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Abstract—We study the trade-off between delivery delay and
energy consumption in a delay tolerant network in which a
message (or a file) has to be delivered to each of several
destinations by epidemic relaying. In addition to the destinations,
there are several other nodes in the network that can assist in
relaying the message. We first assume that, at every instant, all
the nodes know the number of relays carrying the packet and
the number of destinations that have received the packet. We
formulate the problem as a controlled continuous time Markov
chain and derive the optimal closed loop control (i.e., forwarding
policy). However, in practice, the intermittent connectivity in
the network implies that the nodes may not have the required
perfect knowledge of the system state. To address this issue,
we obtain an ODE (i.e., fluid) approximation for the optimally
controlled Markov chain. This fluid approximation also yields
an asymptotically optimal open loop policy. Finally, we evaluate
the performance of the deterministic policy over finite networks.
Numerical results show that this policy performs close to the
optimal closed loop policy.

I. INTRODUCTION

Delay tolerant networks (DTNs) [1] are sparse wireless ad

hoc networks with highly mobile nodes. In these networks,

the link between any two nodes is up when these are within

each other’s transmission range, and is down otherwise. In

particular, at any given time, it is unlikely that there is a

complete route between a source and its destination.

We consider a DTN in which a short message (also referred

to as a packet) needs to be delivered to multiple (say, M )

destinations. There are also N potential relays that do not

themselves “want” the message but can assist in relaying

it to the nodes that do. At time t = 0, N0 of the relays

have copies of the packet. All nodes are assumed to be

mobile. In such a network, a common technique to improve

packet delivery delay is epidemic relaying [2]. We consider a

controlled relaying scheme that works as follows. Whenever a

node (relay or destination) carrying the packet meets a relay

that does not have a copy of the packet, then the former has

the option of either copying or not copying. When a node that

has the packet meets a destination that does not, the packet

can be delivered.

The authors’ work on this paper was supported by the Indo-French Center
for the Promotion of Advanced Research (IFCPAR), Project 4000-IT-1, and
by DAWN (an Associates program of INRIA, France).

We want to minimize the duration to copy the packet to

a significant (say α) fraction of the destinations receive the

packet; we refer to this duration as delivery delay. On the

one hand, copying the packet to a relay incurs a transmission

cost. On the other hand, this copying increases the number

of carriers of the packet and thereby potentially reduces the

delivery delay. We focus on the problem of the control of

forwarding.

Related work: Analysis and control of DTNs with single-

source and single-destination has been widely studied. Groen-

evelt et al. [3] modeled epidemic relaying and two-hop re-

laying using Markov chains, and derived the average delay

and number of copies generated until the time of delivery.

Zhang et al. [4] developed a unified framework based on

ordinary differential equations to study epidemic routing and

its variants.

Neglia and Zhang [5] were the first to study the optimal

control of relaying in DTNs with a single destination and

multiple relays. They assumed that all the nodes have perfect

knowledge of the number of nodes carrying the packet. Their

optimal closed loop control is a threshold policy - when a relay

that does not have a copy of the packet is met, the packet

is copied if and only if the number of relays carrying the

packet is below a threshold. Due to the assumption of complete

knowledge, the performance reported is a lower bound for the

cost in a real system.

Altman et al. [6] addressed the optimal relaying problem for

a class of monotone relay strategies which includes epidemic

relaying and two-hop relaying. In particular, they derived static

and dynamic relaying policies. Altman et al. [7] considered

optimal discrete-time two-hop relaying. They also employed

stochastic approximation to facilitate online estimation of

network parameters. In another paper, Altman et al. [8] consid-

ered a scenario where active nodes in the network continuously

spend energy while beaconing. Their paper studied the joint

problem of node activation and transmission power control.

These works ([6], [7], [8]) heuristically obtain fluid approxi-

mations for DTNs and study open loop controls. Li et al. [9]

considered several families of open loop controls and obtain

optimal controls within each family.

Deterministic fluid models expressed as ordinary differential

equations have been used to approximate large Markovian
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systems. Kurtz [10] obtained sufficient conditions for the

convergence of Markov chains to such fluid limits. Dar-

ling [11] and subsequently, Darling and Norris [12] general-

ized Kurtz’s results. Darling [11] considers the scenario when

the Markovian system satisfies the conditions in [10] only

over a given set. He shows that the scaled processes, until

they exit from this set, converge to a fluid limit. Darling and

Norris [12] generalize the conditions for convergence, e.g.,

uniform convergence of the mean drifts of Markov chains and

Lipschitz continuity of the limiting drift function, prescribed

in [10]. Gast and Gaujal [13] use differential inclusions to

address the scenario where the limiting drift functions are not

continuous, and hence the differential equations are not well

defined. Gast et al. [14] study an optimization problem on a

large Markovian system. They show that solving the limiting

deterministic problem yields an asymptotically optimal policy

for the original problem.

Our Contributions:We formulate the problem as a controlled

continuous time Markov chain (CTMC) [15], and obtain the

optimal policy (Section III). The optimal policy relies on

complete information of the network state, but availability of

such information is constrained by the same connectivity prob-

lem that limits packet delivery. In the incomplete information

setting, the decisions of the nodes would have to depend upon

their beliefs about the network state. The nodes would need to

update their beliefs continuously with time, and also after each

meeting with another node. Such belief updates would involve

maintaining a complex information structure and are often

impractical for nodes with limited memory and computation

capability. Moreover, designing closed loop controls based

on beliefs is a difficult task [16], more so in our context

with multiple decision makers and all of them equipped with

distinct partial information.

In view of the above difficulties, we adopt the following

approach. We show that when the number of nodes is large, the

optimally controlled network evolution is well approximated

by a deterministic dynamical system (Section IV). Towards

this, we extend the existing differential equation approximation

results to Markovian systems [10], [11] for which the mean

drift rates are discontinuous and do not converge uniformly.

The limiting deterministic dynamics then suggests a deter-

ministic control (for the finite network) that is asymptotically

optimal. Our notion of asymptotically optimality is identical

to the one proposed in [14]. Our numerical results illustrate

that the deterministic policy performs close to the complete

information optimal closed loop policy for a wide range of

parameter values (Section V). We omit some of the proofs for

lack of space. All the proofs can be found in our technical

report [17].

II. THE SYSTEM MODEL

We consider a set of K := M + N mobile nodes. These

include M destinations and N relays. At t = 0, a packet

is generated and immediately copied to N0 relays (e.g., via

a broadcast from a cellular network). Alternatively, these N0

nodes can be thought of as source nodes.

1) Mobility Model: We model the point process of the

meeting instants between pairs of nodes as independent Pois-

son point processes, each with rate λ. Groenevelt et al. [3]

validate this model for a number of common mobility mod-

els (random walker, random direction, random waypoint). In

particular, they establish its accuracy under the assumptions

of small communication range and sufficiently high speed of

nodes.

2) Communication Model: Two nodes may communicate

only when they come within transmission range of each

other, i.e., at the so called meeting instants. The transmissions

are assumed to be instantaneous. We assume that that each

transmission of the packet incurs unit energy expenditure at

the transmitter.

3) Relaying Model: We assume that a controlled epidemic

relay protocol is employed.

Throughout, we use the terminology relating to the spread

of infectious diseases. A node with a copy of the packet is said

to be infected. A node is said to be susceptible until it receives

a copy of the packet from another infected node. Thus at t = 0,

N0 nodes are infected while M +N −N0 are susceptible.

A. The Forwarding Problem

The packet has to be disseminated to all the M destinations.

However, the goal is to minimize the duration until a fraction

α (α < 1) of the destinations receive the packet.

At each meeting epoch with a susceptible relay, an infected

node (relay or destination) has to decide whether to copy the

packet to the susceptible relay or not. Copying the packet

incurs unit cost, but promotes the early delivery of the packet

to the destinations. We wish to find the trade-off between these

costs by minimizing

E{Td + γEc} (1)

where Td is the time until which at least Mα := ⌈αM⌉ desti-

nations receive the packet, Ec is the total energy consumption

due to transmissions of the packet and γ is the parameter that

relates energy consumption cost to delay cost. Varying γ helps

studying the trade-off between the delay and the energy costs.

III. OPTIMAL FORWARDING

We derive the optimal forwarding policy under the as-

sumption that, at any instant of time, all the nodes have full

information about the number of relays carrying the packet

and the number of destinations that have received the packet.

A. The MDP Formulation

Let tk, k = 1, 2, . . . denote the meeting epochs of the

infected nodes (relays or destinations) with the susceptible

nodes. Let t0 := 0 and define δk := tk − tk−1 for k ≥ 1.

Let m(t) and n(t) be the numbers of infected destinations

and relays, respectively, at time t. In particular, m(0) = 0
and n(0) = N0, and the forwarding process stops at time t if

m(t) = M . We use mk and nk to mean M(tk−) and N(tk−)
respectively. Let ek describe the type of the susceptible node

that an infected node meets at tk; ek ∈ E := {d, r} where d
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and r stand for destination and relay, respectively. The state

of the system at a meeting epoch tk is given by the tuple

sk := (mk, nk, ek).

Since the forwarding process stops at time t if m(t) = M , the

state space is [M − 1] × [N0 : N ] × E .1

Let uk be the action of the infected node at meeting epoch

tk, k = 1, 2, . . . . The control space is U ∈ {0, 1}, where 1 is

for copy and 0 is for do not copy. The embedding convention

described above is shown in Figure 1.

  

tk−1 tk tk+1

uk+1ukuk−1

ek−1 ek ek+1

δk+1δk

nk−1
mk−1

nk
mk mk+1

nk+1

Fig. 1. Evolution of the controlled Markov chain {sk}. Note that (mk, nk)
is embedded at tk−.

We treat the tuple (δk+1, ek+1) as the random disturbance

at epoch tk. Note that for k = 1, 2, . . . , the time between suc-

cessive decision epochs, δk, is independent and exponentially

distributed with parameter (mk + nk)(M +N −mk − nk)λ.

Furthermore, with “w.p.” standing for “with probability”, we

have

ek =

{

d w.p. pmk,nk
(d) := M−mk

M+N−mk−nk

,

r w.p. pmk,nk
(r) := N−nk

M+N−mk−nk

.

1) Transition Structure: From the description of the system

model, the state at time tk+1 is given by sk+1 = (mk +
uk, nk, ek+1) if ek = d, and sk+1 = (mk, nk + uk, ek+1)
if ek = r. Recall that ek+1 is a component in the random

disturbance. Thus the next state is a function of the current

state, the current action and the current disturbance as required

for an MDP.

2) Cost Structure: For a state action pair (sk, uk) the

expected single stage cost is given by

g(sk, uk) = γuk + E
{

δk+11{mk+1<Mα}

}

.

Furthermore, it can be observed that

g(sk, uk) =











γuk if sk is such that mk ≥Mα

γ if sk = (Mα − 1, n, d) and uk = 1

γuk + Cd(sk, uk) otherwise,

where

Cd(sk, uk) =
1

(mk + nk + uk)(M +N −mk − nk − uk)λ

1We use notation [a] = {0, 1, . . . , a} and [a : b] = {a, a + 1, . . . , b} for
b ≥ a + 1 and a, b ∈ Z+.

is the mean time until the next decision epoch. The quantity

γ is expended whenever uk = 1, i.e., the action is to copy.

3) Policies: A policy π is a sequence of mappings {uπ
k , k =

1, 2, . . . }, where uπ
k : [M − 1]× [N0 : N ]×E → U . The cost

of an admissible policy π starting at a meeting epoch and state

s = (m,n, e) is

Jπ(s) =
∞
∑

k=0

E

{

g(sk, u
π
k (sk))

∣

∣s0 = s
}

.

Let Π be the set of all admissible policies. Then the optimal

cost function is defined as

J(s) = min
π∈Π

Jπ(s).

A policy π is called stationary if uπ
k are identical, say u, for

all k. For brevity we refer to such a policy as the stationary

policy u. A stationary policy u∗ ≡ {u∗, u∗, . . . } is optimal if

Ju∗(s) = J(s) for all states s.

4) Total Cost: We can translate the optimal cost to go from

the first meeting instant into optimal total cost. Recall that

at the first decision instant t1, the state s1 is (0, N0, r) or

(0, N0, d) depending on whether the susceptible node met is

a relay or a destination. The objective function (1) can then

be restated as

Eπ{Td + γEc} =
1

λN0(M +N −N0)
+

(

N −N0

M +N −N0

Jπ(0, N0, r) +
M

M +N −N0
Jπ(0, N0, d)

)

, (2)

where the subscript π shows dependence on the underlying

policy. In the right hand side, 1
λN0(M+N−N0)

is the average

delay until the first decision instant which has to be borne

under any policy.

B. Optimal Policy

Since the single stage cost g(·) takes nonnegative values for

all possible values of its arguments, Proposition 1.1 in [15,

Chapter 3] implies that the optimal cost function will satisfy

the following Bellman equation. For s = (m,n, e),

J(s) = min
u∈{0,1}

A(s, u)

where A(s, u) = g(s, u) + E (J(s′)|s, u) .

Here s′ denotes the next state which depends on s, u and the

random disturbance in accordance with the transition structure

described above. The expectation is taken with respect to the

random disturbance. Furthermore, since the action space is

finite, there exists a stationary optimal policy u∗ such that, for

all s, u∗(s) attains minimum in the above Bellman equation

(see [15, Chapter 3]). In the following we characterize this

stationary optimal policy.

First, observe that it is always optimal to copy to a destina-

tion, that is, the optimal policy satisfies u∗(m,n, d) = 1 for all

(m,n) ∈ [M − 1] × [N0 : N ]. Moreover, once the α fraction

of destinations have gotten the packet, no further delay cost is
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incurred, and so relays are of no further help: u∗(m,n, r) = 0
for all (m,n) ∈ [Mα : M − 1] × [N0 : N ].

Next, focus on a reduced state space [Mα − 1] × [N0 :
N ] × {r}. Consider the following one step look ahead

policy [15, Section 3.4]. At each meeting with a susceptible

relay, compare the following two action sequences.

1) 0s: do not copy and stop where “stop” means that no

copying is done to susceptible relays in future as well,

2) 1s: copy to this relay and then stop.

The infected node chooses action 0 or 1 depending on whether

0s or 1s has lesser cost. Formally, consider a network state

(m,n, r). The costs to go corresponding to the action se-

quences 0s and 1s are, respectively,

J0s(m,n, r) = (M −m)γ +

Mα−1
∑

j=m

1

λ(n+ j)(M − j)
and

J1s(m,n, r) = (M −m+ 1)γ +

Mα−1
∑

j=m

1

λ(n+ j + 1)(M − j)
.

The differences of costs to go are given by

Φ(m,n) := J0s(m,n, r) − J1s(m,n, r)

=

Mα−1
∑

j=m

1

λ(n+ j)(n+ j + 1)(M − j)
− γ (3)

for all (m,n) ∈ [Mα−1]× [N0 : N ]. The one step look ahead

policy uo : [Mα − 1] × [N0 : N ] × {r} → U is

uo(m,n, r) =

{

1 if Φ(m,n) > 0,

0 if Φ(m,n) ≤ 0.

One step look ahead policies have been shown to be optimal

for stopping problems under certain conditions (see [18, Sec-

tion 4.4] and [15, Section 3.4]). However, our problem is not

a stopping problem. More precisely, action 0 in our problem

is not equivalent to stop as the resulting state is not a terminal

state; a susceptible relay that is met in future may be copied

even if the one met at present is not. Nonetheless, we prove

that the above one step look ahead policy is the optimal policy

for our forwarding problem.

Furthermore, we can extend the definition of Φ(m,n) to all

(m,n) ∈ [M −1]× [N0 : N ]. We use the standard convention

that a sum over an empty index set is 0. Thus, for m ≥Mα,

Φ(m,n) = −γ, and so uo(m,n, r) = 0 which is consistent

with the optimal policy. Hence, we get the following theorem.

Theorem 3.1: The optimal policy u∗ : [M − 1] × [N0 :
N ] × E → U satisfies

u∗(m,n, e) =











1 if e = d,

1 if e = r and Φ(m,n) > 0,

0 if e = r and Φ(m,n) ≤ 0.

Proof: See Appendix A.

Remarks 3.1: Observe that Φ(m,n) is decreasing in m for

a given n and also decreasing in n for a given m. Thus the

optimal policy has the following properties.

1) If u∗(m,n, r) = 0, then u∗(i, n, r) = 0 for all m < i < M .

2) If u∗(m,n, r) = 0, then u∗(m, j, r) = 0 for all n < j < N .

Thus the optimal solution can be given a “stopping” in-

terpretation. More precisely, if the packet is not copied at a

meeting with a susceptible relay, it is not copied to relays in

future meetings. A priori however, we did not know if such a

“stopping” was optimal.

We illustrate the optimal policy using an example. Let M =
15, N = 50, N0 = 10, α = 0.8, λ = 0.001 and γ = 1. The

shaded region in Figure 2 corresponds to the states in which

the optimal action (at meeting with a relay) is to copy. Thus,

for example, if 5 destinations have the packet, then relays are

copied if and only if there are 24 or less infected relays. If 7
destinations already have the packet and there are 20 infected

relays, then no further copying to relays is done.

0 10 20 30 40 50
0

5

10

15

m
 (

in
fe

c
te

d
 d

e
s
ti
n

a
ti
o

n
s
)

n (infected relays)

Fig. 2. An illustration of the optimal policy. The symbols ’X’ mark the
states in which the optimal action (at meeting with a relay) is to copy

IV. ASYMPTOTICALLY OPTIMAL FORWARDING

In states [Mα − 1] × [N0 : N ] × {r}, the optimal action,

which is governed by the function Φ(m,n), requires perfect

knowledge of the network state (i.e., m and n). However this

may not be available to the decision maker due to intermittent

connectivity. In this section, we derive an asymptotically

optimal policy that does not require knowledge of network’s

state but depends only on the time elapsed since the gener-

ation of the packet. Such a policy is implementable if the

packet is time-stamped on generation and nodes’ clocks are

synchronized.

A. Asymptotic Deterministic Dynamics

Our analysis closely follows Darling [11]. It is straightfor-

ward to show that following are the conditional expected drift

rates of the optimally controlled CTMC. For (m(t), n(t)) ∈
[M − 1] × [N0 : N ],

dE(m(t)|(m(t), n(t)))

dt
= λ(m(t) + n(t))(M −m(t)),

dE(n(t)|(m(t), n(t)))

dt
= λ(m(t) + n(t))(N − n(t))

1{Φ(m(t),n(t))>0}.
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Recalling that K = M + N , we study large K asymptotics.

Towards this, we normalize the system variables and parame-

ters as follows.

X =
M(K)

K
, Y =

N(K)

K
,

Xα =
αM(K)

K
, Y0 =

N0(K)

K
,

λ(K) =
Λ

K
, γ(K) =

Γ

K
,

xK(t) =
m(t)

K
and yK(t) =

n(t)

K
.











































(4)

Remarks 4.1: The pairwise meeting rate and the copying

cost both must scale down as K increases. Otherwise, the

delivery delay will be negligible and the total transmission cost

will be enormous for any policy, and no meaningful analysis

is possible.

Now, for (xK(t), yK(t)) ∈ [0,X−1/K]× [Y0, Y ], the drift

rates can be rewritten as follows.2

dE(xK(t)|(xK(t), yK(t)))

dt
= fK

1 (xK(t), yK(t))

:= Λ(xK(t) + yK(t))(X − xK(t)),

dE(yK(t)|(xK(t), yK(t)))

dt
= fK

2 (xK(t), yK(t))

:= Λ(xK(t) + yK(t))(Y − yK(t))1{φK(xK(t),yK(t))>0},

where

φK(x, y) =

⌈KXα⌉−1
∑

j=Kx

1

KΛ(y + j

K
)(y + j+1

K
)(X − j

K
)
− Γ.

We also define x(t), y(t) ∈ [0,X] × [Y0, Y ] as functions

satisfying the following ODEs: x(0) = 0, y(0) = Y0, and

for t ≥ 0,

dx(t)

dt
= f1(x(t), y(t)) := Λ(x(t) + y(t))(X − x(t)),

dy(t)

dt
= f2(x(t), y(t)) := Λ(x(t) + y(t))(Y − y(t))

1{φ(x(t),y(t))>0}

where3

φ(x, y) =

∫ Xα

z=x

dz

Λ(y + z)2(X − z)
− Γ.

Finally, we define

τK = inf{t ≥ 0 : xK(t) ≥ Xα}, (5)

τ = inf{t ≥ 0 : x(t) ≥ Xα}. (6)

Note that τK is a stopping time for the random process

(xK(t), yK(t)). Since fK
1 (x, y) is bounded away from zero,

τK < ∞ with probability 1. Similarly, τ < ∞, and is also a

deterministic time instant.

2More precisely, (xK(t), yK(t)) lies on a scaled two-dimensional integer
lattice of the from (i/K, j/K) for some i, j ∈ Z+.

3We use the convention that an integral assumes 0 value if its lower limit
exceeds the upper limit. So, φ(x, y) = −Γ if x ≥ Xα.

We now prove the following result which is similar to [11,

Theorem 2.8].

Theorem 4.1: Assume that α < 1 and Y0 > 0. Then, for

every ǫ, δ > 0,

lim
K→∞

P

(

sup
0≤t≤τ

‖(xK(t), yK(t) − (x(t), y(t))‖ > ǫ

)

= 0,

lim
K→∞

P
(

|τK − τ | > δ
)

= 0.

Proof: We give only an outline of the proof; for details

see [17]. Observe that fK
2 (x, y) does not converge uniformly

to f2(x, y), and f2(x, y) is not Lipschitz over [0,Xα]×[Y0, 1].
Hence, the results of Darling [11] do not directly apply in our

context. However, we use the facts that

(a) φK(x, y) converges uniformly to φ(x, y),
(b) the drift rates, f1(x, y) and f2(x, y), are bounded from

below and above,

(c) f1(x, y) is Lipschitz and f2(x, y) is locally Lipschitz, and

(d) for all small enough ν ∈ R, and all (x, y) on the graph of

’φ(x, y) = ν’, the direction in which the ODE progresses,

(f1(x, y), f2(x, y)), is not tangent to the graph.

As a consequence of fact (a) we can obtain a “tube” around

the curve ‘φ(x, y) = 0’ such that, for large enough K, the

curve ‘φK(x, y) = 0’ is inside the tube. Outside the tube the

dynamics of the ODE is Lipschitz. Hence, from Darling [11],

the ODE is a good approximation of the controlled Markov

chain until one of them hits the tube. Facts (b) and (d), along

with the dynamics of the controlled Markov chain, imply that

both exit the tube within a short time, and therefore their

separation is controlled when they enter the other side of the

tube. From then on the result in Darling [11] applies.

We illustrate Theorem 4.1 using an example. Let X =
0.2, Y = 0.8, α = 0.8, Y0 = 0.2,Λ = 0.05 and Γ = 50.

In Figure 3, we plot (x(t), y(t)) and sample trajectories of

(xK(t), yK(t)) for K = 100, 200 and 500. We indicate the

states at which the optimal policy stops copying to relays,

i.e., φK(xK(t), yK(t)) goes below 0 (see Theorem 3.1) and

the states at which the fraction of infected destinations crosses

Xα. We also show the corresponding states in the fluid model.

The plots show that for large K, the fluid model captures very

well the random dynamics of the network.

B. Asymptotically Optimal Policy

Observe that φ(x, y) is decreasing in x and y both of which

increase with t. Consequently φ(x(t), y(t)) decreases with t.
We define

τ∗ := inf{t ≥ 0 : φ(x(t), y(t)) ≤ 0}. (7)

The limiting deterministic dynamics suggests the following

policy u∞ for the original forwarding problem.4

4Observe that the policy u∞ does not require knowledge of m and n. The
infected node readily knows the type of the susceptible node (d or r) at the
decision epoch.

232



0 20 40 60
0

0.05

0.1

0.15

0.2

t

x
(t

) 
a
n
d
 x

K
(t

)

 

 

x(t)

K=100

K=200

K=500

0 20 40 60
0

0.2

0.4

0.6

0.8

t

y
(t

) 
a
n
d
 y

K
(t

)

 

 

y(t)

K=100

K=200

K=500

Fig. 3. Simulation results: The top and bottom sub-plots respectively
show the fractions of infected destinations and relays as a function of time.
(xK(t), yK(t)) are obtained from a simulation of the controlled CTMC, and
(x(t), y(t)) from the ODEs. The marker ’X’ indicates the states at which
copying to relays is stopped whereas ’O’ indicates the states at which α
fraction of destinations have been copied.

u∞(m,n, e) =











1 if e = d,

1 if e = r and t ≤ τ∗,

0 if e = r and t > τ∗.

We show that the policy u∞ is asymptotically optimal in the

sense that its expected cost approaches the expected cost of

the optimal policy u∗ as the network grows. Gast et al. [14]

have also defined a similar notion of asymptotic optimality.

Let us restate (2) as

E
K
π {Td + γEc} =

1

KΛY0(1 − Y0)
+

(

Y − Y0

1 − Y0

Jπ(0, Y0, r) +
X

1 − Y0
Jπ(0, Y0, d)

)

.

We have used superscript K to show the dependence of cost

on the network size. Then, we establish the following result.

Theorem 4.2:

lim
K→∞

(

E
K
u∞{Td + γEc} − E

K
u∗{Td + γEc}

)

= 0.

Proof: See [17].

Distributed Implementation: We now describe how the

asymptotically optimal policy is implemented in distributed

fashion. Assume that all the nodes are time synchronized.5

5In practice, due to variations in the clock frequency, the clocks at
different nodes will drift from each other. But the time differences are
negligible compared to the delays caused by intermittent connectivity in the
network. Moreover, when an infected node meets a susceptible node, clock
synchronization can be performed before the packet is copied.

Suppose that the packet is generated at the source at time

t0 (we assumed t0 = 0 for the purpose of analysis). Given

the system parameters M,N,α,N0, λ and γ, the source first

extracts X,Y,Xα, Y0,Λ and Γ as in (4). Then, it calculates

τ∗ (see (7)), and stores t0 + τ∗ as a header in the packet.

The packet is immediately copied to N0 relays. When an

infected node meets a susceptible relay, it compares t0 + τ∗

with the current time. The susceptible relay is not copied to

if the current time exceeds t0 + τ∗. However, all the infected

nodes continue to carry the packet, and to copy to susceptible

destinations as and when they meet.

V. NUMERICAL RESULTS

We now show some numerical results to demonstrate the

performance of the deterministic control. Let X = 0.2, Y =
0.8, α = 0.8, Y0 = 0.2 and γ = 0.5. We vary λ from 0.00005
to 0.05 and use K = 50, 100 and 200. In Figure 4, we plot

the total number of copies to relays and the delivery delays

corresponding to both the optimal and the asymptotically opti-

mal deterministic policies. Evidently, the deterministic policy

performs close to the optimal policy on both the fronts. We

observe that, for a fixed K, both the mean delivery delay and

the mean number of copies to relays decrease as λ increases.

We also observe that, for a fixed λ, the mean delivery delay

decreases as the network size grows. Finally, for smaller values

of λ, the mean number of copies to relays increases with the

network size, and for larger values of λ, vice-versa happens.
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Fig. 4. The top and bottom sub-plots, respectively, show the total number
of copies to relays and the delivery delays corresponding to both the optimal
and the deterministic policies.
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VI. CONCLUSION

We studied the control of forwarding in DTNs employing

epidemic relaying, and obtained the optimal policy (Theo-

rem 3.1). We obtained an asymptotically optimal policy that

does not require any information on the dynamic network state,

and hence is feasible (Theorem 4.2). In order to do so, we

also extended the existing differential equation approximation

results for Markov chains to controlled Markov chains (The-

orem 4.1).

In our future work we want to study the scenario where

packets come with a life-time and the goal is to maximize the

fraction of destinations that receive the packet subject to the

energy constraint. We also want to study the adaptive controls

for the case when the network parameters (M,N, λ etc.) are

not known to the source.

APPENDIX A

PROOF OF THEOREM 3.1

We first recall the following monotonicity properties of the

one step look ahead policy uo (see (3) and Remarks 3.1:

1) If uo(m,n, r) = 0, then uo(i, n, r) = 0 for all m < i < M .

2) If uo(m,n, r) = 0, then uo(m, j, r) = 0 for all n < j < N .

We show the optimality of the policy uo for states

(m,n, s) ∈ [Mα − 1] × [N0 : N − 1] × {r} proceeding in

raster scan order starting from the top right (i.e., the state

(Mα − 1, N − 1, r)). To do this, we divide the set of states

into the following types:

(a) T1: {(m,n, r) : uo(m,n+ 1, r) = uo(m+ 1, n, r) = 0}
(b) T2: {(m,n, r) : uo(m,n+1, r) = 1, uo(m+1, n, r) = 0}
(c) T3: {(m,n, r) : uo(m+ 1, n, r) = 1}
(a) Optimality for type T1 states: We show this iteratively.

Consider the state (Mα − 1, N − 1, r). If the infected node

does not copy to the susceptible relay, it will not copy in future

either because at all potential future decision epochs (meetings

with susceptible relays) the system state remains the same,

(Mα − 1, N − 1, r). On the other hand, if the infected node

copies, there will be no more susceptible relays and hence

no more decision epochs. Hence to obtain the optimal action

it suffices to consider only two policies 0s and 1s. Thus

u∗(Mα −1, N −1, r) = uo(Mα −1, N −1, r). Now, consider

a type T1 state (m,n, r) such that u∗(i, j, r) = uo(i, j, r) = 0
for all i ≥ m, j ≥ n, (i, j) 6= (m,n). If it is optimal to

copy at (m,n, r), the state moves to (m,n + 1, r) and the

optimal policy from there onwards is not to copy. So 1s is

optimal. If it is optimal not to copy at (m,n, r), then the state

at the next decision epoch is either (m,n, r) or (m′, n, r) with

m′ > m, and the optimal decision remains not to copy any

further. Thus, in this case, 0s is optimal. Consequently, we

have A((m,n, r), 0) = J0s(m,n, r) and A((m,n, r), 1) =
J1s(m,n, r). Clearly then, to obtain the optimal action, it

suffices to consider only two action sequences 0s and 1s, and

thus, u∗(m,n, r) = uo(m,n, r).
(b) Optimality for type T2 states: For a type T2 state (m,n, r),
uo(m,n+1, r) = 1 and uo(m+1, n, r) = 0. Thus, the mono-

tonicity properties of the policy uo imply that uo(m,n, r) = 1
and uo(j, n, r) = 0 for all m < j ≤ M − 1. Also, for all

m < j ≤ M − 1, (j, n, r) are type T1 states. Hence, from

part (a), u∗(j, n, r) = uo(j, n, r) = 0 for all these states.

We prove that u∗(m,n, r) = 1 via contradiction. Suppose

u∗(m,n, r) = 0. Then, the next state to be visited will be

(m+1, n, r). Moreover, no susceptible relays will be copied in

future as well because u∗(j, n, r) = 0 for all m < j ≤M−1.

In particular, J(m,n, r) = A(m,n, r), 0) = J0s(m,n, r). But

J0s(m,n, r) > J1s(m,n, r). Hence our supposition is false

and u∗(m,n, r) = 1.

(c) Optimality for type T3 states: Consider a type T3 state

(m,n, r). By definition of type T3 states, there exists a

j ≥ m + 1 such that uo(j, n, r) = 1. Let m∗
n be the

maximum j such that uo(j, n, r) = 1. We show the optimality

of policy uo inductively. Note that, for each n, (m∗
n, n, r)

is either a type T1 or type T2 state. Thus, from parts (a)

and (b), u∗(m∗
n, n, r) = uo(m∗

n, n, r) = 1. Let us assume that

u∗(j, n, r) = uo(j, n, r) = 1 for all m∗
n ≥ j ≥ m + 1. Then,

in the following, we show that u∗(m,n, r) = uo(m,n, r) = 1.

This completes the induction step.

We define

ψ(m,n) := J0s(m,n, r) − J(m,n, r),

θ0(m,n) := J0s(m,n, r) −A((m,n, r), 0),

and θ1(m,n) := J1s(m,n, r) −A((m,n, r), 1).

The action sequences that give rise to the two cost terms in

the definition of θ0(m,n), both do not copy to the susceptible

relay met at present. Let j be the number of infected desti-

nations at the next decision epoch when a susceptible relay is

met; j can be m,m + 1, ...,M . All interim decision epochs

were meetings with susceptible destinations, and both policies

copy at these meetings. Hence, both policies incur the same

cost until this epoch, and differ by ψ(j, n) in the costs to

go (from this epoch onwards). Averaging the difference over

j, and noting that ψ(j, n) = 0 for j > Mα − 1, we get

θ0(m,n) =

Mα−1
∑

j=m

(

j−1
∏

l=m

pl,n(d)

)

pj,n(r)ψ(j, n).6 (8)

Since A((m,n, r), 0) ≥ J(m,n, r), and so θ0(m,n) ≤
ψ(m,n), we get

Mα−1
∑

j=m

(

j−1
∏

l=m

pl,n(d)

)

pj,n(r)ψ(j, n) ≤ ψ(m,n)

or, pm,n(r)ψ(m,n) + pm,n(d)

×

Mα−1
∑

j=m+1

(

j−1
∏

l=m+1

pl,n(d)

)

pj,n(r)ψ(j, n) ≤ ψ(m,n)

or,

Mα−1
∑

j=m+1

(

j−1
∏

l=m+1

pl,n(d)

)

pj,n(r)ψ(j, n) ≤ ψ(m,n) (9)

which is obtained by transposing the first term on the left in

the previous expression to the right.

6We use the standard convention that a product over an empty index set is
1, which happens when j = m.
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Next, we establish the following lemma.

Lemma A.1: θ1(m,n) ≥ θ1(m+ 1, n).

Proof: Note that both the action sequences that lead to

the two cost terms in the definition of θ1(m,n), copy at state

(m,n, r). Subsequently, both incur equal costs until a decision

epoch when an infected node meets a susceptible relay. Also,

at any such state (j, n + 1, r), j ≥ m, the costs to go differ

by ψ(j, n+ 1). Hence,

θ1(m,n) =

Mα−1
∑

j=m

(

j−1
∏

l=m

pl,n+1(d)

)

pj,n+1(r)ψ(j, n+ 1)

= pm,n+1(r)ψ(m,n+ 1) + pm,n+1(d)θ1(m+ 1, n)

where

θ1(m+1, n) =

Mα−1
∑

j=m+1

(

j−1
∏

l=m+1

pl,n+1(d)

)

pj,n+1(r)ψ(j, n+1).

Thus it suffices to show that

ψ(m,n+ 1) ≥ θ1(m+ 1, n).

which is same as (9) with n replaced by n+ 1.

Next, observe that, for all m ≤ j ≤ m∗
n,

ψ(j, n) = J0s(j, n, r) − min{A((j, n, r), 0), A((j, n, r), 1)}

= max{θ0(j, n),Φ(j, n) + θ1(j, n)}. (10)

Moreover, from the induction hypothesis, the optimal policy

copies at states (j, n, r) for all m+ 1 ≤ j ≤ m∗
n. Hence, for

m+ 1 ≤ j ≤ m∗
n,

ψ(j, n) = Φ(j, n) + θ1(j, n).

Finally, ψ(j, n) = 0 for all m∗
n < j ≤Mα − 1 as the optimal

policy does not copy in these states. Hence, from (8),

θ0(m,n)

= pm,n(r)max{θ0(m,n),Φ(m,n) + θ1(m,n)} + pm,n(d)

×

m∗

n
∑

j=m+1

(

j−1
∏

l=m+1

pl,n(d)

)

pj,n(r)
(

Φ(j, n) + θ1(j, n)
)

< pm,n(r)max {θ0(m,n),Φ(m,n) + θ1(m,n)} + pm,n(d)

×
(

Φ(m,n) + θ1(m,n)
)

m∗

n
∑

j=m+1

(

j−1
∏

l=m+1

pl,n(d)

)

pj,n(r)

≤ pm,n(r)max {θ0(m,n),Φ(m,n) + θ1(m,n)}

+ pm,n(d)
(

Φ(m,n) + θ1(m,n)
)

= max
{

pm,n(r)θ0(m,n) + pm,n(d)
(

Φ(m,n) + θ1(m,n)
)

,

Φ(m,n) + θ1(m,n)} , (11)

where the first inequality holds because Φ(m,n) is strictly

decreasing and θ1(m,n) is also decreasing in m for fixed

n (from (3) and Lemma A.1, respectively). The second in-

equality follows because the summation term is a probability

which is less than 1. Now suppose that θ0(m,n) ≥ Φ(m,n)+

θ1(m,n). Then

max
{

pm,n(r)θ0(m,n) + pm,n(d)
(

Φ(m,n) + θ1(m,n)
)

,

Φ(m,n) + θ1(m,n)}

= pm,n(r)θ0(m,n) + pm,n(d)
(

Φ(m,n) + θ1(m,n)
)

≤ θ0(m,n)

which contradicts (11). Thus, we conclude that

θ0(m,n) < Φ(m,n) + θ1(m,n).

This further implies that ψ(m,n) = Φ(m,n) + θ1(m,n)
(see (10)), and so that u∗(m,n, r) = uo(m,n, r) = 1.
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