entire simplex, PK−2, so that at
stage K − 2 with (WK−2, BK−2) = (w, b) it is optimal to
stop for any belief state.



9

5.3 Outer Bound on the Optimum Stopping Set

In this section we will obtain an outer bound (a superset)
for the optimum stopping set. Again, as in the case of the
inner bound, we will identify certain threshold points
whose convex hull will contain the optimum stopping
set. This will require us to first prove a monotonicity
result which compares the cost of continuing at two
belief states p, q ∈ Pk which are ordered, for instance
for k = K − 2, as in Fig 4(d). q in Fig. 4(d) is such
that q(K − 2) = p(K − 2) (i.e., the probability that there
is no-more relays to go is same in both p and q) and
q(K−1) = 1−p(K−2) (i.e., all the remaining probability
in q is on the event that there is one-more relay to go,
while in p it can be on one-more or two-more relays to
go). Thus q lies on the lower edge of the simplex. We
will show that the cost of continuing at p is less than
that at q.

Lemma 6: Given p ∈ Pk for k = 1, 2, · · · ,K − 1, define
q(k) = p(k) and q(k + 1) = 1 − p(k), then ck(p, w, b) ≤
ck(q, w, b) for any (w, b).

Proof: See [19, Appendix II.B].
Discussion of Lemma 6: This lemma proves the intuitive

result that the continuing cost with a pmf p that gives
mass on a larger number of relays should be smaller
than with a pmf q that concentrates all such mass in p
on just one more relay to go. With more relays, the cost
of continuing is expected to decrease. �

Similar to the thresholds a`k we define the thresholds
b`k that lie along certain edges of the simplex. We will
identify the threshold a`k that is at a maximum distance
from the corner point p(k)

k (in Fig. 4(d), this point is
a1
K−2 = [1 − δ1, δ1, 0]). Next we define the thresholds b`k

to be the points on the edges emanating from p
(k)
k , which

are at this same distance. Thus in Fig. 4(d), b1K−2 = a1
K−2

and b2K−2 = [1− δ1, 0, δ1].
Definition 6: For a given k ∈ {1, 2, · · · ,K − 1}, let

`max = arg max`=1,2,··· ,K−k δ`. Now for ` = 1, 2, · · · ,K −
k define b`k as a K − k + 1 dimensional point with the
first and the `+ 1 th components equal to 1− δ`max

and
δ`max

respectively, the rest of the components are zeros.
Each of the b`k are at equal distance from p

(k)
k but on a

different edge starting from p
(k)
k . �

Using Lemma 6, we show that the convex hull of the
thresholds blk along with the corner point p(k)

k constitutes
an outer bound for the optimum stopping set. The idea
of the proof can be illustrated using Fig. 4(d). p in
Fig. 4(d) is outside the convex hull and q is obtained from
p as in Lemma 6. At q it is optimal to continue since it
is beyond the threshold a1

K−2 and hence the continuing
cost at q, ck(q, w, b), is less than the stopping cost −ηb.
From Lemma 6 it follows that the continuing cost at p,
ck(p, w, b), is also less than −ηb so that it is optimal to
continue at p as well, proving that p does not belong to
the optimum stopping set. Thus the convex hull contains
the optimum stopping set. We formally state and prove
this outer bound theorem next.

Theorem 2 (Outer bound): For k = 1, 2, ...,K − 1, define

Ck(w, b) = Pk ∩ conv
{
p

(k)
k , b1k, · · · , bK−kk

}
.

Then Ck(w, b) ⊆ Ck(w, b).
Proof: See [19, Theorem 2].

The outer bound for k = K−2 is illustrated in Fig. 4(d).
The light shaded region is the inner bound. The outer
bound is the union of the light and the dark shaded
regions. The boundary of the optimum stopping set falls
within the dark shaded region. For any p within the
inner bound we know that it is optimal to stop and for
any p outside the outer bound it is optimal to continue.
We are uncertain about the optimal action for belief
states within the dark shaded region.

6 OPTIMUM RELAY SELECTION IN A SIMPLI-
FIED MODEL

The bounds obtained in the previous section require us
to compute the thresholds {φ` : ` = 0, 1, · · · ,K − 1} (see
Definition 3) recursively. These are computationally very
intensive to obtain. Hence, in this section we simplify
the exact model and extract a simple selection rule. Our
aim is to apply this simple rule to the exact model and
compare its performance with the other policies.

6.1 The Simplified Model
Now we describe our simplified model. There are Ñ relays.
Here, Ñ is a constant and is known to the source. The
key simplification in this model is that here the relay
nodes wake-up at the first Ñ points of a Poisson process of
rate Ñ

T . The following are the motivations for considering
such a simplification. Note that in our actual model
(Section 2), when N = Ñ , the inter wake-up times
{Uk : 1 ≤ k ≤ Ñ} are identically distributed [26, Chap-
ter 2], but not independent. Their common cumulative
distribution function (cdf) is FUk|N (u|Ñ) = 1− (1− u

T )
Ñ

for u ∈ (0, T ). From Fig. 5 we observe that the cdf of
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0.8
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CDF of U
k

CDF of Y

(b)

Fig. 5. The CDFs FUk|N (.|Ñ) and FY (.) where Y ∼
exp( ÑT ) are plotted for (a) Ñ = 5 and (b) Ñ = 15.

{Uk : 1 ≤ k ≤ Ñ} is close to that of an exponential
random variable of parameter Ñ

T and the approximation
becomes better for large values of Ñ (for a fixed T ). This
motivates us to approximate the actual inter wake-up
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times by exponential random variable of rate Ñ
T . Further

in the simplified model we allow the inter wake-up times
to be independent. Finally, observe that in the simplified
model the average number of relays that wake-up within
the duty cycle T is Ñ which is same as that in the exact
model when N = Ñ .

We will use the notations such as W̃k, R̃k, Ũk, etc., to
represent the analogous quantities that were defined for
the exact model. For instance, W̃k represents the wake-
up time of the k th relay. However, unlike in the exact
model, here W̃k can be beyond T . As mentioned before,
{Ũk : k = 1, · · · , Ñ} are simply iid exponential random
variables with parameter Ñ

T . {R̃k : k = 1, · · · , Ñ} are iid
random rewards with common pdf fR which is same as
that in the exact model.

6.2 Optimal Policy for the Simplified Model
Again, here the decision instants are the times at which
the relays wake-up. At some stage k, 1 ≤ k < Ñ , suppose
(W̃k, R̃k) = (w, b) then the one step cost of stopping
is −ηb and that of continuing is Ũk+1. Note that since
Ũk+1 ∼ Exp( ÑT ), the one step costs do not depend on w,
which means that the optimal policy for the simplified
model does not depend on the value of w. Also since
the number of relays Ñ is a contant, we do not wish
to retain it as a part of the state. Therefore we simplify
the state space to be S̃0 = {0} and for k = 1, 2, · · · , Ñ ,
S̃k = [0, R]∪{ψ}. As before ψ is the terminating state. In
this section we will prove that the one-step-look-ahead rule
is optimal for the simplified model. The idea is to show
that the one-step-stopping set is absorbing [21, Section 4.4].
All these will now be defined.

At stage k, 1 ≤ k < Ñ , when the state is b, the cost of
stopping is simply cs(b) = −ηb. The cost of continuing
for one more step (which is Ũk+1) and then stopping at
the next stage (where the state is max{b, R̃k+1}) is,

cc(b) = E
[
Ũk+1 − ηmax{b, R̃k+1}

]
= −η

(
E[max{b, R}]− T

ηÑ

)
By defining the function β(·) for b ∈ [0, R] as

β(b) = E[max{b, R}]− T

ηÑ
, (15)

we can write cc(b) = −ηβ(b). Note that both the costs, cs
and cc, do not depend on the stage index k.

Definition 7: We define the One-step-stopping set as,

C1step =
{
b ∈ [0, R] : −ηb ≤ −ηβ(b)

}
. (16)

i.e., it is the set of all states b ∈ [0, R] where the cost of
stopping, cs(b), is less than the cost of continuing for one
more step and then stopping at the next stage cc(b). �

We will show that C1step is characterized by a thresh-
old α and can be written as C1step = [α,R]. This will
require the following properties about β(·).

Lemma 7:
1) β is continuous, increasing and convex in b.
2) If β(0) < 0, then β(b) < b for all b ∈ [0, R].
3) If β(0) ≥ 0, then ∃ a unique α such that α = β(α).
4) If β(0) ≥ 0, then β(b) < b for b ∈ (α,R] and β(b) > b

for b ∈ [0, α).
Proof: See our technical report [19, Appendix III.A].

Discussion of Lemma 7: When β(0) ≥ 0 then using
Lemma 7.3 and 7.4, we can write C1step in (16) as
C1step = [α,R]. For the other case where β(0) < 0,
from Lemma 7.2 it follows that C1step = [0, R]. Thus
by defining α = 0 whenever β(0) < 0 we can write
C1step = [α,R] for either case. �

Definition 8: Depending on the value of β(0) define α
as follows: α = β(α) if β(0) ≥ 0. Otherwise fix α = 0. �

Definition 9: A policy is said to be one-step-look-ahead if
at stage k, 1 ≤ k < Ñ , it stops iff the b ∈ C1step, i.e., iff the
cost of stopping, cs(b), is less than the cost of continuing
for one more step and then stopping, cc(b). �

Definition 10: Let C be some subset of the state space
[0, R], i.e., C ⊆ [0, R]. We say that C is absorbing if for
every b ∈ C, if the action at stage k, 1 ≤ k < Ñ , is to
continue, then the next state, sk+1 at stage k + 1, also
falls into C. �

Since we have expressed C1step as [α,R] and since
sk+1 = max{b, R̃k+1} it is clear that C1step is absorbing.
Finally, referring to [21, Section 4.4], it follows that, for
optimal stopping problems, whenever the one-step-stopping
set is absorbing then the one-step-look-ahead rule is optimal.
Thus the optimal policy for the simplified model is to
choose the first relay whose reward is more than α. If
none of the relays’ reward values are more than α then at
the last stage choose the one with the maximum reward.

7 NUMERICAL AND SIMULATION RESULTS

For simulations we have considered the context of ge-
ographical forwarding in a dense sensor network with
sleep-wake cycling nodes, which is the primary motiva-
tion for this work. We will first perform simulations to
compare the one-hop performance of the various policies
obtained from the analysis in the previous sections. Next,
after observing the good performance of A-SIMPL, we
apply this policy to route a packet in a large network
and study its end-to-end performance.

7.1 One-Hop Performance

SinkSource

irc

d

d− Zi

Zi

Fig. 6. Model used for the one-hop simulations.
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Fig. 7. (a) Average delay obtained by various policies as a function of η (b) Average progress as a function of η (c)
Average progress vs. average delay.

The source and sink are separated by a distance of d =
10 units (see Fig. 6). The source has a packet to forward at
time 0. The communication radius of the source is rc = 1.
The potential relay nodes are the neighbors of the source
that are closer to the sink than itself. The period of sleep-
wake cycling is T = 1. Let Zi represent the progress of
relay i. Zi is the difference between the source-sink and
relay-sink distances. The reward associated with a relay
i is simply the progress made by it, i.e., Ri = Zi. We
interchangeably use progress and reward in this section.

Each of the nodes is located uniformly in the forward-
ing set, independently of the other nodes. Therefore the
progress made by them are iid with pdf

fZ(r) =
2(d− r)cos−1

(
d2+(d−r)2−rc2

2d(d−r)

)
Area of the forwarding region

, (17)

and the support of fZ is [0, rc]. Hence rc is analogous
to R in our model in Section 2. We take the bound on
the number of relays as K = 50, and the initial pmf
is taken as truncated Poisson with parameter 10, i.e.,
for n = 1, 2, · · · ,K, p0(n) = c 10n

n! e
−10 where c is the

normalization constant.
Implemented Policies (one-hop): Following is the

description of the various policies that we have imple-
mented:

1) πCOMDP : For this policy, the source knows the
actual value of N . Suppose N = n, then the source
begins with an initial belief with mass only on n. At any
stage, k = 1, 2, · · · , n, if the delay and best reward pair is
(w, b) then transmit if b ≥ φn−k(w, b), continue otherwise.
See the remark following Lemma 3. This policy serves as
a lower bound for the cost achieved by other policies.

2) πINNER: We use the inner bound Ck(w, b) to obtain
a suboptimal policy. At stage k if the belief state is
(p, w, b) (∈ Sk), then transmit iff p ∈ Ck(w, b).

3) πOUTER: We use the outer bound Ck(w, b) to obtain
a suboptimal policy. At stage k if the belief state is
(p, w, b) (∈ Sk), then transmit iff p ∈ Ck(w, b).

4) πA−COMDP : (Average-COMDP) The source as-
sumes that N is equal to its average value N = [EN ]
([x] represents the smallest integer greater than x), and
begins with an initial pmf with mass only on N . Suppose

N = n (which the source does not know), then at
some stage k = 1, 2, · · · ,min{n,N} if the delay and best
reward pair is (w, b) then transmit iff b ≥ φN−k(w, b). In
the case when N > n, if the source has not transmitted
until stage n and further at stage n if the action is to
continue, then since there are no more relays to go, the
source ends up waiting until time T and then forwards
to the node with the best reward.

5) πA−SIMPL: (Average-Simple) This policy is derived
from the simplified model described in Section 6. The
source considers the simplified model assuming that
there are N = [EN ] number of relays. It computes the
threshold α accordingly, using Definition 8. The policy is
to transmit to the first relay that wakes up and offers a
reward (progress in this case) of more than α. If there is
no such relay then the source ends up waiting until time
T , and then transmits to the node with the best reward.

In Fig. 7(a), we plot the average delays of the policies
described above as a function of η. The average reward
is plotted in Fig. 7(b).

Discussion: As a function of η both, the average delay
and the average reward are increasing. This is because
for larger η we value the progress more so that we
tend to wait for longer time to do better in progress.
For very small values of η, all the thresholds ({φ`} and
α) are very small and most of the time, the packet is
forwarded to the first node. For very high values of
η the policies end up waiting for all the relays and
then choose the one with the best reward. Therefore,
as η increases, the average progress of all the policies
(excluding πA−COMDP ) converge to E[max{Z1, · · · , ZN}]
which is about 0.82 (see Fig. 7(b)). However the average
progress for πA−COMDP converges to a value less than
0.82. This is because whenever N < N and for large
η (where all the thresholds {φ`} are large) πA−COMDP

ends up waiting for the first N relays and obtains a
progress of max{Z1, · · · , ZN}which is less than (or equal
to) the progress made by the other policies (which is
max{Z1, · · · , ZN}).

Recall that the main problem we are interested in is the
one in (1). We should be comparing the average delay
obtained by the above policies when the average reward
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provided by each of them is equal to γ. To illustrate the
solution, in Fig. 7(c) we first plot the average progress
(y-axis) obtained by the various policies as a function
of the average delay (x-axis). Then, for a given γ, the
projection of the point of intersection of the horizontal
line of height γ with each of the curves onto the x-
axis, gives the average delay obtained by the respective
policies. In Fig. 7(c) for a particular choice of γ we
have depicted such projections. As expected πCOMDP ,
being optimal, obtains minimum delay for any value
of γ. The naive policy, πA−COMDP , does not perform
well, in the sense that it obtains the maximum delay
among all the policies. The delay values of the remaining
policies (namely πINNER, πOUTER and πA−SIMPL) are
only slightly higher than that of πCOMDP . A closer
inspection of the curves reveal that the performance of
πINNER and πA−SIMPL are very close to each other
and is slightly better than that of πOUTER (this not
visible from Fig. 7(c), we had to zoom into the curves
to conclude this result).

These observations are for the particular case where
the reward is simply the progress and the initial belief
is truncated Poisson. In our technical report [19, Ap-
pendix IV] we have shown simulation results for other
reward structures and initial beliefs. We observe the
good performance of πA−SIMPL there as well.

7.2 End-to-End Performance

Example-1: Hop Count as the Total Cost
We have already observed that, the one-hop perfor-

mance of πA−SIMPL is close to that of the optimal pol-
icy πCOMDP . Further, the implementation of πA−SIMPL

requires only a single threshold α in contrast to the se-
quence of threshold functions φ`(w, b) (for each (w, b) ∈
[0, T ]× [0, rc] and ` = 1, 2, · · · ,K), required to implement
the other policies. These features motivates us to study
the end-to-end performance (i.e., average total delay and
average hop count) obtained by heuristically applying
the policy A-SIMPL at each hop enroute to the sink in a
large network.

We will also make a comparison with the work of
Kim et al. [1], where the problem of routing a packet
in a network with duty cycling nodes is considered as
a stochastic shortest path problem. The authors in [1]
have developed a distributed Bellman-Ford algorithm
(referred to as the LOCAL-OPT algorithm) to minimize
the average total delay3. The LOCAL-OPT algorithm
yields, for each neighbor j of node i, an integer threshold
h

(i)
j such that if j wakes up and listens to the h-th beacon

signal4 from node i and if h ≤ h
(i)
j , then j will send an

ACK to receive the packet from i. Otherwise (if h > h
(i)
j )

3. Total delay is the sum of the waiting times (i.e., one-hop delays)
incurred at each hop due to the sleep-wake process.

4. The beacon signal contains the node ID of the forwarding node
and other control data. A node i with a packet to forward continuously
transmits these beacon signals until it gets an ACK from a neighbor

j will go back to sleep. In fact, here we have adopted
the work of Kim et al. to minimize

Avg. Total Delay + λ Avg. Hop Count (18)

where λ ≥ 0 is the trade-off parameter. λ could be
thought of as the power required for each transmission
in which case the hop count is proportional to the energy
expended by the network.

Implemented Policies (end-to-end): We have fixed a
network comprising 500 nodes located uniformly in the
region [0, L]2 where L = 10 (thus the node density is
5). An additional sink node is placed at the location
(0, L) as shown in Fig. 1. As before we fix the radius
of communication of each node to be rc = 1. Events
occur at random locations within [0, L]2. Each time an
event occurs, a node nearest to its location generates an
alarm packet which needs to be forwarded to the sink,
possibly through multiple hops. We will refer to the time
at which the packet is generated as time 0. Now the
wake-up times of the nodes are sampled independently
and randomly from [0, T ], where T = 1 is the period of
the sleep-wake cycle (for each event we generate fresh
samples for the wake-up times). Thus a node i wakes-up
at the periodic instances Ti, T+Ti, 2T+Ti, · · · , where Ti is
uniform on [0, T ]. At each wake-up instant, node i listens
for a beacon signal, if any, before going back to sleep.
The duration of the beacon signal is tI = 5 msec. Thus
a forwarding node has to send at most T

tI
= 200 beacon

signals before all its neighbors wake-up. Description of
the forwarding policies that we have implemented is
given below.

1) FF (First Forward): Forward to the first node that
wakes up within the forwarding region irrespective of
the progress it makes towards the sink.

2) MF (Max Forward): Wait of the entire duration T
and then choose a neighbor with the maximum progress.

3) SF (Simple Forward): Obtained by applying the one-
hop policy, πA−SIMPL, at each hop enroute to the sink.
First, knowing the node density each node i computes
the average number of neighbors, N i, within its for-
warding region. Then, for a given γ, node i computes
a threshold αi such that the average progress obtained
(by assuming the simplified model with N i relays) using
αi is γ. Now, when a node j wakes up and if it hears a
beacon signal from i, it waits for the ID signal and then
sends an ACK signal containing its location information.
If the progress made by j is more than the threshold αi,
then i forwards the packet to j. If the progress made by
j is less than the threshold, then i asks j to stay awake
if its progress is the maximum among all the nodes that
have woken up thus far, otherwise i asks j to return
to sleep. If more than one node wakes up during the
same beacon signal, then contentions are resolved by
selecting the one which makes the most progress among
them. In the simulation, this happens instantly (as also
for the Kim et al. algorithm that we compare with); in
practice this will require a splitting algorithm; see, for
example, [27, Chapter 4.3]. We assume that within tI = 5
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Fig. 8. End-to-end performance trade-off curves obtained
for, (a) Example-1, where total cost is the hop count, and
(b) Example-2, where total cost is the total power.

msec all these transactions (beacon signal, ID, ACK and
contention resolution if any) are over. FF and MF can be
thought of as special cases of A-SIMPL with thresholds
of 0 and 1 respectively.

4) Kim et al.: For a given λ, we run the LOCAL-OPT
algorithm on the network and obtain the values h(i)

j for
each neighbor pair (i, j). We use these thresholds to route
from source to sink. Contentions, if any, are resolved
(instantly, in the simulation) by selecting a node j with
the highest h(i)

j index.
In Fig. 8(a) we plot average total delay vs. average

hop count obtained by the policies described above. The
average is over the random event location and sleep-
wake cycling. For the policy SF, by varying γ we obtain
its performance curve, the two extreme points of which
is the performance of the policies FF and MF. Similarly
by varying λ we obtain the performance curve for the
Kim et al. policy.

Discussion: As expected, the Kim et al. policy, being
optimal, performs better. However, interestingly we ob-
serve that for any target hop count (along x-axis) within
[12.5, 16] the difference in corresponding delays obtained
by SF and by Kim et al. is less than one duty cycle T = 1.
However the difference in delay grows rapidly for target
hop count less than 11.5. This is because, lower values
of target hop count corresponds to the SF policy being
operated at larger values of γ, resulting in each node i
using a larger threshold αi. Thus, there will be very few
nodes (or none) whose progress in more than αi so that
the packet ends up waiting for close to entire duty cycle
at each hop.

A major drawback with the Kim et al. policy is that
a pre-configuration phase, involving a lot of control
packet exchanges, is required to run the LOCAL-OPT
algorithm. In contrast the SF policy can be implemented
immediately after deployment. All it requires is for
each node to know the node density, its location and
the location of the sink (which are the prerequisites
for geographical forwarding). Then, for a given γ a
forwarding node can compute the threshold α it needs
to use. An interesting approach would be to allow the
source node to set the value of γ depending on the
“type” of the event detected. For delay sensitive events

it is appropriate to use a smaller value of γ so that
the delay is small, whereas, for energy constrained
applications (where the network energy needs to
conserved) it is better to use large γ so that the number
of hops (and hence the number of transmissions) is
reduced. For other applications, moderate values of γ
can be used. γ can be a part of the beacon signal so that
it is made available to the next hop relay.

Example-2: Power as the Total Cost
We have also performed end-to-end simulations by

imposing a constraint on the average total power re-
quired to route an alarm packet. In this case, analogous
to (18), we attempt to minimize

Avg. Total Delay + λ Avg. Total Power. (19)

We have assumed a model where the one-hop power
required by the forwarding node to forward the alarm
packet to relay i at a distance Di from it is Pi = Pmin +
ΓDβ

i , where β is the path loss attenuation factor usually
in the range 2 to 5 and Γ > 0 is a constant containing
the noise variance and the SNR (signal to noise ratio)
threshold beyond which decoding is sucessful. In our
simulations we have fixed Pmin = 0.1 and Γ = 1. Now
the total power is simply the sum of all one-hop powers.
For the local problem we define the reward associated
with a relay i as Ri =

Za
i

P
(1−a)
i

where a ∈ [0, 1] is used to
trade-off between the progress and the one-hop power.
Zi in the reward expression is essential to give a sense
of direction, towards the sink, to the packet.

In Fig. 8(b) we have plotted the end-to-end perfor-
mance trade-off curves obtained by the simple policy
SF (for two different values of the parameter a namely,
a = 0.4 and a = 0.5) and that obtained by Kim et al.
This time, to further ease the implementation of SF, we
allow all the nodes to use the same threshold α. Again,
as in Example-1 (see Fig. 8(a)), we observe that the SF
policy (for both the values of a) performs well for target
total power in the range [7.5, 9.75] and worsens for target
total power less than 7. We have performed simulations
for few other values of a as well (plots are not shown).
However, we found that the performance of SF for these
values of a are not as good as for a = 0.4 and a = 0.5,
thus suggesting that these values of a best capture the
tradeoff between progress and power in the ”reward”
expression.

8 CONCLUSION

Our work in this paper was motivated by the problem of
geographical forwarding of packets in a wireless sensor
networks whose function is to detect certain infrequent
events and forward these alarms to a base station, and
whose nodes are sleep-wake cycling to conserve energy.
This end-to-end problem motivated the local problem
faced by a packet forwarding node, i.e., that of choosing
one among a set of potential relays, so as to minimize
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the average delay in selecting a relay subject to a con-
straint on the average progress (or some reward, in
general). Further the source does not know the number
of available relays. We formulated the problem as a finite
horizon POMDP and characterized the optimal policy in
terms of optimum stopping sets. We proved inner and
outer bounds for this set (Theorem 1 and Theorem 2,
respectively). We also obtained a simple threshold rule
by formulating an alternate simplified model (Section 6).
We performed one-hop simulations and observed the
good performance of the simple policy (πA−SIMPL).
Finally, we applied the policy πA−SIMPL to route an
alarm packet in a large network and observed that its
performance, over some range of target hop count (or
total cost), is comparable to that of a distributed Bellman-
Ford algorithm proposed by Kim et al.
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