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We consider a small extent sensor network for event detection, in which nodes take samples
periodically and then contend over a random access network to transmit their measurement packets
to the fusion center. We consider two procedures at the fusion center to process the measurements.
The Bayesian setting is assumed; i.e., the fusion center has a prior distribution on the change

time. In the first procedure, the decision algorithm at the fusion center is network–oblivious and
makes a decision only when a complete vector of measurements taken at a sampling instant is
available. In the second procedure, the decision algorithm at the fusion center is network–aware

and processes measurements as they arrive, but in a time causal order. In this case, the decision

statistic depends on the network delays as well, whereas in the network–oblivious case, the decision
statistic does not depend on the network delays. This yields a Bayesian change detection problem
with a tradeoff between the random network delay and the decision delay; a higher sampling rate

reduces the decision delay but increases the random access delay. Under periodic sampling, in the
network–oblivious case, the structure of the optimal stopping rule is the same as that without the
network, and the optimal change detection delay decouples into the network delay and the optimal
decision delay without the network. In the network–aware case, the optimal stopping problem is

analysed as a partially observable Markov decision process, in which the states of the queues and
delays in the network need to be maintained. A sufficient statistic for decision is found to be the
network–state and the posterior probability of change having occurred given the measurements

received and the state of the network. The optimal regimes are studied using simulation.
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Fig. 1. An ad hoc wireless sensor network with a fusion center is shown. The small circles are

the sensor nodes (“motes”), and the lines between them indicate wireless links obtained after a
self-organization procedure.

1. INTRODUCTION

A wireless sensor network is formed by tiny, untethered devices (“motes”) that can
sense, compute and communicate. Sensor networks have a wide range of appli-
cations such as environment monitoring, detecting events, identifying locations of
survivors in building and train disasters, and intrusion detection for defense and
security applications. For factory and building automation applications, there is in-
creasing interest in replacing wireline sensor networks with wireless sensor networks,
due to the potential reduction in costs of engineering, installation, operations, and
maintenance [Honeywell Inc] [ISA].

Event detection is an important task in many sensor network applications. In
general, an event is associated with a change in the distribution of a related quan-
tity that can be sensed. For example, the event of a gas leakage at any joints in a
pipe causes a change in the distribution of pressure at the joint and hence can be
detected with the help of pressure sensors. In this paper, we limit our discussion
to the centralized fusion model (see Figure 1), in which each mote, in an event de-
tection network, senses and sends some function of its observations (e.g., quantized
samples) to the fusion center at a particular rate. The fusion center, by appropri-
ately processing the sequence of values it receives, makes a decision regarding the
state of nature, i.e., it decides whether a change has occurred or not.

Our problem is that of minimizing the mean detection delay (the delay between
the event occurring and the detection decision at the fusion center) with a bound
on the probability of false alarm. We consider a small extent network in which all
the sensors have the same coverage, i.e., when the change in distribution occurs it
is observed by all the sensors and the statistics of the observations are the same at
all the sensors. N sensors synchronously sample their environment at a particular
rate. Synchronized operation across sensors is practically possible in networks such
as 802.11 WLANs and Zigbee networks since the access point and the PAN coordi-
nator, respectively, transmit beacons that provide all nodes with a time reference.
Based on the measurement samples, the nodes send certain values (e.g., quantized
samples) to the fusion center. Each value is carried by a packet, which is transmit-
ted using a contention–based multiple access mechanism. Thus, our small extent
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network problem is a natural extension of the standard change detection problem
(see [Veeravalli 2001] and the references therein) to detection over a random access
network. The problem of quickest event detection problem in a large extent network
(where the region of interest is much larger than the sensing coverage of any sensor)
is considered by us in [Premkumar et al. 2009]. Also, a small extent network can
be thought of as a cluster in a large extent network and that the decision maker
can be thought of as a cluster head.

In this setting, due to the multiple access network delays between the sensor
nodes and the fusion center, several possibilities arise. In Figure 2 we show that
although the sensors take samples synchronously, due to random access delays the
various packets sent by the sensors arrive at the fusion center asynchronously. As
shown in the figure, the packets generated due to the samples taken at time t2
arrive at the fusion center with a delay of D

(1)
2 ,D

(2)
2 ,D

(3)
2 , etc. It can even happen

that a packet corresponding to the samples taken at time t3 can arrive before one
of the packets generated due to the samples taken at time t2.

Figure 3 depicts a general queueing and decision making architecture in the fusion
center. All samples are queued in per–node queues in a sequencer. The way the
sequencer releases the packets gives rise to the following three cases, the first two
of which we study in this paper.

(1) The sequencer queues the samples until all the samples of a “batch” (a batch
is the set of samples generated at a sampling instant) are accumulated; it then
releases the entire batch to the decision device. The batches arrive to the
decision maker in a time sequence order. The decision maker processes the
batches without knowledge of the state of the network (i.e., reception times
at the fusion center, and the numbers of packets in the various queues). We
call this, Network Oblivious Decision Making (NODM). In factory and building
automation scenarios, there is a major impetus to replace wireline networks
between sensor nodes and controllers. In such applications, the first step could
be to retain the fusion algorithm in the controller, while replacing the wireline
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Fig. 3. A conceptual block diagram of the wireless sensor network shown in Figure 1. The fusion

center has a sequencing buffer which queues out–of–sequence samples and delivers the samples to
the decision maker in time–order, as early as possible, batch–wise or sample–wise.

network with a wireless ad hoc network. Indeed, we show that this approach
is optimal for NODM, provided the sampling rate is appropriately optimized.

(2) The sequencer releases samples only in time–sequence order but does not wait
for an entire batch to accumulate. The decision maker processes samples as
they arrive. We call this, Network Aware Decision Making (NADM). In NADM,
whenever the decision maker receives a sample, it has to roll back its decision
statistic to the sampling instant, update the decision statistic with the received
sample and then update the decision statistic to the current time slot. The
decision maker makes a Bayesian update on the decision statistic even if it
does not receive a sample in a slot. Thus, NADM requires a modification in the
decision making algorithm in the fusion center.

(3) The sequencer does not queue any samples. The fusion center acts on the values
from the various sampling instants as they arrive, possibly out of order. The
formulation of such a problem would be an interesting topic for future research.

Our Contributions: We find that, in the existing literature on sequential change
detection problems (see discussion on related literature below), it has been assumed
that, at a sampling instant, the samples from all the sensors reach the fusion center
instantaneously. As explained above, however, in our problem the delay in detection
is not only due to the detection procedure requiring a certain amount of samples to
make a decision (which we call decision delay), but also due to the random packet
delay in the multiple access network (which we call network delay). We work with
a formulation that accounts for both these delays, while limiting ourselves to the
particular fusion center behaviours explained in cases (1) and (2) above.

In Section 2, we discuss the basic change detection problem and setup the model.
In Section 3, we formulate the change detection problem over a random access
network in a way that naturally includes the network delay. We show that in the
case of NODM, the problem objective decouples into a part involving the network
delay and a part involving the optimal decision delay, under the condition that
the sampling instants are periodic. Then, in Section 4, we consider the special
case of a network with a star topology, i.e., all nodes are one hop away from the
fusion center and provide a model for contention in the random access network.
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In Section 5, we formulate the NADM problem where we process the samples as
they arrive at the fusion center, but in a time causal manner. The out–of–sequence
packets are queued in a sequencing buffer and are released to the decision maker as
early as possible. We show in the NADM case that the change–detection problem
can be modeled as a Partially Observable Markov Decision Process (POMDP).
We show that a sufficient statistic for the observations include the network–state
(which include the queue lengths of the sequencing buffer, network–delays) and the
posterior probability of change having occurred given the measurements received
and the network states. As usual, the optimal policy can be characterised via a
Bellman equation, which can then be used to derive insights into the structure of the
policy. We show that the optimal policy is a threshold on the posterior probability
of change and that the threshold, in general, depends on the network state. Finally,
in Section 6 we compare, numerically, the mean detection delay performance of
NODM and a simple heuristic algorithm motivated by NADM processing. We show
the tradeoff between the sampling rate r and the mean detection delay. Also, we
show the tradeoff between the number of sensors and the mean detection delay.
Related Literature: The basic mathematical formulation in this paper is an
extension of the classical problem of sequential change detection in a Bayesian
framework. The centralized version of this problem was solved by Shiryaev (see
[Shiryaev 1978]). The decentralized version of the problem was introduced by Tenny
and Sandell [Tenny and Sandell 1981]. In the decentralized setting, Veeravalli
[Veeravalli 2001] provided optimal decision rules for the sensors and the fusion
center, in the context of conditionally independent sensor observations and a quasi-
classical information structure. For a large network setting, Niu and Varshney [Niu
and Varshney 2005] studied a simple hypothesis testing problem and proposed a
counting rule based on the number of alarms. They showed that, for a sufficiently
large number of sensors, the detection performance of the counting rule is close
to that of the optimal rule. In a recent article on anomaly detection in wireless
sensor networks [Rajasegarar et al. 2008], Rajasegarar et al. have provided a survey
of statistical and machine learning based techniques for detecting various types of
anomalies such as sensor faults, security attacks, and intrusions. In [Aldosari and
Moura 2004] the authors consider the problem of decentralized binary hypothesis
testing, where the sensors quantize the observations and the fusion center makes a
binary decision between the two hypotheses.

Remark: In the existing literature on the topic of optimal sequential event
detection in wireless sensor networks, to the best of our knowledge there has been no
prior formulation that incorporates multiple access delay between the sensing nodes
and the fusion center. Interestingly, in this paper we introduce, what can be called
a cross layer formulation involving sequential decision theory and random access
network delays. In particular, we encounter the fork–join queueing model (see,
for example, [Baccelli and Makowski 1990]) that arises in distributed computing
literature.

2. THE BASIC CHANGE DETECTION PROBLEM

In this section, we introduce the model for the basic change detection problem. The
notation, we follow, is given here.
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Fig. 5. Change time and the detection instants with and without network delay are shown. The

coarse sampling delay is given by tK − T where tK is the first sampling instant after change, and
the network delay is given by UK̃ − tK̃ .

• Time is slotted and the slots are indexed by k = 0, 1, 2 . . .. We assume that the
length of a slot is unity and that slot k refers to the interval [k, k +1). Thus, the
beginning of slot k indicates the time instant k (see Figure 4).

• N sensors are synchronously sampling at the rate r samples/slot, i.e., the sensors
make an observation every 1/r slots and send their observations to the fusion
center. Thus, for example, if r = 0.1, then a sample is taken by a sensor every
10th slot. We assume that 1/r is an integer. The sampling instants are denoted
t1, t2, . . . (see Figure 5). Define t0 = 0; note that the first sample is taken at
t1 = 1/r.

• The vector of network delays of the batch b is denoted by

Db =
[
D

(1)
b ,D

(2)
b , · · · ,D

(N)
b

]

where D
(i)
b ∈ {1, 2, 3, · · · } is the network delay in slots, of the ith component of

the bth batch (sampled at tb = b/r). Also, note that D
(i)
b > 1, as it requires one

time slot for the transmission of a packet to the fusion center after a successful
contention.

• The state of nature Θ ∈ {0, 1}. 0 represents the state “before change” and
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1 represents the state “after change”. It is assumed that the change time T
(measured in slots), is geometrically distributed i.e.,

P (T = 0) = ρ

and, for k > 1, P (T = k | T > 0) = p(1 − p)(k−1). (1)

The value of 0 for T accounts for the possibility that the change took place before
the observations were made.

• The vector of outputs from the sensor devices at the bth batch is denoted by

Xb =
[
X

(1)
b ,X

(2)
b , · · · ,X

(N)
b

]

where X
(i)
b ∈ X is the bth output at the ith sensor. Given the state of nature,

X
(i)
b are assumed to be (conditionally) independent across sensors and i.i.d. over

sampling instants with probability distributions F0(x) and F1(x) before and after
the change respectively. X1 corresponds to the first sample taken. In this work,
we do not consider the problem of optimal processing of the sensor measurements
to yield the sensor outputs, e.g., optimal quantizers (see [Veeravalli 2001]).

• Let Sb, b > 1, be the state of nature at the bth sampling instant and S0 the state
at time 0. Then Sb ∈ {0, 1}, with

P (S0 = 1) = ρ = 1 − P (S0 = 0)

Sb evolves as follows. If Sb = 0 for b > 0, then

Sb+1 =

{
1 w.p. pr

0 w.p. (1 − pr)

where pr = 1 − (1 − p)1/r. Further, if Sb = 1, then Sb+1 = 1. Thus, if S0 = 0,
then there is a change from 0 to 1 at the Kth sampling instant, where K is
geometrically distributed. For b > 1,

P (K = b) = pr(1 − pr)
b−1

Each value to be sent to the fusion center by a node is inserted into a packet
which is queued for transmission. It is then transmitted to the fusion center by
using a contention based multiple access protocol. A node can directly transmit
its observation to the fusion center or route it through other nodes in the system.
Each packet takes a time slot to transmit. The MAC protocol and the queues
evolve over the same time slots. The fusion center makes a decision about the
change depending on whether Network Oblivious (NODM) processing or Network
Aware (NADM) processing is employed at the fusion center. In the case of NODM
processing, the decision sequence (also called as action sequence), is Au, u > 0, with
Au ∈ {stop and declare change(1), take another sample(0)}, where u is a time in-
stant at which a complete batch of N samples corresponding to a sampling instant is
received by the fusion center. In the case of NADM processing, the decision sequence
is Ak, k > 0, with Ak ∈ {stop and declare change(1), take another sample(0)}, i.e.,
a decision about the change is taken at the beginning of every slot.
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Fig. 6. A sensor network model of Figure 3 with one hop communication between the sensor

nodes and the fusion center. The random access network along with the sequencer is a fork–join
queueing model.

3. NETWORK OBLIVIOUS DECISION MAKING (NODM)

From Figure 2, we note that although all the components of a batch b are generated

at tb = b/r, they reach the fusion center at times tb + D
(i)
b , i = 1, 2, · · · , N . In

NODM processing, the samples, which are successfully transmitted, are queued
in a sequencing buffer as they arrive (see Figure 6) and the sequencer releases a
(complete) batch to the decision maker, as soon as all the components of a batch
arrive. The decision maker makes a decision about the change at the time instants
when a (complete) batch arrives at the fusion center. In the Network Oblivious
(NODM) processing, the decision maker is oblivious to the network and processes
the batch as though it has just been generated (i.e., as if there is no network, hence
the name Network Oblivious Decision Making). We further define (see Figure 5)

• Ub, (b > 1): the random instant at which the fusion center receives the complete
batch Xb

• K̃ ∈ {0, 1, . . . }: the batch index at which the decision takes place, if there was

no network delay. K̃ = 0 means that the decision 1 (stop and declare change) is
taken before any batch is generated

• T̃ = t eK : the random time (a sampling instant) at which the fusion center stops
and declares change, if there was no network delay

• Ũ = U eK : the random time slot at which the fusion center stops and declares
change, in the presence of network delay

• Db = Ub − tb: Sojourn time of the bth batch, i.e., the time taken for all the
samples of the bth batch to reach the fusion center. Note that Db is given by

max{D
(i)
b : i = 1, 2, · · · , N}. Thus, the delay of the batch K̃ at which the

detector declares a change is U eK − t eK = Ũ − T̃

We define the following detection metrics.

Mean Detection Delay defined as the expected number of slots between the
change point T and the stopping time instant Ũ in the presence of coarse sampling

and network delays, i.e., Mean Detection Delay = E
[(

Ũ − T
)
1{eT>T}

]
.

ACM Transactions on Sensor Networks, Vol. V, No. N, Month 20YY.
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Mean Decision Delay defined as the expected number of slots between the change
point T and the stopping time instant T̃ in the (presence of coarse sampling delay

and in the) absence of network delay, i.e., Mean Decision Delay = E
[(

T̃ − T
)
1{eT>T}

]
.

With the above model and assumptions, we pose the following NODM problem:
Minimize the mean detection delay with a bound on the probability of false alarm,
the decision epochs being the time instants when a complete batch of N components
corresponding to a sampling instant is received by the fusion center. In Section 5,
we pose the problem of making a decision at every slot based on the samples as
they arrive at the fusion center. Motivated by the approach in [Veeravalli 2001] we
use the following formulation for a given sampling rate r

min E
[
(Ũ − T )1{eT>T}

]
(2)

such that P
(
T̃ < T

)
6 α

where α is the constraint on the false alarm probability.

T
~

U
~

T

Fig. 7. Illustration of an event of false alarm with eT < T , but eU > T

Remark 3.1 Note that if α > 1 − ρ, then the decision making procedure can be
stopped and an alarm can be raised even before the first observation. Thus, we
assume that α < 1 − ρ.

Remark 3.2 Note that here we consider P
(
T̃ < T

)
as the probability of false

alarm and not P
(
Ũ < T

)
, i.e., a case as shown in Figure 7 is considered a false

alarm. This can be understood as follows: when the decision unit detects a change
at slot Ũ , the measurements that triggered this inference would be carrying the
“time stamp” T̃ , and we infer that the change actually occurred at or before T̃ .
Thus if T̃ < T , it is an error.

We write the problem defined in Eqn. 2 as

min
Πα

E
[
(Ũ − T )1{eT>T}

]
(3)

where Πα is the set of detection policies for which P
(
T̃ < T

)
6 α.

Theorem 1 If the sampling is periodic at rate r and the batch sojourn time process
Db, b > 1, is stationary with mean d(r), then

min
Πα

E
[
(Ũ − T )1{eT>T}

]
= (d(r) + l(r))(1 − α) − ρ · l(r) +

1

r
min
Πα

E
[
K̃ − K

]+

where l(r) is the delay due to (coarse) sampling.

ACM Transactions on Sensor Networks, Vol. V, No. N, Month 20YY.
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Remark 3.3 For example in Figure 5, the delay due to coarse sampling is t2 − T ,
K̃ −K = 3− 2 = 1, and the network delay is U3 − t3. The stationarity assumption
on Db, b > 1, is justifiable in a network in which measurements are continuously
made, but the detection process is started only at certain times, as needed.

Proof: The following is a sketch of the proof (the details are in the Appendix –
I)

min
Πα

E
[
(Ũ − T )1{eT>T}

]
= min

Πα

{
E
[
(Ũ − T̃ )1{eT>T}

]
+ E

[
T̃ − T

]+
}

= min
Πα

{
E[D]

(
1 − P

(
T̃ < T

))
+ E

[
T̃ − T

]+
}

where we have used the fact that under periodic sampling, the queueing system
evolution and the evolution of the statistical decision problem are independent,
i.e., K̃ is independent of {D1,D2, . . .} and E[D] is the mean stationary queueing
delay (of a batch). By writing E[D] = d(r) and using the fact that the problem

minΠα
E
[
T̃ − T

]+

is solved by a policy π∗
α ∈ Πα with P

(
T̃ < T

)
= α, the problem

becomes

d(r)(1 − α) + min
Πα

E
[
T̃ − T

]+

= (d(r) + l(r))(1 − α) − ρ · l(r) +
1

r
min
Πα

E
[
K̃ − K

]+

where l(r) is the delay due to sampling. Notice that minΠα
E
[
K̃ − K

]+

is the basic

change detection problem at the sampling instants.

Remark 3.4 It is important to note that the independence between K̃ and {D1,D2, . . .}
arises from periodic sampling. Actually this is conditional independence given the
rate of the periodic sampling process. If, in general, one considers a model in which
the sampling is at random times (e.g., the sampling process randomly alternates
between periodic sampling at two different rates or if adaptive sampling is used)
then we can view it as a time varying sampling rate and the asserted independence
will not hold.

We conclude that the problem defined in Eqn. 2 effectively decouples into the sum

of the optimal delay in the original optimal detection problem, i.e., 1
r minΠα

E
[
K̃ − K

]+

as in [Veeravalli 2001], a part that captures the network delay, i.e., d(r)(1−α), and
a part that captures the sampling delay, i.e., l(r)(1 − α) − ρl(r).

4. NETWORK DELAY MODEL

From Theorem 1, it is clear that in NODM processing, the optimal decision device
and the queueing system are decoupled. Thus, one can employ an optimal sequential
change detection procedure (see [Shiryaev 1978]) for any random access network
(in between the sensor nodes and the fusion center). Also, NODM is oblivious to
the random access network (in between the sensor nodes and the fusion center)
and processes a received batch as though it has just been generated. In the case
of NADM (which we describe in Section 5), the decision maker processes samples,

ACM Transactions on Sensor Networks, Vol. V, No. N, Month 20YY.
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Fig. 8. A sensor network with a star topology with the fusion center at the hub. The sensor nodes

use a random access MAC to send their packets to the fusion center.

keeping network–delays into account, thus requiring the knowledge of the network
dynamics. In this section, we provide a simple model for the random access network,
that facilitates the analysis and optimisation of NADM.

N sensors form a star topology1 (see Figure 8) ad hoc wireless sensor network
with the fusion center as the hub. They synchronously sample their environment
at the rate of r samples per slot periodically. At sampling instant tb = b/r, sensor

node i generates a packet containing the sample value X
(i)
b (or some quantized

version of it). This packet is then queued first-in-first-out in the buffer behind the
radio link. It is as if each sample is a fork operation that puts a packet into each
sensor queue (see Figure 6).

The sensor nodes contend for access to the radio channel, and transmit packets
when they succeed. The service is modeled as follows. As long as there are packets
in any of the queues, successes are assumed to occur at the constant rate of σ (0 <
σ < 1) per slot, with the intervals between the successes being i.i.d., geometrically
distributed random variables, with mean 1/σ. If, at the time a success occurs, there
are n nodes contending (i.e., n queues are nonempty) then the success is ascribed
to any one of the n nodes with equal probability.

The N packets corresponding to a sample arrive at random times at the fusion
center. If the fusion center needs to accumulate all the N components of each
sample then it must wait for that component of every sample that is the last to
depart its mote. This is a join operation (see Figure 6).

It is easily recognized that our service model, in the case of NODM is the discrete
time equivalent of generalized processor sharing (GPS – see, for example, [Kumar
et al. 2004]), which can be called the FJQ-GPS (fork-join queue (see [Baccelli and
Makowski 1990]) with GPS service). In the case of NADM, the service model is just
the GPS.

In IEEE 802.11 networks and IEEE 802.15.4 networks, if appropriate parameters
are used, then the adaptive backoff mechanism can achieve a throughput that is
roughly constant over a wide range of n, the number of contending nodes. This

1Note that Theorem 1 is more general and does not assume a star topology.
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Fig. 9. The aggregate saturation throughput η of an IEEE 802.11 network plotted against the

number of nodes in the network, for various physical layer bit rates: 2.2 Mbps, 5.5 Mbps, and
11 Mbps . The two curves in each plot correspond to an analysis and an NS–2 simulation.
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Fig. 10. The aggregate saturation throughput η of an IEEE 802.15.4 star topology network plotted
against the number of nodes in the network. Throughput obtained with default backoff parameters

is shown on the left and that obtained with backoff multiplier = 3, is shown on the right. The
two curves in each plot correspond to an analysis and an NS–2 simulation.

is well known for the CSMA/CA implementation in IEEE 802.11 wireless LANs;
see, for example, Figure 9 [Kumar et al. 2008]. For each physical layer rate, the
network service rate remains fairly constant with increasing number of nodes. From
Figure 10 (taken from [Singh et al. 2008]) it can be seen that with the default backoff
parameters, the saturation throughput of a star topology IEEE 802.15.4 network
decreases with the number of nodes N , but with the backoff multiplier = 3, the
throughput remains almost constant from N = 10 to N = 50 [Singh et al. 2008];
thus, in the latter case our GPS model can be applicable.

Theorem 2 The stationary delay D is a proper random variable with finite mean
if and only if Nr < σ.

Proof: See Appendix – II.

Thus, for the FJQ–GPS queueing system to be stable, the sampling rate r is chosen
such that r < σ

N .
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5. NETWORK AWARE DECISION MAKING (NADM)

In Section 3, we formulated the problem of NODM quickest change detection over
a random access network, and showed that (when the decision instants are Uk, as
shown in Figure 5) the optimal decision maker is independent of the random access
network, under periodic sampling. Hence, the Shiryaev procedure, which is shown
to be delay optimal in the classical change–detection problem (see [Shiryaev 1978]),
can be employed in the decision device independently of the random access network.
It is to be noted that the decision maker in the NODM case, waits for a complete
batch of N samples to arrive, to make a decision about the change. Thus, the mean
detection delay of the NODM has a network–delay component corresponding to a
batch of N samples. In this section, we provide an alternative mechanism of fusion
at the decision device called Network Aware Decision Making (NADM), in which
the fusion algorithm does not wait for an entire batch to arrive, and processes the
samples as soon as they arrive, but in a time–causal manner.

We now describe the processing in NADM. Whenever a node (successfully) trans-
mits a sample across the random access network, it is delivered to the decision
maker if the decision maker has received all the samples from all the batches gen-
erated earlier. Otherwise, the sample is an out–of–sequence sample, and is queued
in the sequencing buffer. It follows that, whenever the (successfully) transmitted
sample is the last component of the batch that the decision maker is looking for,
then the head of line (HOL) components, if any, in the queues of the sequencing
buffer are also delivered to the decision maker. This is because, these HOL samples
belong to the next batch that the decision maker should process. The decision
maker makes a decision about the change at the beginning of every time slot, irre-
spective of whether it receives a sample or not. In NADM, whenever the decision
maker receives a sample, it takes into account the network–delay of the sample
while computing the decision statistic. The network–delay is a part of the state of
the queueing system which is available to the decision maker. Thus, unlike NODM,
the state of the queueing system also plays a role in decision making.

In Section 5.1, we define the state of the queueing system. In Section 5.2, we
define the dynamical system whose change of state (from 0 to 1) is the subject of
interest to us. We define the state of the dynamical system as a tuple that contains
the queueing state, the state of nature, and a delayed state of nature. The delayed
state of nature is included in the state of the system so that the (delayed) sensor–
observations that the decision maker receives at time instant k + 1 depend only on
the state, the control, and the noise of the system at time instant k, a property
which is desirable to define a sufficient statistic (see page 244, [Bertsekas 2000a]).
We explain the evolution of the state of the dynamical system in Section 5.3. In
Section 5.4, we formulate the NADM change detection problem and we find a suf-
ficient statistic for the observations in Section 5.5. In Section 5.6, we provide the
optimal decision rule for the NADM change detection problem.

5.1 Notation and State of the Queueing System

Recall the notation introduced in Section 2. Time progresses in slots, indexed by
k = 0, 1, 2 · · · ; the beginning of slot k is the time instant k. Also, the time instant
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Fig. 11. At time k, the decision maker expects samples (or processes samples) from batch Bk.

Also, at time k, λk is the number of slots to go for the next sampling instant and ∆k is the number
of slots back at which batch Bk is generated.
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Fig. 12. Illustration of a scenario in which ∆k = 0. If the last component from batch Bk−1 is
received at k, and if there is no sampling instant between tBk−1

and k, then ∆k = 0. Also, note in
this case that ∆k = ∆k+1 = · · · = ∆tBk

= 0. In this scenario, at time instants k, k + 1, · · · , tBk
,

all the queues at the sensor nodes and at the sequencer are empty, and at time instant tBk
+, all

sensor node queues have one packet which is generated at tBk
.

just after the beginning of time slot is denoted by k+ 2. Recall that the nodes
take samples at the instants 1/r, 2/r, 3/r, · · · . We define the state of the queueing
system here. Note that the queueing system evolves over slots.

• λk ∈ {1, 2, · · · , 1/r} denotes the number of time slots to go for the next sampling
instant, at the beginning of time slot k (see Figure 11). Thus,

λk :=
1

r
−

(
k mod

1

r

)
. (4)

Thus, λ0 = 1
r , λ1 = 1

r − 1, · · · , and at the sampling instants tb, λtb
= 1

r .

• Bk ∈ {1, 2, 3, · · · } denotes the index of the batch that is expected to be or is
being processed by the decision maker at the beginning of time slot k. Note
B0 = B1 = · · · = B1/r = 1. Also, note that the batch Bk is generated at time
instant Bk/r.

• ∆k ∈ {0, 1, 2, · · · } denotes the delay in number of time slots between the time
instants k and Bk/r (see Figure 11).

∆k := max

{
k −

Bk

r
, 0

}
. (5)

2Note that the notation t+ denotes a time embedded to the right of t and is different from the

notation (x)+. Recall that (x)+ := max{x, 0}.
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Departure w.p. if

L
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k
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σ
Nk

L
(i)
k > 0

L
(i)
k+1 = L

(i)
k − 1{Mk=i} + 1{λk+1=1/r}

Fig. 13. The evolution of L
(i)
k from time slot k to time slot k + 1. If during time slot k, node i

transmits (successfully) a packet to the fusion center (i.e., Mk = i), then that packet is flushed out
of its queue at the end of time slot k. Also, a new sample is generated (every 1/r slots) exactly

at the beginning of a time slot. Thus, L
(i)
k+1, the queue length of sensor node i just after the

beginning of time slot k + 1 (i.e., at (k + 1)+) is given by L
(i)
k+1 = L

(i)
k −1{Mk=i} +1{λk+1=1/r}.

Note that the batches of samples taken after Bk/r and up to (including) k are
queued either in the sensor node queues or in the sequencing buffer in the fusion
center. If at time k, the fusion center receives a sample which is the last sample
from batch Bk−1, then Bk = Bk−1 +1. If the sampling instant of the Bkth batch
is later than k (i.e., Bk/r > k), then ∆k = 0 (up to time Bk/r at which instant,
a new batch is generated). This corresponds to the case, when all the samples
generated up to time slot k, have already been processed by the decision maker
(see Figure 12). In particular, ∆0 = ∆1 = · · · = ∆ 1

r
−1 = 0.

• L
(i)
k ∈ {0, 1, 2, · · · } denotes the queue length of the ith sensor node just after

the beginning of time slot k (i.e., at time instant k+). The vector of queue

lengths is Lk = [L
(1)
k , L

(2)
k , · · · , L

(N)
k ]. Let Nk ∈ {0, 1, 2, · · · , N} be the number

of non–empty queues at the sensor nodes, just after the beginning of time slot k.

Nk :=

N∑

i=1

1
{L

(i)
k

>0}

i.e., the number of sensor nodes that contend for slot k is Nk. Hence, using the

network model we have provided in Section 4, the evolution of L
(i)
k (see Figure 13)

is given by the following:

L
(i)
0 = 0

L
(i)
k+1 =





L
(i)
k + 1{λk+1=1/r} w.p. 1 if Nk = 0,

L
(i)
k + 1{λk+1=1/r} w.p. (1 − σ) if Nk > 0,

max{L
(i)
k − 1, 0} + 1{λk+1=1/r} w.p. σ

Nk
if Nk > 0.

Note that when all the samples generated up to time slot k have already been
processed by the decision maker and k is not a sampling instant, i.e., ∆k = 0 and
λk 6= 1/r, then Lk = 0 (as there are no outstanding samples in the system). For
e.g., L1 = L2 = · · · = L1/r−1 = 0. Also, note that just after sampling instant tb,

L
(i)
tb

> 1.
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Fig. 14. The evolution of W
(i)
k from time slot k to time slot k + 1. If a sample from node i is

transmitted (successfully) during time slot k (i.e., Mk = i), then it is received by the fusion center
at the end of time slot k (i.e. at (k + 1)−). If this sample is from batch Bk, it is passed on to the

decision maker. Otherwise, it is queued in the sequencing buffer, in which case W
(i)
k+1 = W

(i)
k +1.

On the other hand, if a sample from some other node j is transmitted (successfully) during time
slot k (i.e., Mk = j 6= i), and if this sample is the last component to be received from batch Bk

by the fusion center, then the HOL packet of the ith sequencing queue, if any, is also delivered to

the decision maker. Thus, in this case, W
(i)
k+1 = max{W

(i)
k − 1, 0}. Note that W

(i)
k+1 refers to the

queue length corresponding to node i at the sequencer, at the beginning of time slot k + 1.

• Mk ∈ {0, 1, 2, · · · , N} denotes the index of the node that successfully transmits
in slot k. Mk = 0 means that there is no successful transmission in slot k. Thus,
from the network model we have provided in Section 4, we note that

Mk =





0 w.p. 1 if Nk = 0
0 w.p. (1 − σ) if Nk > 0

j w.p. σ
Nk

if L
(j)
k > 0, j = 1, 2, · · · , N

• W
(i)
k ∈ {0, 1, 2, · · · } denotes the queue length of the ith sequencing buffer at time

k. The vector of queue lengths is given by Wk = [W
(1)
k ,W

(2)
k , · · · ,W

(N)
k ]. Note

that Wk = 0 if ∆k = 0, i.e., the sequencing buffer is empty if there are no
outstanding samples in the system. In particular, W0 = W1 = · · · = W 1

r
= 0.

The evolution of W
(i)
k is explained in Figure 14. If a sample from node i of a batch

later than Bk is successfully transmitted during slot k, then W
(i)
k+1 = W

(i)
k + 1.

If a sample from node j of batch Bk is successfully transmitted and if it is the
last sample to be received from batch Bk, then the queue lengths of sequencing

buffer are decremented by 1, i.e., W
(i)
k+1 = max{W

(i)
k − 1, 0}.

• R
(i)
k ∈ {0, 1} denotes whether the sample X

(i)
Bk

has been received and processed

by the decision maker at time k. R
(i)
k = 0 means that the sample X

(i)
Bk

has not

yet been received by the decision maker and R
(i)
k = 1 means that the sample X

(i)
Bk

has been received and processed by the decision maker. The vector of R
(i)
k s is

given by Rk = [R
(1)
k , R

(2)
k , · · · , R

(N)
k ]. Note that, if R

(i)
k = 0, W

(i)
k = 0, i.e., the

ith sequencing buffer is empty if the sample expected by the decision maker has
not yet been transmitted. Also note that when ∆k = 0, Rk = 0, as the samples
from the current batch Bk have yet to be generated or have just been generated.

We now relate the queue lengths L
(i)
k and W

(i)
k . Note that at the beginning of

time slot k,
⌊

k
1/r

⌋
batches have been generated so far, of which Bk − 1 batches are
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completely received by the decision maker. In batch Bk, ith sample is received by

the decision maker if R
(i)
k = 1. Hence, at time k, Bk − 1 + R

(i)
k samples generated

by node i have been processed by the decision maker and the remaining samples
are in the sensor and sequencing queues. Thus, we have

L
(i)
k + W

(i)
k =

⌊
k

1/r

⌋
− (Bk − 1) − R

(i)
k (6)

=

⌊
k − Bk/r + 1/r

1/r

⌋
− R

(i)
k

=





⌊
∆k

1/r

⌋
+ 1 − R

(i)
k if k > Bk/r

1 − R
(i)
k if k = Bk/r

−R
(i)
k if k < Bk/r

Recalling the definition of ∆k, we write the above Eqn. as,

L
(i)
k + W

(i)
k =





⌊
∆k

1/r

⌋
+ 1 − R

(i)
k if ∆k > 0

1 if ∆k = 0, λk = 1/r
0 if ∆k = 0, λk 6= 1/r.

(7)

Note that in the above Eqn. ∆k = 0, λk = 1/r (or equivalently k = Bk/r),
corresponds to the case when the samples of batch Bk have just been taken and
all the samples from all previous batches have been processed. Thus, in this case

L
(i)
k = 1 (as W

(i)
k = 0). In the case of ∆k = 0, λk 6= 1/r (or equivalently k < Bk/r),

all the samples from all previous batches have been processed and a new sample

from batch Bk is not taken yet. Thus, in this case L
(i)
k = 0 (and W

(i)
k = 0). Hence,

given Qk = [λk, Bk,∆k,Wk,Rk], the queue lengths L
(i)
k s can be computed as

L
(i)
k = φL(i)(Qk) :=





⌊
∆k

1/r

⌋
+ 1 − R

(i)
k − W

(i)
k if ∆k > 0

1 if ∆k = 0, λk = 1/r
0 if ∆k = 0, λk 6= 1/r

.(8)

Also, Nk = φN (Qk) :=
N∑

i=1

1{φ
L(i) (Qk)>0}. (9)

Thus, the state of the queueing system at time k, can be expressed as Qk =
[λk, Bk,∆k,Wk,Rk]. Note that the decision maker can observe the state Qk per-
fectly. The evolution of the queueing system is explained in the next subsection.

5.2 Evolution of the Queueing System

The evolution of the queueing system from time k to time k + 1 depends only
on Mk, the success/no–success of contention on the random access channel. Note
that the evolution of λk is deterministic and that of ∆k depends on Bk. Hence,
to describe the evolution of Qk, it is enough to explain the evolution of Bk,Wk,
and Rk for various cases of Mk. Let Yk+1 ∈ {∅} ∪

(
∪N

n=1X
n
)

denote the vector of
samples received, if any, by the decision maker at the beginning of slot k + 1 (i.e.,
the decision maker can receive a vector of n samples where n ranges from 0 to N).
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At the beginning of time slot k + 1, the following possibilities arise:

• No successful transmission: This corresponds to the case i) when all the
queues are empty at the sensor nodes (Nk = 0), or ii) when some queues are
non–empty at the sensor nodes (Nk > 0), either no queue attempts, or there is
more than one attempt (resulting in a collision). In either case, Mk = 0 and the
decision maker does not receive any sample, i.e., Yk+1 = ∅. In this case, it is
clear that Bk+1 = Bk, Wk+1 = Wk, and Rk+1 = Rk.

• Successful transmission of node j’s sample from a later batch: This
corresponds to the case, when the decision maker has already received the jth

component of the current batch Bk (i.e., R
(j)
k = 1) and that it has not received

some sample, say i 6= j, from the batch Bk (i.e., R
(i)
k = 0, for some i). The

received sample (is an out–of–sequence sample and) is queued in the sequencing

buffer (W
(j)
k+1 = W

(j)
k +1). Thus, in this case, Mk = j and the decision maker does

not receive any sample, i.e., Yk+1 = ∅. In this case, it is clear that Bk+1 = Bk,
Wk+1 = Wk + ej , and Rk+1 = Rk.

• Successful transmission of node j’s current sample which is not the

last component of the batch Bk: This corresponds to the case when the
decision maker has not received the jth component of the batch Bk before time

slot k (R
(j)
k = 0), and that it has received all the samples that are generated

earlier than that of the successful sample. Also, the fusion center is yet to receive

some other component of batch Bk (i.e.,
∑N

i=1 R
(i)
k < N − 1). Thus, in this case,

Mk = j and the decision maker receives the sample Yk+1 = X
(j)
Bk

. In this case,
it is clear that Bk+1 = Bk, Wk+1 = Wk, and Rk+1 = Rk + ej .

• Successful transmission of node j’s current sample which is the last

component of the batch Bk: This corresponds to the case when the decision
maker has not received the jth component of the batch Bk before time slot k

(R
(j)
k = 0), and that it has received all the samples that are generated earlier

than that of the successful sample. Also, this sample is the last component of

batch Bk, that is received by the fusion center. (i.e.,
∑N

i=1 R
(i)
k = N − 1). In

this case (along with the received sample), the queues of the sequencing buffer
deliver the head of line (HOL) components (which correspond to the batch index
Bk + 1), if any, to the decision maker and the queues are decremented by one

(W
(i)
k+1 = max{W

(i)
k − 1, 0}). Thus, Mk = j and the decision maker receives the

vector of samples Yk+1 =
[
X

(j)
Bk

,X
(i′1)
Bk+1,X

(i′2)
Bk+1, · · · ,X

(i′n−1)

Bk+1

]
where W

(i)
k > 0 for

i ∈ {i′1, i
′
2, · · · i

′
n−1}, and W

(i)
k = 0 for i /∈ {i′1, i

′
2, · · · i

′
n−1}. In this case, Bk+1 =

Bk +1, Wk+1 = Wk −ei′1
−ei′2

−· · ·−ei′
n−1

, and Rk+1 = ei′1
+ei′2

+ · · ·+ei′
n−1

.

Thus, the state of the queueing system at time k + 1 can be described by

Qk+1 = φQ(Qk,Mk)

:= [φλ(Qk,Mk), φB(Qk,Mk), φ∆(Qk,Mk), φW(Qk,Mk), φR(Qk,Mk)] .

In the next subsection, we provide a model of the dynamical system whose state
has the state of nature Θk as one of its constituents. The quickest detection of
change of Θk from 0 to 1 (at a random time T ) is the focus of this paper.
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5.3 System State Evolution Model

Let Θk ∈ {0, 1}, k > 0, be the state of nature at the beginning of time slot k.
Recall that T is the change point, i.e., for k < T , Θk = 0 and for k > T , Θk = 1,
and that the distribution of T is given in Eqn. 1. The state Θk is observed only
through the sensor measurements, but these are delayed. We will formulate the
optimal NADM change detection problem as a partially observable Markov decision
process (POMDP) with the delayed observations. The approach and the terminol-
ogy used here is in accordance with the stochastic control framework in [Bertsekas
2000a]. At time k, a sample, if any, that the decision maker receives is generated
at time Bk/r < k (i.e., samples arrive at the decision maker with a network–delay
of ∆k = k − Bk

r slots). To make an inference about Θk from the sensor measure-
ments, we must consider the vector of states of nature that corresponds to the
time instants k − ∆k, k − ∆k + 1, · · · , k. We define the vector of states at time
k, Θk := [Θk−∆k

,Θk−∆k+1, · · · ,Θk]. Note that the length of the vector depends
on the network–delay ∆k. When ∆k > 0, Θk = [ΘBk

r

,ΘBk
r

+1
, · · · ,Θk], and when

∆k = 0, Θk is just [Θk].
Consider the discrete–time system, which at the beginning of time slot k is de-

scribed by the state

Γk = [Qk,Θk],

where we recall that

Qk =

[
λk, Bk,∆k,Wk,Rk

]
,

Θk = [Θk−∆k
,Θk−∆k+1, · · · ,Θk].

Note that Γ0 =
[[

1
r , 1, 0,0

]
,Θ0

]
. At each time slot k, we have the following set

of controls {0, 1} where 0 represents “take another sample”, and 1 represents “stop
and declare change”. Thus, at time slot k, when the control chosen is 1, the state
Γk+1 is given by a terminal absorbing state t; when the control chosen is 0, the
state evolution is given by Γk+1 = [Qk+1,Θk+1], where

Qk+1 = φQ(Qk,Mk),

Θk+1 =





[
Θk + 1{T=k+1}

]
, if ∆k+1 = 0[

Θk−∆k
,Θk−∆k+1, · · · ,Θk,Θk + 1{T=k+1}

]
, if ∆k+1 = ∆k + 1[

Θk−∆k+ 1
r
,Θk−∆k+ 1

r
+1, · · · ,Θk,Θk + 1{T=k+1}

]
, if ∆k+1 = ∆k + 1 − 1

r .

=: φΘ

(
Θk,Qk,Mk,1{T=k+1}

)
(10)

where it is easy to observe that Θk + 1{T=k+1} = Θk+1. When ∆k+1 = ∆k +
1, the batch Bk is still in service, and hence, in addition to the current state
Θk+1 = Θk + 1{T=k+1}, we need to keep the states Θk−∆k

,Θk−∆k+1, · · · ,Θk.

Also, when ∆k+1 = ∆k + 1 − 1
r , then the batch index is incremented, and hence,

the vector of states that determines the distribution of the observations sampled

at or after Bk+1/r and before k + 1 is given by
[
Θk−∆k+ 1

r
,Θk−∆k+ 1

r
+1, · · · ,Θk ,

Θk + 1{T=k+1}

]
.

Define Ok := 1{T=k+1}, and define Nk := [Mk, Ok] be the state–noise during
time slot k. The distribution of state–noise Nk given the state of the discrete–
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time system Γk is given by P
(
Mk = m,Ok = o

Γk = [q,θ]
)

and is the product

of the distribution functions, P
(
Mk = m

Γk = [q,θ]
)

and P
(
Ok = o

Γk = [q,θ]
)
.

These distribution functions are provided in Appendix – III.
The problem is to detect the change in the state Θk as early as possible by

sequentially observing the samples at the decision maker.

5.4 The NADM Change Detection Problem

We now formulate the NADM change–detection problem in which the observations
from the sensor nodes are sent over a random access network to the fusion center
and the fusion center processes the samples in the NADM mode.

In Section 5.3, we defined the state Γk = [Qk,Θk] on which we formulate the
NADM change detection problem as a POMDP. Recall that at the beginning of slot
k, the decision maker receives a vector of sensor measurements Yk and observes the
state Qk of the queueing system. Thus, at time k, Zk = [Qk,Yk] is the observation
of the decision maker about the state of the dynamical system Γk.

Let Ak ∈ {0, 1} be the control (or action) chosen by the decision maker after
having observed Zk at k. Recall that 0 represents “take another sample” and 1
represents the action “stop and declare change”. Let Ik =

[
Z[0:k], A[0:k−1]

]
be the

information vector3 that is available to the decision maker, at the beginning of time
slot k. Let τ be a stopping time with respect to the sequence of random variables
I1, I2, · · · . Note that Ak = 0 for k < τ and Ak = 1 for k > τ . We are interested in
obtaining a stopping time τ (with respect to the sequence I1, I2, · · · ) that minimizes
the mean detection delay subject to a constraint on the probability of false alarm.

min E
[
(τ − T )+

]
(11)

such that P (τ < T ) 6 α

Note that in the case of NADM, at any time k, a decision about the change is made
based on the information Ik (which includes the batch index we are processing and
the delays). Thus, in the case of NADM, false alarm is defined as the event {τ < T}
and, hence, τ > T is not classified as a false alarm even if it is due to pre–change
measurements only. However, in the case of NODM, this is classified as a false alarm
as the decision about the change is based on the batches received until time k.

Let c be the cost per unit delay in detection. We are interested in obtaining a
stopping time τ∗ that minimizes the expected cost (Bayesian risk) given by

C(c, τ∗) = min
τ

E
[
1{Θτ=0} + c · (τ − T )+

]

= min
τ

E

[
1{Θτ=0} + c ·

τ−1∑

k=0

1{Θk=1}

]

= min
τ

E

[
gτ (Γτ , Aτ ) +

τ−1∑

k=0

gk(Γk, Ak)

]

= min
τ

E

[
∞∑

k=0

gk(Γk, Ak)

]
(12)

3The notation Z[k1:k2] := Zk1
,Zk1+1, · · · ,Zk2
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where, as defined earlier, Γk = [Qk,Θk]. Let θ = [θδ, θδ−1, · · · , θ1, θ0]. We define
for k 6 τ

gk([q,θ], a) =





0, if θ0 = 0, a = 0
1, if θ0 = 0, a = 1
c, if θ0 = 1, a = 0
0, if θ0 = 1, a = 1

(13)

and for k > τ , gk(·, ·) := 0. Recall that Ak = 0 for k < τ and Ak = 1 for k > τ .
Note that Ak, the control at time slot k, depends only on Ik. Thus, every stopping
time τ , corresponds to a policy µ = (µ0, µ1, · · · ) such that Ak = µk(Ik), with
Ak = 0 for k < τ and Ak = 1 for k > τ . Thus, Eqn. 12 can be written as

C(c, τ∗) = min
µ

E

[
∞∑

k=0

gk(Γk, Ak)

]

= min
µ

∞∑

k=0

E[gk(Γk, Ak)] (by monotone convergence theorem)

= min
µ

∞∑

k=0

E[gk(Γk, µk(Ik))] (14)

Since Θk is observed only through Ik, we look at a sufficient statistic for Ik in the
next subsection.

5.5 Sufficient Statistic

In Section 5.2, we have illustrated the evolution of the queueing system Qk and we
have shown in different scenarios, the vector Yk received by the decision maker.
Recall from Section 5.2 that

Yk+1 =





∅, if Mk = 0,

∅, if Mk = j > 0, R
(j)
k = 1,

Yk+1,0, if Mk = j > 0, R
(j)
k = 0,

N∑
i=1

R
(i)
k < N − 1

[Yk+1,0, Yk+1,1, · · · , Yk+1,n] , if Mk = j > 0, R
(j)
k = 0,

N∑
i=1

R
(i)
k = N − 1,

N∑
i=1

1
{W

(i)
k

>0}
= n.

Note that Yk+1,0 corresponds to X
(Mk)
Bk

. The last part of the above equation corre-
sponds to the last pending sample of the batch Bk arriving at the decision maker
at time k + 1, with some samples from batch Bk + 1 (= Bk+1) also being re-
leased by the sequencer. In this case, the state of nature at the sampling instant
of the batch Bk+1 = Bk + 1 is Θk−∆k+1/r. Note that Θk−∆k+1/r is a component
of the vector Θk as k − ∆k + 1/r = (Bk + 1)/r < k. Thus, the distribution of
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Yk+1,0, Yk+1,1, · · · , Yk+1,n is given by

fYk+1,0
(·) =

{
f0(·), if Θk−∆k

= 0
f1(·), if Θk−∆k

= 1 and

fYk+1,i
(·) =

{
f0(·), if Θk−∆k+1/r = 0
f1(·), if Θk−∆k+1/r = 1

, i = 1, 2, · · · , n.

Thus, at time k + 1, the current observation Yk+1 depends only on the previous
state Γk, previous action Ak, and the previous noise of the system Nk. Thus, a
sufficient statistic is

[
P

(
Γk = [q,θ]

Ik

)]
[q,θ]∈S

(see page 244, [Bertsekas 2000a])

where S is the set of all states of the dynamical system defined in Sec. 5.3. Let
q = [λ, b, δ,w, r]. Note that

P
(
Γk = [q,θ]

Ik

)

= P
(
Γk = [q,θ]

Ik−1,Qk,Yk

)

= 1{Qk=q} · P
(
Θk = θ

Ik−1,Qk = q,Yk

)

= 1{Qk=q}

·P
(
[Θk−δ,Θk−δ+1, · · · ,Θk−1,Θk] = [θδ, θδ−1, · · · , θ1, θ0]

Ik−1,Qk = q,Yk

)

= 1{Qk=q} · P
(
Θk−δ = θδ

Ik−1,Qk = q,Yk

)

·
δ∏

j=1

P
(
Θk−δ+j = θδ−j

Θk−δ+j′ = θδ−j′ , j′ = 0, 1, · · · , j − 1, Ik−1,Qk = q,Yk

)

(15)

Observe that

P
(
Θk−δ+j = θδ−j

Θ[k−δ:k−δ+j−2],Θk−δ+j−1 = 0, Ik−1,Qk = q,Yk

)

=

{
1 − p, if θδ−j = 0
p, if θδ−j = 1

and

P
(
Θk−δ+j = θδ−j

Θ[k−δ:k−δ+j−2],Θk−δ+j−1 = 1, Ik−1,Qk = q,Yk

)

=

{
0, if θδ−j = 0
1, if θδ−j = 1.

This is because given Θk−δ, the events {Θk−δ+j = θδ−j}, {Ik−1,Qk = q,Yk} are
conditionally independent. Thus, Eqn. 15 can be written as

P
(
Γk = [q,θ]

Ik

)

=





1{Qk=q} · P
(
Θk−δ = 1

Ik−1,Qk = q,Yk

)
, if θ = 1

1{Qk=q} · P
(
Θk−δ = 0

Ik−1,Qk = q,Yk

)
· (1 − p)δ−j−1p, if θ = [0, · · · , 0, 1︸︷︷︸

θj

, · · · , 1]

1{Qk=q} · P
(
Θk−δ = 0

Ik−1,Qk = q,Yk

)
· (1 − p)δ, if θ = 0

(16)
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Define Θ̃k := Θk−∆k
, and define

Ψk := P
(
Θ̃k = 1

Ik−1,Qk = [λ, b, δ,w, r],Yk

)

= P
(
Θk−δ = 1

Ik−1,Qk = [λ, b, δ,w, r],Yk

)

Πk := P
(
Θk = 1

Ik−1,Qk = [λ, b, δ,w, r],Yk

)

= P
(
T 6 k

Ik−1,Qk = [λ, b, δ,w, r],Yk

)
.

(17)

Thus, Eqn. 16 can be written as

P
(
Γk = [[λ, b, δ,w, r],θ]

Ik

)

=





1{Qk=[λ,b,δ,w,r]} · Ψk, if θ = 1

1{Qk=[λ,b,δ,w,r]} · (1 − Ψk) · (1 − p)δ−j−1p, if θ = [0, · · · , 0, 1︸︷︷︸
θj

, · · · , 1]

1{Qk=[λ,b,δ,w,r]} · (1 − Ψk) · (1 − p)δ, if θ = 0

(18)

We now find a relation between Πk and Ψk in the following Lemma.

Lemma 1 The relation between the conditional probabilities Πk and Ψk is given
by

Πk = Ψk + (1 − Ψk)
(
1 − (1 − p)δ

)
(19)

Proof. See Appendix – IV.

From Eqn. 18 and Lemma 1, it is clear that a sufficient statistic for Ik is νk =
[Qk,Πk]. Also, we show in Appendix – V that νk can be computed recursively,
i.e., when Ak = 0, νk+1 = [Qk+1,Πk+1] = [Qk+1, φΠ(νk,Zk+1)], and when Ak = 1,
νk+1 = t, a terminal state. Thus, νk can be thought of as entering into a terminating
(absorbing) state t at τ (i.e., νk = [Qk,Πk] for k < τ and νk = t for k > τ).
Since νk is sufficient, for every policy µk there corresponds a policy µ̃k such that
µk(Ik) = µ̃k(νk) (see page 244, [Bertsekas 2000a]).

5.6 Optimal Stopping Time τ

Let Q be the set of all possible states of the queueing system, Qk. Thus the state
space of the sufficient statistic is N = (Q× [0, 1]) ∪ {t}. Recall that the action
space is A = {0, 1}. Define the one–stage cost function g̃ : N ×A → R+ as follows.
Let ν ∈ N be a state of the system and let a ∈ A be a control. Then,

g̃(ν, a) =





0 if ν = t
c · π if ν = [q, π], a = 0
1 − π if ν = [q, π], a = 1.

Note from Eqn. 13 for k 6 τ that

E[gk(Θk, Ak)] = E[gk(Θk, µk(Ik))]

= E

[
E

[
gk(Θk, µk(Ik))

Ik

]]

= E[g̃(νk, µ̃k(νk))]
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and for k > τ ,

E[gk(Θk, Ak)] = 0

= E[g̃(t, ·)]

Since, {νk} is a controlled Markov process, and the one–stage cost function g̃(·, ·),
the transition probability kernel for Ak = 1 and for Ak = 0 (i.e., P

(
Zk+1

νk

)
),

do not depend on time k, and the optimization problem defined in Eqn. 14 is over
infinite horizon, it is sufficient to look for an optimal policy in the space of stationary
Markov policies (see page 83, [Bertsekas 2000b]). Thus, the optimization problem
defined in Eqn. 14 can be written as

C(c, τ∗) = min
eµ

∞∑

k=0

E
[
g̃
(
νk, µ̃k(νk)

)]

=

∞∑

k=0

E
[
g̃
(
νk, µ̃∗(νk)

)]
. (20)

Thus, the optimal total cost is given by

J∗([q0, π0]) =
∞∑

k=0

E

[
g̃
(
νk, µ̃∗(νk)

)ν0 = [q0, π0]

]
. (21)

The solution to the above problem is obtained following the Bellman’s equation,

J∗([q, π]) := min

{
1 − π, cπ + E

[
J∗ (Qk+1, φΠ(νk,Zk+1))

νk = [q, π]

]}
.

(22)

where the function φΠ(νk,Zk+1) is provided in Appendix – V.

Remark 5.1 The optimal stationary Markov policy (i.e., the optimum stopping
rule τ) in general depends on Q. Hence, the decision delay and the queueing delay
are coupled, unlike in the NODM case.

We characterize the optimal policy in the following theorem.

Theorem 3 The optimal stopping rule τ∗ is a network–state dependent threshold
rule on the a posteriori probability Πk, i.e., there exist thresholds γ(q) such that

τ = inf{k > 0 : Πk > γ(Qk)} (23)

Proof. See Appendix–VI.

In general, the thresholds γ(Qk)s (i.e., optimum policy) can be numerically ob-
tained by solving Eqn. 22 using value iteration method (see pp. 88–90, [Bertsekas
2000b]). However, computing the optimal policy for the NADM procedure is hard
as the state space is huge even for moderate values of N . Hence, we resort to a
suboptimal policy based on the following threshold rule, which is motivated by the
structure of the optimal policy.

τ = inf{k > 0 : Πk > γ} (24)
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where γ is chosen such that P (τ < T ) = α is met.
Thus, we have formulated a sequential change detection problem when the sensor

observations are sent to the decision maker over a random access network, and
the fusion center processes the samples in the NADM mode. The information for
decision making now needs to include the network state Qk (in addition to the
samples received by the decision maker); we have shown that [Qk,Πk] is sufficient
for the information history Ik. Also, we have provided the structure for the optimal
policy. Since, obtaining the optimal policy is computationally hard, we gave a
simple threshold based policy, which is motivated by the structure of the optimal
policy.

6. NUMERICAL RESULTS

Minimizing the mean detection delay not only requires an optimal decision rule at
the fusion center but also involves choosing the optimal values of the sampling rate
r, and the number of sensors N . To explore this, we obtain the minimum decision
delay for each value of the sampling rate r numerically, and the network delay via
simulation.

6.1 Optimal Sampling Rate

Consider a sensor network with N nodes. For a given probability of false alarm,
the decision delay (detection delay without the network–delay component) decreases
with increase in sampling rate. This is due to the increase in the number of samples
that the fusion center receives within a given time. But, as the sampling rate
increases, the network delay increases due to the increased packet communication
load in the network. Therefore it is natural to expect the existence of a sampling
rate r∗, with r∗ < σ/N , (the sampling rate should be less than σ/N , for the
queues to be stable; see Theorem 2) that optimizes the tradeoff between these two
components of detection delay. Such an r∗, in the case of NODM can be obtained
by minimizing the following expression over r (recall Theorem 1).

(d(r) + l(r)) (1 − α) − ρ · l(r) +
1

r
min
Πα

E
[
K̃ − K

]+

Note that in the above expression, the delay term minΠα
E
[
K̃ − K

]+

also depends

on the sampling rate r via the probability of change pr = 1−(1−p)(1/r). The delay
due to coarse sampling l(r)(1−α)−ρ·l(r) can be found analytically (see Appendix –

I). We can approximate the delay minΠα
E
[
K̃ − K

]+

by the asymptotic (as α → 0)

delay as | ln(α)|
NI(f1,f0)+| ln(1−pr)| where I(f1, f0) is the Kullback–Leibler (KL) divergence

between the pdfs f1 and f0 (see [Tartakovsky and Veeravalli 2005]). But, obtaining
the network–delay (i.e., d(r)(1 − α)) analytically is hard, and hence an analytical
characterisation of r∗ appears intractable. Hence, we have resorted to numerical
evaluation.

The distribution of sensor observations are taken to be N (0, 1) and N (1, 1)4,
before and after the change respectively for all the 10 nodes. We choose the prob-

4As usual, N (a, v) denotes a normal distribution with mean a and variance v
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Fig. 15. Mean detection delay for N = 10 nodes is plotted against the sampling rate r for both

NODM and NADM (defined in Eqn. 24). For NODM, an approximate analysis is also plotted.
This was obtained with the prior probability ρ = 0, p = 0.0005, probability of false alarm target
α = 0.01, σ = 0.3636 and with the sensor observations being N (0, 1) and N (1, 1), before and
after the change respectively.

ability of occurrence of change in a slot to be p = 0.0005, i.e., the mean time

until change is 2000 slots. minΠα
E
[
K̃ − K

]+

and d(r) are obtained from simu-

lation for α = 0.01 and σ = 0.3636 and the expression for mean detection delay
(displayed above) is plotted against r in Figure 15. Note that both NODM and
NADM are threshold based, and we obtain the corresponding thresholds for a tar-
get PFA = 0.01 by simulation. These thresholds are then used to obtain the mean
detection delay by simulation. In Figure 15, we also plot the approximate mean
detection delay which is obtained through the expression for l(r) and the approx-

imation, minΠα
E
[
K̃ − K

]+

≈ | ln(α)|
NI(f1,f0)+| ln(1−pr)| . We study this approximation

as this provides an (approximate) explicit expression for the mean decision delay.
The delay in the FJQ–GPS does not have a closed form expression. Hence, we still
need simulation for the delay due to queueing network. It is to be noted that at
k = 0, the size of all the queues is set to 0. The mean detection delay due to the
procedure defined in Eqn. 24 is also plotted in Figure 15.

As would have been expected, we see from Figure 15 that the NADM procedure
has a better mean detection delay performance than the NODM procedure. Note
that σ/N = 0.03636 and hence for the queues to be stable (see Theorem 2), the
sampling rate has to be less that σ/N = 0.03636 (1/28 < 0.03636 < 1/27). As
the sampling rate r increases to 1/28 (the maximum allowed sampling rate), the
queueing delay increases rapidly. This is evident from Figure 15. Also, we see from
Figure 15 that operating at a sampling rate around 1/34(≈ 0.0294) samples/slot
would be optimum. The optimal sampling rate is found to be approximately the
same for NODM and NADM. At the optimal sampling rate the mean detection delay
of NODM is 90 slots and that of NADM is 73 slots.
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Fig. 16. Mean decision delay of NODM procedure for N × r = 1/3 is plotted against the the

number of nodes N . The plot is obtained with ρ = 0, p = 0.0005, α = 0.01 and with the sensor
observations being N (0, 1) and N (1, 1), before and after the change respectively. The components
of the mean decision delay, i.e., the coarse sampling delay (1 − α)l(r) − ρl(r), and the decision

maker delay, 1
r

minΠα
E

h

eK − K
i+

are shown on the right.

6.2 Optimal Number of Sensor Nodes (Fixed Observation Rate)

Now let us consider fixing N × r. This is the number of observations the fusion
center receives per slot in a network with N nodes sampling at a rate r (samples per
slot). It is also a measure of the energy spent by the network per slot. Since it has
been assumed that the observations are conditionally independent and identically
distributed across the sensors and over time, it is natural to ask how beneficial it
is to have more nodes sampling at a lower rate, when compared to fewer nodes
sampling at a higher rate with the number of observations per slot being the same.
With p = 0.0005, α = 0.01, and σ = 0.3636, and f0 ∼ N (0, 1) and f1 ∼ N (1, 1),
we present simulation results for two examples, the first one being Nr = 1/3 (the
case of heavily loaded network) and the second one being Nr = 1/100 (the case of
lightly loaded network, Nr ≪ σ).

Figure 16 shows the plot of mean decision delay, l(r)(1−α−ρ)+ 1
r minΠα

E
[
K̃ − K

]+

versus the number of sensors when Nr = 1/3. As N increases, the sampling rate
r = 1/(3N) decreases and hence the coarse sampling delay l(r)(1−α) increases; this
can be seem to be approximately linear by analysis of the expression for l(r) given in
Appendix – I. Also, as N increases, the decision maker gets more samples at the de-

cision instants and hence the delay due to the decision maker 1
r minΠα

E
[
K̃ − K

]+

decreases (this is evident from the right side of Figure 16). Figure 16 shows that
in the region where N is large (i.e., N > 20) or N is very small (i.e., N < 5), as
N increases, the mean decision delay increases. This is because in this region as N
increases, the decrease in the delay due to decision maker is smaller compared to
the increase in the delay due to coarse sampling. However, in the region where N
is moderate (i.e., for 5 6 N < 20), as N increases, the decrease in the delay due to
decision maker is large compared to the increase in the delay due to coarse sam-
pling. Hence in this region, the mean decision delay decreases with N . Therefore,
we infer that when N × r = 1

3 , deploying 20 nodes sampling at 1/60 samples per
slot is optimal, when there is no network delay.
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Fig. 17. Mean detection delay for N × r = 1/3 is plotted against the number of nodes N . This

was obtained with ρ = 0, p = 0.0005, α = 0.01 σ = 0.3636 and with the sensor observations being
N (0, 1) and N (1, 1), before and after the change respectively.

Figure 17 shows the mean detection delay (i.e., the network delay plus the decision
delay shown in Figure 16) versus the number of nodes N for a fixed N × r = 1/3.
As the the number of nodes N increases, the sampling rate r = 1/(3N) decreases.
For large N (and equivalently small r), in the case of NODM with the Shiryaev
procedure, the network delay, d(r) ≈ N

σ as it requires N (independent) successes,
each with probability σ, in the random access network to transport a batch of N
samples (also, since the sampling rate r is small, one would expect that a batch
is delivered before a new batch is generated) and the decision maker requires just
one batch of N samples to stop (after the change occurs). Hence, for large N , the
detection delay is ≈ l(r)(1− α) + d(r)(1− α) ≈ l(r)(1− α) + N

σ (1− α). It is to be
noted that for large N , to achieve a false alarm probability of α, the decision maker
requires Nα < N samples (the mean of the log–likelihood ratio, LLR of received
samples, after change, is the KL divergence between pdfs f1 and f0, given by
I(f1, f0) > 0. Hence, the posterior probability, which is a function of LLR, increases
with the the number of received samples. Thus, to cross a threshold of γ(α), we
need Nα samples). Thus, for large N , in the NADM procedure, the detection delay
is approximately l(r)(1 − α) + Nα

σ (1 − α), where Nα/σ is the mean network–delay
to transport Nα samples. Thus, for large N , the difference in the mean detection
delay between NODM and NADM procedures is approximately 1−α

σ (N −Nα). Note
that Nα depends only on α and hence the quantity 1−α

σ (N −Nα) increases with N .
This behaviour is in agreement with Figure 17. Also, as N × r = 1/3, we expect
the network delay to be very large (as 1/3 is close to σ = 0.3636) and hence having
a single node is optimal which is also evident from Figure 17.

It is also possible to find an example where the optimal number of nodes is
greater than 1. For example this occurs in the above setting for N × r = 0.01 (see
Figure 18). Note that having N = 10 sensors is optimal for the NADM procedure.
The NODM procedure makes the decision only when it receives a batch of N samples
corresponding to a sampling instant, whereas NADM procedure makes the decision
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Fig. 18. Mean detection delay for N ×r = 0.01 is plotted against the the number of nodes N . This

was obtained with ρ = 0, p = 0.0005, α = 0.01 and with the sensor observations being N (0, 1)
and N (1, 1), before and after the change respectively.

at every time slot irrespective of whether it receives a sample in that time slot or
not. Thus, the Bayesian update that NADM does at every time slot makes it stop
earlier than NODM.

7. CONCLUSIONS

In this work we have considered the problem of minimizing the mean detection
delay in an event detection on a small extent ad hoc wireless sensor network. We
provide two ways of processing samples in the fusion center: i) Network Oblivious
(NODM) processing, and ii) Network Aware (NADM) processing. We show that
in the NODM processing, under periodic sampling, the detection delay decouples
into decision and network delays. An important implication of this is that an
optimal sequential change detection algorithm can be used in the decision device
independently of the random access network. We also formulate and solve the
change detection problem in the NADM setting in which case the optimal decision
maker needs to use the network state in its optimal stopping rule. Also, we study
the network delay involved in this problem and show that it is important to operate
at a particular sampling rate to achieve the minimum detection delay.

Appendix – I

Proof: (Theorem 1)

min
Πα

E
[(

Ũ − T
)

I{eT>T}

]
= min

Πα

E

[
(Ũ − T̃ + T̃ −

K

r
+

K

r
− T )I{eT>T}

]

= min
Πα

{
E
[
(Ũ − T̃ )I{eT>T}

]
+ E

[(
K

r
− T

)
I{eT>T}

]

+
1

r
E
[(

K̃ − K
)

I{eT>T}

]}
(25)
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Note that in Eqn. 25, the first term is the queueing delay, the second term is the
coarse sampling delay and the third term is the decision delay (all delays being in
slots). Consider the first term,

E
[
(Ũ − T̃ )I{eT>T}

]
= E

[
(U eK − t eK)I{eT>T}

]

=
∑

j≥0,b≥0,x≥0

P
(
T = j, K̃ = b,Db = x

)
x · I{ b

r
>j}

=
∑

j≥0,b≥0,x≥0

P
(
T = j, K̃ = b

)
P (Db = x) x · I{ b

r
>j}

where we have used the facts that (i) the decision process is based on only what
the packets carry and not on their arrival time etc, and (ii) the condition that
sampling is done periodically at a known rate r. Assuming the queueing system to
be stationary, the above can be written as

E
[
(Ũ − T̃ )I{eT>T}

]
=




∑

x≥0

P (D = x) x




∑

j,b

P
(
T = j, K̃ = b

)
I{ b

r
>j}

= E[D]P
(
T̃ > T

)
.

Note that E[D] is a function of the sampling rate r, and does not depend on the
detection policy.

Consider the second term of Eqn. 25,

E

[(
K

r
− T

)
I{eT≥T}

]
= E

[(
K

r
− T

)
I{ eK≥K}

]

= E

[(
K

r
− T

)
I{ eK≥K,S0=1}

]
+ E

[(
K

r
− T

)
I{ eK≥K,S0=0}

]

For S0 = 1, we have T = 0 and K = 0. Hence,

E

[(
K

r
− T

)
I{eT≥T}

]
= 0 + E0

[(
K

r
− T

)
I{ eK≥K}

]

where E0 [·] denote the expectation and P0 (·) the probability law, when the initial
state is S0 = 0. Now,

E0

[(
K

r
− T

)
I{ eK≥K}

]
=

∞∑

b=1

∞∑

eb=b

b/r∑

t=(b−1)/r+1

P0

(
T = t,K = b, K̃ = b̃

)
·

(
b

r
− t

)

=

∞∑

b=1

∞∑

eb=b

P0

(
K = b, K̃ = b̃

)

·




b/r∑

t=(b−1)/r+1

P0

(
T = t | K = b, K̃ = b̃

)
·

(
b

r
− t

)
 (26)
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We note that K̃ is independent of T given K. Hence,

E0

[(
K

r
− T

)
I{ eK≥K}

]
=

∞∑

b=1

∞∑

eb=b

P0

(
K = b, K̃ = b̃

)

·
[ 1/r−1∑

y=0

y · P0

(
T =

b

r
− y | K = b

) ]

We have

P0 (T = t | K = b) =

{
(1−ρ)(1−p)t−1p

(1−ρ)(1−pr)b−1pr
, for t s.t. b = ⌈t · r⌉

0, otherwise.

Hence, for 0 ≤ y ≤ 1/r − 1,

P0

(
T =

b

r
− y | K = b

)
=

(1 − p)b/r−y−1p

(1 − pr)b−1pr

But, (1 − pr) = (1 − p)1/r. Hence,

P0

(
T =

b

r
− y | K = b

)
=

(1 − p)b/r−y−1p

(1 − pr)b−1pr

=
(1 − p)1/r−y−1p

1 − (1 − p)1/r

It can be shown that

1/r−1∑

y=0

y ·
(1 − p)1/r−y−1p

1 − (1 − p)1/r
=

1

r
−

(
1

p
−

1

rpr
(1 − pr)

)

=: l(r)

Therefore, Eqn. 26 can be written as

E0

[(
K

r
− T

)
I{ eK≥K}

]
= l(r) · P0

(
K̃ ≥ K

)
= l(r) ·

(
P

(
K̃ ≥ K

)
− ρ

)

= l(r) ·
(
1 − P

(
K̃ < K

)
− ρ

)

Finally, we have

min
Πα

E
[
(Ũ − T )I{eT≥T}

]

= min
Πα

{
d(r)

(
1 − P

(
T̃ < T

))
+ l(r)P0

(
T̃ ≥ T

)
+

1

r
E
[
(K̃ − K)+

]}

= min
Πα

{
(d(r) + l(r))

(
1 − P

(
T̃ < T

))
− ρ · l(r) +

1

r
E
[
(K̃ − K)+

]}

Note that, in the above equation, the first term (d(r) + l(r))
(
1 − P

(
T̃ < T

))
is
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minimum when P
(
T̃ < T

)
= α. It follows that

min
Πα

E
[
(Ũ − T )I{eT≥T}

]

> (d(r) + l(r)) (1 − α) − ρ · l(r) +
1

r
min
Πα

E
[
(K̃ − K)+

]

Also, since the optimal policy for the problem minΠα
E
[
(K̃ − K)+

]
achieves

(
1 − P

(
T̃ < T

))
=

α, we also have

(d(r) + l(r)) (1 − α) − ρ · l(r) +
1

r
min
Πα

E
[
(K̃ − K)+

]
> min

Πα

E
[
(Ũ − T )I{eT≥T}

]

It follows that

min
Πα

E
[
(Ũ − T )I{eT≥T}

]
= (d(r) + l(r)) (1 − α) − ρ · l(r) +

1

r
min
Πα

E
[
(K̃ − K)+

]

We need 1 − α > ρ or α < 1 − ρ. If α > 1 − ρ, the optimal stopping is at t = 0.

This will yield the desired probability of false alarm and E
[
(Ũ − T )I{eT≥T}

]
= 0.

Appendix – II

Proof: (Theorem 2) The necessity of Nr < σ is clear. The sufficiency proof goes as
follows. Consider the FJQ-GPS system with every queue always containing a single
dummy packet that is served at low priority. Let us call this the saturated FJQ-GPS
system. When a queue becomes empty, the low priority dummy packet contends
for service. If it receives service, then it immediately reappears and continues
to contend for service. If, while a dummy packet is in service, a regular packet
arrives, then the service of the dummy packet is preempted and the regular packet
starts contending. It follows that the service rate applied to every queue (i.e., those
with regular packets or those with dummy packets) is always σ/N . Now, consider a
virtual service process of rate σ. In each slot, a service occurs with probability σ and
the service is applied to any one of the queues with equal probability. Equivalently
each queue is served by an independent Bernoulli process of rate σ/N . Considering
only the services to the regular packets at each queue, we have a GI/M/1 queue
(here GI refers to a General distribution with Independent arrivals, M refers to
a Markovian service process and 1 refers to one server). Hence, the system has
proper stationary delay, iff r < σ/N . Also, it can be seen that the delays in the
above described system (with dummy packets when a queue is empty) upper bound
those in the original FJQ-GPS system. Hence, the result follows.

Appendix – III

Distribution of state noise N

Let q = [λ, b, δ,w, r]. Note that P
(
Mk = m

Qk = q,Θk = θ
)

= P
(
Mk = m

Qk = q
)
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and is given by

P
(
Mk = 0

Qk = q
)

=

{
1 if φN (q) = 0
1 − σ if φN (q) > 0

P
(
Mk = m

Qk = q
)

=

{
0 if φN (q) = 0

σ
φN (q) if φL(m)(q) > 0, m = 1, 2, 3, · · · , N.

where φN (q) and φL(m)(q) are obtained from Eqns. 9 and 8.

The distribution function, P
(
Ok = o

Qk = q,Θk = θ
)

= P
(
Ok = o

Qk = q,Θk = θ
)

is given by

P
(
Ok = o

Qk = q,Θk = 0
)

=





1 − p if o = 0
p if o = 1,
0 otherwise.

P
(
Ok = o

Qk = q,Θk = 1
)

=

{
1 if o = 0
0 otherwise.

Appendix – IV

Proof of Lemma–1

Let q = [λ, b, δ,w, r]. From Eqn. 17,

Πk := P
`

T 6 k
?

?Ik−1,Qk = q,Yk

´

= P
`

T 6 k − δ
?

?Ik−1,Qk = q,Yk

´

+ P
`

k − δ < T 6 k
?

?Ik−1,Qk = q,Yk

´

= P
`

T 6 k − δ
?

?Ik−1,Qk = q,Yk

´

+ P
`

T > k − δ
?

?Ik−1,Qk = q,Yk

´

· P
`

T 6 k
?

?T > k − δ, Ik−1,Qk = q,Yk

´

,

= Ψk + (1 − Ψk) · P
`

T 6 k
?

?T > k − δ, Ik−1,Qk = q,Yk

´

,

= Ψk + (1 − Ψk) ·
P (k − δ < T 6 k) P

`

Ik−1,Qk = q,Yk

?

?k − δ < T 6 k
´

P (T > k − δ) P
`

Ik−1,Qk = q,Yk

?

?T > k − δ
´

= Ψk + (1 − Ψk) ·
P (k − δ < T 6 k)

P (T > k − δ)
(27)

= Ψk + (1 − Ψk)
“

1 − (1 − p)δ
”

(28)
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Eqn. 27 is justified as follows. Note that

P
(
Ik−1,Qk = q,Yk

k − δ < T 6 k
)

= P
(
Q[0:k−1],Qk = q,X[1:Bk−1], {X

(i)
Bk

: R
(i)
k = 1}, u[0:k−1]

k − δ < T 6 k
)

= P
(
Q[0:k−1],Qk = q

k − δ < T 6 k
)

·P
(
X[1:Bk−1], {X

(i)
Bk

: R
(i)
k = 1}

k − δ < T 6 k,Q[0:k−1],Qk = q
)

·P
(
u[0:k−1]

k − δ < T 6 k,Q[0:k−1],Qk = q,X[1:Bk−1], {X
(i)
Bk

: R
(i)
k = 1}

)

= P
(
Q[0:k−1],Qk = q

)
· P

(
X[1:Bk−1], {X

(i)
Bk

: R
(i)
k = 1}

k − δ < T,Q[0:k−1],Qk = q
)

·P
(
u[0:k−1]

Q[0:k−1],Qk = q,X[1:Bk−1], {X
(i)
Bk

: R
(i)
k = 1}

)

= P
(
Q[0:k−1],Qk = q

T > k − δ
)
· P

(
X[1:Bk−1], {X

(i)
Bk

: R
(i)
k = 1}

T > k − δ,Q[0:k−1],Qk = q
)

·P
(
u[0:k−1]

T > k − δ,Q[0:k−1],Qk = q,X[1:Bk−1], {X
(i)
Bk

: R
(i)
k = 1}

)

= P
(
Ik−1,Qk = q,Yk

T > k − δ
)
.

We use the following facts in the above justification: i) the evolution of the queueing
system Qk is independent of the change point T , ii) whenever T > k − δ, the

distribution of any sample X
(i)
h , h 6 Bk is f0, and iii) the control uk = µ̃(Ik).

Appendix – V

Recursive computation of Πk

At time k, based on the index of the node that successfully transmits a packet
Mk, the set of all sample paths Ω can be partitioned based on the following events,

E1,k :=
{

ω : Mk(ω) = 0 or Mk(ω) = j > 0, R
(j)
k (ω) = 1

}

E2,k :=

{
ω : Mk(ω) = j > 0, R

(j)
k (ω) = 0,

N∑

i=1

R
(i)
k (ω) < N − 1

}

E3,k :=

{
ω : Mk(ω) = j > 0, R

(j)
k (ω) = 0,

N∑

i=1

R
(i)
k (ω) = N − 1

}
,

i.e., Ω = E1,k ∪ E2,k ∪ E3,k. We note that the above events can also be described by
using Qk and Qk+1 in the following manner

E1,k = {ω : Wk+1(ω) = Wk(ω),Rk+1(ω) = Rk(ω)}
⋃

{ω : Wk+1(ω) = Wk(ω) + ej ,Rk+1(ω) = Rk(ω)}

E2,k = {ω : Wk+1(ω) = Wk(ω),Rk+1(ω) = Rk(ω) + ej}

E3,k =

{
ω :

N∑

i=1

R
(i)
k (ω) = N − 1,∀i,W

(i)
k+1(ω) = (W

(i)
k (ω) − 1)+, R

(i)
k+1(ω) = 1

{W
(i)
k

>0}

}
.

Here, the events E1,k and E2,k represent the case Bk+1 = Bk, and the event E3,k

represents the case Bk+1 = Bk + 1 (i.e., only if the event E3,k occurs then the
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batch index is incremented). We are interested in obtaining Πk+1 from [Qk,Πk]
and Zk+1. We show that at time k + 1, the statistic Ψk+1 (after having observed
Zk+1) can be computed in a recursive manner using Ψk and Qk. Using Lemma 1
(using Eqn. 19) we compute Πk+1 from Ψk+1.

Ψk+1 = P
(
Θ̃k+1 = 1 | Ik+1

)

=

3∑

c=1

P
(
Θ̃k+1 = 1, Ec,k | Ik+1

)

=

3∑

c=1

P
(
Θ̃k+1 = 1 | Ec,k, Ik+1

)
1Ec,k

(∵ Ec,k is Ik+1 measurable)

• Case Mk = 0 or Mk = j > 0, R
(j)
k = 1:

Πk+1

= P (Θk+1 = 1 | E1,k, Ik+1)

= P (Θk+1 = 1 | E1,k, Ik,Qk+1 = q′)

=
P (Θk+1 = 1 | E1,k, Ik) · fQk+1|Θk+1,E1,k,Ik

(q′|1, E1,k, Ik)

f
Qk+1

E1,k,Ik

(q′|E1,k, Ik)
(by Bayes rule)

= P (Θk+1 = 1 | E1,k, Ik) (Qk+1 is independent of Θk+1)

= P (Θk = 0,Θk+1 = 1 | Ik) + P (Θk = 1,Θk+1 = 1 | Ik)

= (1 − Πk)p + Πk

• Case Mk = j > 0, R
(j)
k = 0,

∑N
i=1 R

(i)
k < N − 1: In this case, the sample X

(j)
Bk

is successfully transmitted and is passed on to the decision maker. The decision
maker receives just this sample, and computes Πk+1. We compute Ψk+1 from
Ψk and then we use Lemma 1 (using Eqn. 19) to compute Πk+1 from Ψk+1.

Ψk+1

= P
(
Θ̃k+1 = 1 | E2,k, Ik+1

)

= P
(
Θ̃k+1 = 1 | E2,k, Ik, [Qk+1,Yk+1] = [q′, y]

)

= P
(
Θ̃k = 0, Θ̃k+1 = 1 | E2,k, Ik, [Qk+1,Yk+1] = [q′, y]

)

+P
(
Θ̃k = 1, Θ̃k+1 = 1 | E2,k, Ik, [Qk+1,Yk+1] = [q′, y]

)

Since, we consider the case when the fusion center received a sample at time
k+1 and Bk+1 = Bk, ∆k+1 = ∆k +1 and hence, the state Θ̃k+1 = Θk+1−∆k+1

=

Θk−∆k
= Θ̃k. Thus, in this case, Ψk+1 can be written as
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Ψk+1

= P

“

eΘk = 1, eΘk+1 = 1 | E2,k, Ik, [Qk+1,Yk+1] = [q′, y]
”

(a)
=

P

“

eΘk = 1, eΘk+1 = 1 | E2,k, Ik

”

· P
“

Qk+1 = q′ | eΘk = 1, eΘk+1 = 1, E2,k, Ik

”

P(Qk+1 = q′|E2,k, Ik) · fYk+1|E2,k,Ik,Qk+1
(y|E2,k, Ik,q′)

·f
Yk+1|eΘk,eΘk+1,E2,k,Ik,Qk+1

(y | 1, 1, E2,k,q′, Ik)

(b)
=

P

“

eΘk = 1, eΘk+1 = 1 | E2,k, Ik

”

· P(Qk+1 = q′|E2,k, Ik) · f
Yk+1|eΘk

(y | 1)

P(Qk+1 = q′|E2,k, Ik) · fYk+1|E2,k,Ik,Qk+1
(y|E2,k, Ik,q′)

(c)
=

P

“

eΘk = 1, eΘk+1 = 1 | E2,k, Ik

”

· f1(y)

P

“

eΘk = 0 | E2,k, Ik,Qk+1

”

· f
Yk+1|eΘk

(y|0) + P

“

eΘk = 1 | E2,k, Ik,Qk+1

”

· f
Yk+1|eΘk

(y|1)

(d)
=

Ψkf1(y)

(1 − Ψk)f0(y) + Ψkf1(y)

We explain the steps (a), (b), (c), (d) below.
(a) By Bayes rule, for events A,B,C,D,E, F , we have

P (AB | CDEF ) =
P (AB | CD) P (E | ABCD) P (F | ABCDE)

P (E | CD) P (F | CDE)

(b) Qk+1 is independent of Θ̃k, Θ̃k+1. Also, given Θ̃k, Yk+1 is independent of

Θ̃k+1, E2,k, Ik,Qk+1

(c) For any events A,B, and a continuous random variable Y , the conditional
density function fY |A(y|A) = P (B | A) fY |AB(y|AB)+P (Bc | A) fY |ABc(y|ABc).

Also, given Θ̃k, Yk+1 is independent of E2,k, Ik,Qk+1

(d) E2,k is [Ik,Qk+1] measurable, and hence, given [Ik,Qk+1], Θ̃k is independent
of E2,k.

• Case Mk = j > 0, R
(j)
k = 0,

∑N
i=1 R

(i)
k = N − 1: In this case, at time k + 1, the

decision maker receives the last sample of batch Bk, X
(j)
Bk

(that is successfully
transmitted during slot k) and the samples of batch Bk + 1, if any, that are
queued in the sequencer buffer. We compute Ψk+1 from Ψk and then we use
Lemma 1 (using Eqn. 19) to compute Πk+1 from Ψk+1. In this case, the decision

maker receives n :=
∑N

i=1 1
{W

(i)
k

>0}
samples of batch Bk + 1. Also, note that n

is Ik measurable.

Ψk+1 = P
(
Θ̃k+1 = 1 | E3,k, Ik+1

)

= P
(
Θ̃k+1 = 1 | E3,k, Ik, [Qk+1,Yk+1] = [q′,y]

)

= P
(
Θ̃k = 0, Θ̃k+1 = 1 | E3,k, Ik, [Qk+1,Yk+1] = [q′,y]

)

+P
(
Θ̃k = 1, Θ̃k+1 = 1 | E3,k, Ik, [Qk+1,Yk+1] = [q′,y]

)

Since, we consider the case Bk+1 = Bk + 1, ∆k+1 = ∆k + 1− 1/r and hence, the

state Θ̃k+1 = Θk+1−∆k+1
= Θk−∆k+1/r.
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Let y = [y0, y1, · · · , yn]. Consider

P

“

eΘk = eθ, eΘk+1 = 1 | E3,k, Ik, [Qk+1,Yk+1] = [q′,y]
”

(a)
=

P

“

eΘk = eθ, eΘk+1 = 1 | E3,k, Ik

”

· P
“

Qk+1 = q′ | eΘk = eθ, eΘk+1 = 1, E3,k, Ik

”

P(Qk+1 = q′|E3,k, Ik) · fYk+1|E3,k,Ik,Qk+1
(y|E3,k, Ik,q′)

·f
Yk+1|eΘk,eΘk+1,E3,k,Ik,Qk+1

(y | eθ, 1, E3,k,q′, Ik)

(b)
=

P

“

eΘk = eθ, eΘk+1 = 1 | E3,k, Ik

”

· P(Qk+1 = q′|E3,k, Ik) · feθ
(y0)

Qn
i=1 f1(yi)

P(Qk+1 = q′|E3,k, Ik) · fYk+1|E3,k,Ik,Qk+1
(y|E3,k, Ik,q′)

(c)
=

P

“

eΘk = eθ | E3,k, Ik

”

· P
“

eΘk+1 = 1 | eΘk = eθ, E3,k, Ik

”

· feθ
(y0)

Qn
i=1 f1(yi)

P1
eθ′=0

P1
eθ′′=0

P

“

eΘk = eθ′, eΘk+1 = eθ′′, | E3,k, Ik,Qk+1

”

· f
Yk+1|eΘk,eΘk+1E3,k,Ik,Qk+1

(y|eθ′, eθ′′, E3,k, Ik,q′)
.

We explain the steps (a), (b), (c) below.

(a) By Bayes rule, for events A,B,C,D,E, F , we have

P (AB | CDEF ) =
P (AB | CD) P (E | ABCD) P (F | ABCDE)

P (E | CD) P (F | CDE)

(b) Qk+1 is independent of Θ̃k, Θ̃k+1. Also, given Θ̃k, Yk+1,0 is independent of

Θ̃k+1, E3,k, Ik,Qk+1, and given Θ̃k+1, Yk+1,i is independent of Θ̃k, E3,k, Ik,Qk+1.
It is to be noted that given the state of nature, the sensor measurements
Yk+1,0, Yk+1,1, · · · , Yk+1,n are conditionally independent.

(c) For any events A,B, and a continuous random variable Y , the conditional
density function fY |A(y|A) = P (B | A) fY |AB(y|AB)+P (Bc | A) fY |ABc(y|ABc).

Also, given Θ̃k, Yk+1 is independent of E3,k, Ik,Qk+1

It is to be noted that the event E3,k is [Ik,Qk+1] measurable, and hence, given

[Ik,Qk+1], Θ̃k is independent of E3,k. Thus, in this case,

Ψk+1 =
(1 − Ψk)prf0(y0)

Qn
i=1 f1(yi) + Ψkf1(y0)

Qn
i=1 f1(yi)

(1 − Ψk)(1 − pr)f0(y0)
Qn

i=1 f0(yi) + (1 − Ψk)prf0(y0)
Qn

i=1 f1(yi) + Ψkf1(y0)
Qn

i=1 f1(yi)
.

Thus, using Lemma 1 (using Eqn. 19), we have

Πk+1 = Ψk+1 + (1 − Ψk+1)(1 − (1 − p)∆k+1)

=: φΨ(Ψk,Zk+1) + (1 − φΨ(Ψk,Zk+1)) (1 − (1 − p)∆k+1)

= φΨ

(
Πk − (1 − (1 − p)∆k)

(1 − p)∆k
,Zk+1

)

+

(
1 − φΨ

(
Πk − (1 − (1 − p)∆k)

(1 − p)∆k
,Zk+1

))
(1 − (1 − p)∆k+1)

=: φΠ ([Qk,Πk],Zk+1) .

Appendix – VI

Structure of τ∗ We use the following Lemma to show that J∗(q, π) is concave in π.
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Lemma 2 If f : [0, 1] → R is concave, then the function h : [0, 1] → R defined by

h(y) = Eφ(x)

[
f

(
y · φ2(x) + (1 − y)pr · φ1(x)

y · φ2(x) + (1 − y)pr · φ1(x) + (1 − y)(1 − pr) · φ0(x)

)]

is concave for each x, where φ(x) = y ·φ2(x)+(1−y)pr ·φ1(x)+(1−y)(1−pr)·φ0(x),
0 < pr < 1, and φ0(x), φ1(x), and φ2(x) are pdfs on X.

Proof. See Appendix – I of [Premkumar and Kumar 2008].

Note that in the finite H–horizon (truncated version of Eqn. 21), we note from value
iteration that the cost–to–go function, for a given q, JH

H ([q, π]) = 1 − π is concave
in π. Hence, by Lemma 2, we see that for any given q, the cost–to–go functions
JH

H−1([q, π]), JH
H−2([q, π]), · · · , JH

0 ([q, π]) are concave in π. Hence for 0 ≤ λ ≤ 1,

J∗([q, π]) = lim
H→∞

JH
0 ([q, π])

J∗([q, λπ1 + (1 − λ)π2]) = lim
H→∞

JH
0

(
[q, λπ1 + (1 − λ)π2]

)

≥ lim
H→∞

λJH
0 ([q, π1]) + lim

H→∞
(1 − λ)JH

0 ([q, π2])

= λJ∗([q, π1]) + (1 − λ)J∗([q, π2])

It follows that for any given q, J∗([q, π]) is concave in π.
Define the map ξ : Q×[0, 1] → R+ as ξ([q, π]) := 1−π and the map κ : Q×[0, 1] →

R+, as κ([q, π]) := c·π+AJ∗([q, π]) = c·π+E

[
J∗ ([Qk+1, φΠ(νk,Zk+1)])

νk = [q, π]

]
.

Note that ξ([q, 1]) = 0, κ([q, 1]) = c, ξ([q, 0]) = 1 and

κ([q, 0]) = E

[
J∗ ([Qk+1, φΠ(νk,Zk+1)])

νk = [q, 0]

]

(2)
= E

[
J∗ ([φQ(Qk,Mk), φΠ(νk,Zk+1)])

νk = [q, 0]

]

=

N∑

m=0

E

[
J∗ ([φQ(q,m), φΠ(νk,Zk+1)])

Mk = m, νk = [q, 0]

]
P

(
Mk = m

νk = [q, 0]

)

(4)

6

N∑

m=0

J∗

([
φQ(q,m),E

[
φΠ(νk,Zk+1)

Mk = m, νk = [q, 0]

]])
P

(
Mk = m

νk = [q, 0]

)

=

N∑

m=0

J∗ ([φQ(q,m), p) P

(
Mk = m

νk = [q, 0]

)

(6)

6

N∑

m=0

(1 − p) · P

(
Mk = m

νk = [q, 0]

)

= 1 − p < 1

where in the above derivation, we use the evolution of Qk in step 2, the Jensen’s
inequality (as for any given q, J∗(q, π) is concave in π) in step 4, and the inequality
J∗(q, π) 6 1 − π in step 6.
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Note that κ([q, 1])− ξ([q, 1]) > 0 and κ([q, 0])− ξ([q, 0]) < 0. Also, for a fixed q,
the function κ([q, π]) − ξ([q, π]) is concave in π. Hence, by the intermediate value
theorem, for a fixed q, there exists γ(q) ∈ [0, 1] such that κ([q, γ]) = ξ([q, γ]). This
γ is unique as κ([q, π]) = ξ([q, π]) for at most two values of π. If in the interval
[0, 1], there are two distinct values of π for which κ([q, π]) = ξ([q, π]), then the
signs of κ([q, 0]) − ξ([q, 0]) and κ([q, 1]) − ξ([q, 1]) should be the same. Hence,

τ∗ = inf {k : Πk > γ(Qk)}

where the threshold γ(q) is given by c · γ(q) + AJ∗([q, γ(q)]) = 1 − γ(q).
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