OTFS 2.0 (Zak-OTFS): A Waveform for Communication and Radar Sensing in 6G and Beyond

ECE Faculty Colloquium

IISc, Bangalore

A. Chockalingam

Joint work with S. K. Mohammed, R. Hadani, R. Calderbank

16 March 2023

Outline I

1 6G and Beyond

2 Delay-Doppler domain

3 OTFS 1.0 (a.k.a Multicarrier OTFS)

OTFS 2.0 (a.k.a Zak-OTFS)

5 Concluding remarks

4 6 1 1 4

6G and beyond

Operational space

- 3D communication
- confluence of terrestrial, UAV/drones/aeroplanes, LEO satellites
- high relative velocities

Spectrum space

- 28 GHz limited success so far
- sub-6 GHz will continue to be important
- mmWave frequencies (30 to 300 GHz) yet to make a mark
- THz research is opening up

Application space

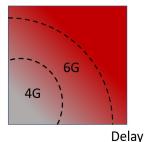
- popular use of AR/VR/XR
- holographic communication widely anticipated XR use case

O Physical layer space

- waveforms
 - robust to high-mobility/high-Doppler
 - for integrated communication and radar sensing
- intelligent surfaces for beamforming and modulation

High-Dopplers in 6G and beyond

Doppler

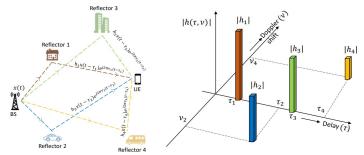


Leo-Satellite Channel UAV/Aeronautical Channel mmWave Mobile Channel Terrestrial Mobile Channel Terrestrial Pedestrian Channel

- Dopplers in several KHz range
- Traditional multicarrier modulation schemes fail to deliver robust performance at such high Dopplers
 - reason: inter-carrier interference (ICI) due to Doppler

Delay-Doppler (DD) Domain

• Wireless channels are doubly-spread

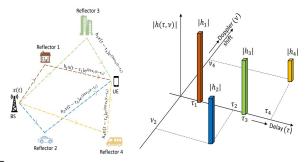


- Delay-Doppler spreading function: $h(\tau, \nu) = \sum_{i=1}^{4} h_i \delta(\tau \tau_i) \delta(\nu \nu_i)$
- Received signal: $y(t) = \iint h(\tau, \nu) x(t-\tau) e^{j2\pi\nu(t-\tau)} d\tau d\nu = \sum_{i=1}^{4} h_i x(t-\tau_i) e^{j2\pi\nu_i(t-\tau_i)}$
- Signal received along *i*-th path: $h_i \underbrace{x(t \tau_i)}_{\text{delay}; \tau_i} \underbrace{e^{j2\pi\nu_i(t \tau_i)}}_{\text{Doppler shift}; \nu_i}$

・ロト ・回 ト ・ヨト ・ヨト

Orthogonal time frequency space (OTFS 1.0) modulation*

- A promising modulation scheme for doubly-spread channels
- Information is multiplexed in the delay-Doppler (DD) domain
 - Map information from DD domain to time domain and transmit
 - $\bullet~$ DD domain $\rightarrow~$ TF domain $\rightarrow~$ time domain
- Channel is viewed/represented in DD domain



(*) R. Hadani, S. Rakib, M. Tsatsanis, A. Monk, A. J. Goldsmith, A. F. Molisch, and R. Calderbank, "Orthogonal time frequency space modulation," in *Proc. IEEE WCNC*, San Francisco, CA, USA, Mar. 2017.

OTFS - Signaling in DD domain

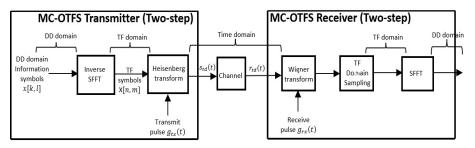


Figure: Multicarrier OTFS (OTFS 1.0)

• Tx

- DD domain \rightarrow TF domain: Inverse SFFT
- TF domain \rightarrow time domain: Heisenberg transform

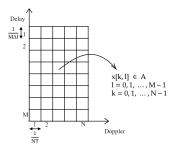
• Rx

- $\bullet~{\sf Time}~{\sf domain} \to {\sf TF}~{\sf domain}$: Wigner transform
- TF domain → DD domain: SFFT

* Best Readings in Orthogonal Time Frequency Space (OTFS) and Delay Doppler Signal Processing. https://www.comsoc.org/publications/best-readings/orthogonal-time-frequency-space-otfs-and-delay-doppler-signal-processing

Delay-Doppler grid

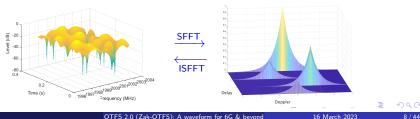
• Signaling in DD grid



- NxM delay-Doppler grid
- NM information symbols
- Time duration of NT
- Bandwidth of $M\Delta f$

Channel viewed in DD grid

•
$$h(\tau,\nu) = \sum_{i=1}^{P} h_i \delta(\tau-\tau_i) \delta(\nu-\nu_i)$$



OTFS 2.0 (Zak-OTFS): A waveform for 6G & beyond

Input-output relation

 $\bullet~{\sf Received~signal}$ in DD domain 1

• for
$$\tau_i \triangleq \frac{\alpha_i}{M\Delta f}$$
 and $\nu_i \triangleq \frac{\beta_i}{NT}$, α_i and β_i are integers

$$y[k,l] = \sum_{i=1}^{P} h'_i x[(k-\beta_i)_N, (l-\alpha_i)_M] + v[k,l]$$

where
$$h_i' = h_i e^{-j2\pi
u_i au_i}$$
, $h_i \sim \mathcal{CN}(0, 1/P)$

• Input-output relation can be vectorized as

$$\mathbf{y} = \mathbf{H}\mathbf{x} + \mathbf{v},$$

where $\mathbf{x}, \mathbf{y}, \mathbf{v} \in \mathbb{C}^{MN \times 1}$, $\mathbf{H} \in \mathbb{C}^{MN \times MN}$, $x_{k+NI} = x[k, I]$, $y_{k+NI} = y[k, I]$

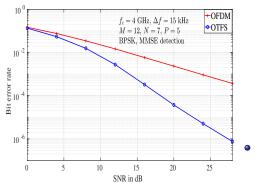
- This vectorized system model has enabled development of several
 - signal detection (e.g., message passing detection) and DD channel estimation algorithms for OTFS

9/44

¹P. Raviteja, K. T. Phan, and E. Viterbo, "Interference cancellation and iterative detection for orthogonal time frequency space modulation," *IEEE Trans. Wireless Commun.*, vol. 17, no. 10, pp. 6501-6515, Oct. 2018.

Why OTFS?

• OTFS vs OFDM performance



Parameter	Value		
Carrier frequency (GHz)	4		
Subcarrier spacing (kHz)	15		
Frame size (M, N)	(12,7)		
Number of paths (P)	5		
Delay profile	Exponential		
Maximum speed (km/h)	500		
Maximum Doppler (Hz)	1875		
Modulation scheme	BPSK		

* Smallest resource block used in LTE: M = 12, N = 7

MMSE detection

- OFDM performs poor due to Doppler induced ICI
- OTFS performs significantly better than OFDM

^{*} G. D. Surabhi, R. M. Augustine, and A. Chockalingam, "On the diversity of uncoded OTFS modulation in doubly-dispersive channels," *IEEE Trans. Wireless Commun.*, vol. 18, no. 6, pp. 3049-3063, Jun. 2019.

OTFS 2.0 (Zak-OTFS): What and why?

• What?

- Transmitter
 - DD domain-to-time domain conversion in one step (inverse Zak transform)
- Receiver
 - Time domain-to-DD domain conversion in one step (Zak transform)

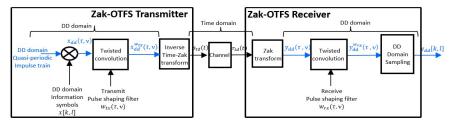


Figure: Signal processing in Zak-OTFS (OTFS 2.0)

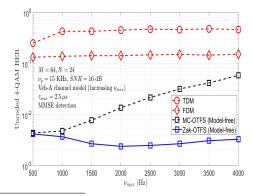
¹S. K. Mohammed, R. Hadani, A. Chockalingam, and R. Calderbank, "OTFS – A mathematical foundation for communication and radar sensing in the delay-Doppler domain," to appear in IEEE BITS the Information Theory Magazine. Available in IEEE Xplore Early Access. Also available at https://arxiv.org/abs/2302.08696

²S. K. Mohammed, R. Hadani, A. Chockalingam, and R. Calderbank, "OTFS - Predictability in the delay-Doppler domain and its value to communication and radar sensing," under review. Available at https://arxiv.org/pdf/2302.08705.pdf

OTFS 2.0 (Zak-OTFS): What and why?

• Why?

- Formal mathematical framework (Zak theory)
- More robust to large channel spreads compared to OTFS 1.0
- A good radar waveform



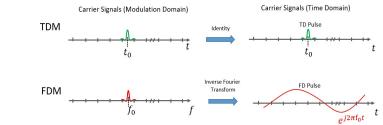
²S. K. Mohammed, R. Hadani, A. Chockalingam, and R. Calderbank, "OTFS - Predictability in the delay-Doppler domain and its value to communication and radar sensing," under review. Available at https://arxiv.org/pdf/2302.08705.pdf

Key phrases in OTFS 2.0 (Zak-OTFS)

• Waveform

- DD domain pulse
- Pulsone: pulse train modulated by a tone
- Quasi-periodic function
- TD and FD pulses are special cases of pulsone
- Transforms
 - Zak and Inverse Zak transforms
- Operation
 - Twisted convolution
 - Cascade of twisted convolutions
- Important phenomenon
 - DD domain aliasing
- Preferred operating regime
 - Crystalline regime
 - Regime where crystallization condition holds
- Favorable attributes
 - Predictability of input-output relation
 - Non-fading
- Radar ambiguity function

TDM, FDM carrier waveforms

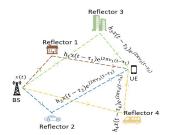


• TDM carrier waveform

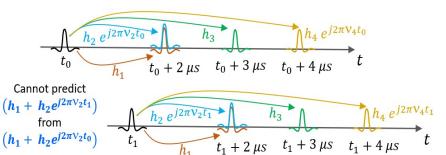
• A pulse in TD - localized in TD, not in FD (good for delay-only channels)

- FDM carrier waveform
 - A pulse in FD (sinusoid in TD) localized in FD, not in TD (good for Doppler-only channel)
- Implication
 - In doubly-spread channels, TDM/FDM input-output (I/O) relation witnesses
 - fading (leading to BER degradation)
 - non-predictability (leading to frequent acquisition of channel)
- Predictability
 - Channel response to an impulse at any arbitrary location can be estimated/predicted from the response to a particular impulse (pilot impulse)

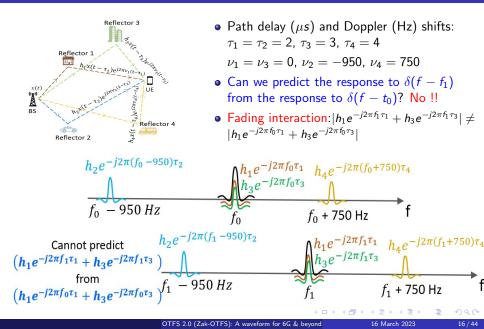
TDM: Non-predictable and fading channel interaction



- Path delay (μs) and Doppler (Hz) shifts: $\tau_1 = \tau_2 = 2, \ \tau_3 = 3, \ \tau_4 = 4$ $\nu_1 = \nu_3 = 0, \ \nu_2 = -950, \ \nu_4 = 750$
- Can we predict the response to $\delta(t t_1)$ from the response to $\delta(t - t_0)$? No !!
- Fading interaction: $|h_1 + h_2 e^{j2\pi\nu_2 t_0}| \neq |h_1 + h_2 e^{j2\pi\nu_2 t_1}|$



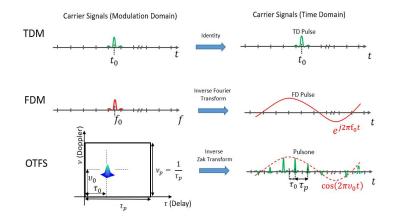
FDM: Non-predictable and fading channel interaction



- Predictability and fading
 - Attributes of channel interaction with the carrier waveform
- Predictability in doubly-spread channels
 - TDM interaction is NOT predictable as TD pulses are spread in frequency
 - FDM interaction is NOT predictable as FD pulses are spread in time
 - Pulses need to be localized in both TD and FD
 - NOT possible: Heisenberg's uncertainty principle
 - Can the obstruction of simultaneous TD/FD localization be eliminated?
 - Yes: Quasi-periodic pulses in the delay-Doppler (DD) domain

4 A 1 1 4 F

Information carrier in TDM/FDM/Zak-OTFS

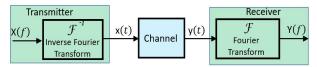


 Zak-OTFS carrier: Quasi-periodic pulse in DD domain. TD realization is a pulse train modulated by a sinusoid (Pulsone).

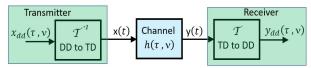
< (17) × <

Modulation domain to time domain

• FD to TD (FDM)



DD to TD



- Questions:
 - what is the transform \mathcal{T} ?
 - what is the channel action, i.e., what operation between $h(\tau, \nu)$ and $x_{dd}(\tau, \nu)$, would give $y_{dd}(\tau, \nu)$?

Why Zak transform?

In TDM and FDM

ŀ

- cascade of two channels: effective channel impulse response is linear convolution of the impulse responses of the two channels
- channel action on carrier waveform is also described by linear convolution
- Cascade of two doubly-spread channels $h_1(\tau, \nu)$ and $h_2(\tau, \nu)$
 - effective channel response is twisted convolution of $h_1(\tau, \nu)$ and $h_2(\tau, \nu)$

$$\begin{aligned} h(\tau,\nu) &= h_2(\tau,\nu) *_{\sigma} h_1(\tau,\nu) \\ &= \iint h_2(\tau',\nu') h_1(\tau-\tau',\nu-\nu') e^{j2\pi\nu'(\tau-\tau')} d\tau' d\nu' \end{aligned}$$

• What is the transform for which that the channel action is twisted convolution, i.e., what is the ${\cal T}$ for which

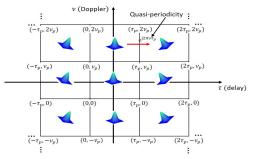
$$y_{dd}(\tau,\nu) = h(\tau,\nu) *_{\sigma} \mathcal{T}(x(t))$$

• Ans: T is Zak transform, denoted by Z_t parameterized by (τ_p, ν_p) , $\nu_p = 1/\tau_p$

Why Zak transform?

• Zak transform: $x(t) \xrightarrow{\mathcal{Z}_t} x_{dd}(\tau, \nu) = \sqrt{\tau_p} \sum_{k=-\infty}^{\infty} x(\tau + k\tau_p) e^{-j2\pi k\nu\tau_p}$

• For any $n, m \in \mathbb{Z}$, $x_{dd}(\tau, \nu)$ satisfies $x_{dd}(\tau + n\tau_p, \nu + m\nu_p) = e^{j2\pi n\nu\tau_p} x_{dd}(\tau, \nu)$



- Any DD domain signal (which is the Zak-transform of some TD signal) is quasi-periodic in the DD domain with delay and Doppler periods τ_p and ν_p
- TD realization of a DD function exists only if it is quasi-periodic

* J. Zak, "Finite translations in solid state physics," *Phy. Rev. Lett.*, 19, pp. 1385-1387, 1967. * A. J. E. M. Janssen, "The Zak transform: a signal transform for sampled time-continuous signals," *Philips J. Res.*, 43, pp. 23-69, 1988.

Zak Transform: From TD to DD

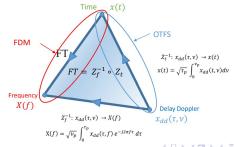
• A DD domain pulse is localized in the fundamental DD period

$$\mathcal{D}_{0} \triangleq \left\{ \left(\tau, \nu\right) \middle| 0 \leq \tau < \tau_{p}, 0 \leq \nu < \nu_{p} \right\}$$

• Inverse time-Zak transform (DD \rightarrow TD):

$$x_{\mathrm{dd}}(\tau,\nu) \xrightarrow{\mathcal{Z}_t^{-1}} x(t) = \mathcal{Z}_t^{-1}\left(x_{\mathrm{dd}}(\tau,\nu)\right) \triangleq \sqrt{\tau_p} \int_0^{\nu_p} x_{\mathrm{dd}}(t,\nu) \, d\nu$$

• Signal realizations and transforms



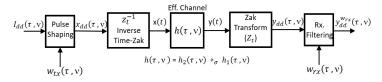
22/44

Modulation	Channel	Domain	Transform	Channel action	Information carrier
TDM	Delay-only	TD	Identity	Linear convolution	TD pulse
FDM	Doppler-only	FD	Fourier	Linear convolution	FD pulse
DD domain Modulation	Doubly-spread	DD	Zak	Twisted convolution	DD pulse

æ

• • • • • • • • • • • •

Tx/Rx signal processing



information

•
$$y_{dd}(\tau,\nu) = h(\tau,\nu) *_{\sigma} x_{dd}(\tau,\nu)$$

Pulse shaping at Tx:
$$x_{dd}(\tau, \nu) = w_{tx}(\tau, \nu) * \sigma I_{dd}(\tau, \nu)$$

• $*_{\sigma}$ preserves quasi-periodicity

۲

• Filtering at Rx:
$$y_{dd}^{w_{rx}}(\tau,\nu) = w_{rx}(\tau,\nu) *_{\sigma} y_{dd}(\tau,\nu)$$

• I/O relation:
$$y_{dd}^{w_{rx}}(\tau,\nu) = w_{rx}(\tau,\nu) *_{\sigma} \left(h(\tau,\nu) *_{\sigma} \left(w_{tx}(\tau,\nu) *_{\sigma} I_{dd}(\tau,\nu) \right) \right)$$

•
$$*_{\sigma}$$
 is associative:
$$\underbrace{y_{dd}^{w_{rx}}(\tau,\nu)}_{output} = \underbrace{(w_{rx}(\tau,\nu) *_{\sigma} h(\tau,\nu) *_{\sigma} w_{tx}(\tau,\nu))}_{\text{Eff. DD response } h_{dd}(\tau,\nu)} *_{\sigma} I_{dd}(\tau,\nu)$$

• Twisted convolution \rightarrow predictable I/O relation

Channel interaction of DD pulse

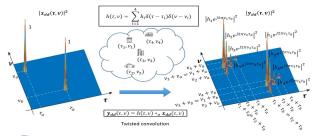


Figure: Channel response for two impulses at (τ_a, ν_a) and (τ_b, ν_b)

- Question: Can b-response be predicted from a-response?
- Ans: Yes. Provided the following condition (crystallization condition) holds

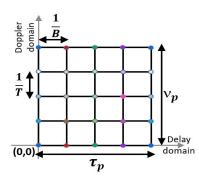
$$\tau_{p} \geq \underbrace{(\max_{i} \tau_{i} - \min_{i} \tau_{i})}_{\text{max. delay spread}}, \ \nu_{p} \geq \underbrace{(\max_{i} \nu_{i} - \min_{i} \nu_{i})}_{\text{max. Doppler spread}}$$

- Prediction of the (*n*, *m*)-th term in b-response
 - Shift the (n, m)-th term in a-response by (τ_b τ_a, ν_b ν_a)
 - *i*-th path channel gain: $h_i e^{j2\pi\nu_i \tau_b} e^{j2\pi\nu_i (\tau_b - \tau_a)} e^{j2\pi n(\nu_b + \nu_i)\tau_p} = h_i e^{j2\pi\nu_i (\tau_a - \tau_a)} e^{j2\pi n(\nu_b - \nu_a)\tau_p}$

• Non-fading interaction: $|h_i e^{j2\pi\nu_i \tau_b} e^{j2\pi n(\nu_b + \nu_i)\tau_p}| = |h_i e^{j2\pi\nu_i \tau_a} e^{j2\pi n(\nu_a + \nu_i)\tau_p}| = |h_i|_{=}$

25/44

Zak-OTFS modulation



- Information symbols transmitted on DD pulses located on the Information Grid
- Information Grid: In \mathcal{D}_0 ,

 $M=\frac{\tau_p}{(1/B)}=B\tau_p$ points along delay domain and

 $N = rac{
u_p}{1/T} = T
u_p$ points along Doppler domain

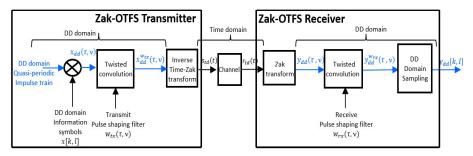
No. of information symbols in an OTFS frame
 No. of grid points in D₀

$$= M \times N = B \tau_p \times T \nu_p$$

= BT (time-bandwidth product)

Zak-OTFS: Transceiver signal processing

wh



• I/O relation $y_{dd}^{w_{rx}}(\tau,\nu) = \underbrace{\left(w_{rx}(\tau,\nu) *_{\sigma} h(\tau,\nu) *_{\sigma} w_{tx}(\tau,\nu)\right)}_{h_{dd}(\tau,\nu)} *_{\sigma} x_{dd}(\tau,\nu)$

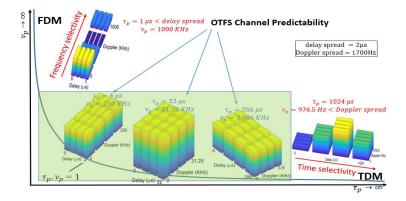
• Output $y_{dd}[k, l]$ is given by discrete twisted convolution of the input $x_{dd}[k, l]$ with the effective DD channel filter $h_{dd}[k, l]$

$$y_{dd}[k, l] = \sum_{k', l' \in \mathbb{Z}} h_{dd}[k', l'] \times_{dd}[k - k', l - l'] e^{j2\pi \frac{(k-k')}{M} \frac{l'}{N}}$$

= $h_{dd}[k, l] *_{\sigma} \times_{dd}[k, l].$
ere $h_{dd}[k, l] \triangleq h_{dd}(\tau, \nu) \Big|_{\left(\tau = \frac{k\tau_p}{M}, \nu = \frac{l\nu_p}{N}\right)}$

27 / 44

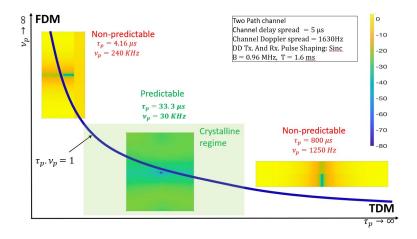
Non-fading I/O relation in crystalline regime



- Crystalline regime \rightarrow No DD domain aliasing \rightarrow Non-fading
- Average received power profile is flat
- $\tau_p \rightarrow \infty \Rightarrow \nu_p \rightarrow 0 \Rightarrow \text{Doppler domain aliasing (Zak-OTFS} \rightarrow \text{TDM})$
- $\nu_p \rightarrow \infty \Rightarrow \tau_p \rightarrow 0 \Rightarrow$ Delay domain aliasing (Zak-OTFS \rightarrow FDM)

イロン イロン イヨン イヨン

Error in prediction of I/O relation



- PE is small in the crystalline regime (predictable I/O relation)
- PE is high in the non-crystalline regime (non-predictable I/O relation)

イロト イヨト イヨト イヨト

BER performance

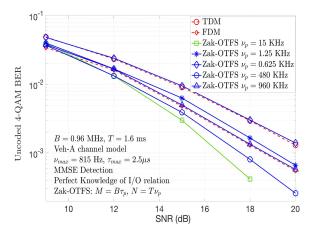
Simulation parameters

• ITU Veh-A channel model

Path no. <i>i</i>	1	2	3	4	5	6
Rel. Delay τ_i (μs)	0	0.31	0.71	1.09	1.73	2.51
Rel. Power $\frac{\mathbb{E}[h_i ^2]}{\mathbb{E}[h_1 ^2]}$ (dB)	0	-1	-9	-10	-15	-20

- Path Doppler shift: $\nu_i = \nu_{max} \cos(\theta_i)$, $\nu_{max} = 815$ Hz, $\theta_i \sim \text{i.i.d.}$ Unif ([0, 2 π)])
- Path channel gain: Rayleigh faded, $\sum_{i=1}^{6} \mathbb{E}[|h_i|^2] = 1$
- Pulse shaping at Tx/Rx: Sinc pulses, B = 0.96 MHz, T = 1.6 ms
- BER performance
 - Uncoded 4-QAM symbols
 - DD domain LMMSE equalizer

BER performance

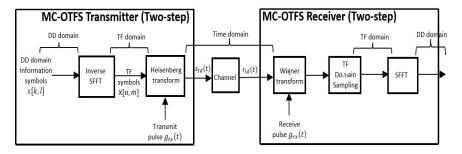


• Crystalline regime: Zak-OTFS achieves BER better than TDM and FDM

- Crystalline regime: Non-fading Zak-OTFS I/O relation
- As $\nu_p \rightarrow \infty$, Zak-OTFS BER \rightarrow FDM BER (Fading I/O relation)
- As $\nu_p
 ightarrow$ 0, Zak-OTFS BER ightarrow TDM BER (Fading I/O relation)

MC-OTFS (2-step OTFS) vs Zak-OTFS (1-step OTFS)

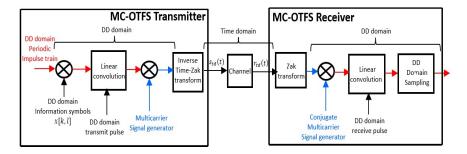
MC-OTFS



- Most existing work on OTFS presume MC-OTFS
- MC-OTFS different from Zak-OTFS
- MC-OTFS: driven by compatibility with existing 4G/5G modems

イロト イヨト イヨト イヨト

MC-OTFS viewed under Zak framework



- Periodic DD signal (Not Quasi-periodic): $x(\tau, \nu) = \sum_{k,l \in \mathbb{Z}} x[k, l] \delta\left(\tau \frac{k\tau_p}{M}\right) \delta\left(\nu \frac{l\nu_p}{N}\right)$
- Pulse shaping: Linear convolution, not twisted convolution
- Pulse shaping waveform: SFFT of TF window (whose support is the time and bandwidth support of OTFS frame)
- Multicarrier generator $G_{dd}(\tau, \nu)$: Zak-transform of MC-OTFS Tx. pulse $g_{tx}(t)$. Needed to satisfy Quasi-periodicity

< □ > < □ > < □ > < □ > < □ >

$\rm I/O$ relation in MC-OTFS and Zak-OTFS

• MC-OTFS vs. Zak-OTFS I/O relation

MC-OTFS I/O relation

 $y^{w_{rx}}(\tau,\nu) = w_{rx}(\tau,\nu) \star \left[G^*_{\mathsf{dd}}(\tau,\nu) \cdot \left(h(\tau,\nu) *_{\sigma} \left\{G^{}_{\mathsf{dd}}(\tau,\nu) \cdot \left[w_{\mathsf{tx}}(\tau,\nu) \star x(\tau,\nu)\right]\right\}\right)\right]$

Zak-OTFS I/O relation

$$y_{dd}^{w_{fx}}(\tau,\nu) = w_{rx}(\tau,\nu) *_{\sigma} h(\tau,\nu) *_{\sigma} w_{tx}(\tau,\nu) *_{\sigma} x_{dd}(\tau,\nu) = h_{dd}(\tau,\nu) *_{\sigma} x_{dd}(\tau,\nu)$$

- MC-OTFS I/O relation
 - Mix of linear convolution, multiplication and twisted convolution
 - Cannot be expressed as a simple action with some effective filter
 - Clearly not same as that of Zak-OTFS
 - Example: In delay-only channels, as $\nu_p \rightarrow 0$, Zak-OTFS \rightarrow TDM (predictable I/O relation). MC-OTFS does not converge to TDM
 - Inefficient acquisition of I/O relation as simple prediction is difficult

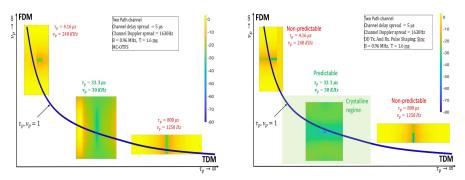
34 / 44

I/O relation prediction error: MC-OTFS vs Zak-OTFS

MC-OTFS

۵

Zak-OTFS

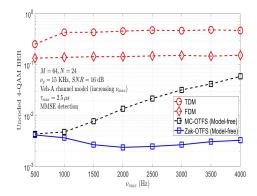


- Non-crystalline regime: Both have similar PE
- Crystalline regime: PE of Zak-OTFS is better
- Zak-OTFS I/O relation is more predictable than MC-OTFS I/O relation

イロト イ団ト イヨト イヨト

BER performance: MC-OTFS vs Zak-OTFS

• Zak OTFS more robust to large channel spreads compared to MC-OTFS



²S. K. Mohammed, R. Hadani, A. Chockalingam, and R. Calderbank, "OTFS - Predictability in the delay-Doppler domain and its value to communication and radar sensing," under review. Available at https://arxiv.org/pdf/2302.08705.pdf

Radar sensing

- Radar scene with single target, no reflector
- Tx. radar waveform: $s_{td}(t)$
- Received echo:

$$r_{\rm td}(t) = h \, s_{\rm td}(t-\tau) \, e^{j 2\pi\nu(t-\tau)} \, + \, n_{\rm td}(t)$$

• ML estimate of delay and Doppler

$$\begin{split} &(\widehat{\tau},\widehat{\nu}) = \arg \max_{\tau,\nu} |A_{r,s}(\tau,\nu)| \\ &A_{r,s}(\tau,\nu) \triangleq \int r_{td}(t) \, s^*_{td}(t-\tau) \, e^{-j2\pi\nu(t-\tau)} dt \qquad \text{(Cross-ambiguity)} \end{split}$$

- Detection of multiple targets and reflector: Peaks of cross-ambiguity
- Cross-ambiguity for general radar scene:

$$A_{r,s}(\tau,\nu) = h(\tau,\nu) *_{\sigma} A_{s,s}(\tau,\nu) + \int n_{td}(t) s_{td}^*(t-\tau) e^{-j2\pi\nu(t-\tau)} dt$$

• Ambiguity function of s_{td}(t):

$$A_{s,s}(\tau,\nu) \triangleq \int s_{td}(t) s_{td}^*(t-\tau) e^{-j2\pi\nu(t-\tau)} dt$$

37 / 44

Ambiguity of TDM carrier waveform

- TDM pulse $s(t) = s_{td}(t) = \sqrt{B} sinc(Bt)$
 - Ambiguity function

$$A_{s,s}^{ ext{tdm}}(au,
u) = egin{cases} \left(1-rac{|
u|}{B}
ight) \, e^{i\pi
u au} \, sinc((B-|
u|) au) &, |
u| < B \ 0 &, |
u| \geq B \end{cases}$$

- Peak $A^{ ext{tdm}}_{s,s}(au,
 u)$ at (au,
 u)=(0,0)
- For $\nu = 0$, the spread along delay domain is $\propto \frac{1}{B}$
- Spread along Doppler domain is 2B
- Can resolve targets along delay domain but not along Doppler
- Because TD pulses are localized in time and not in frequency

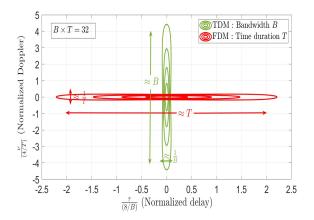
Ambiguity of FDM carrier waveform

- FDM pulse $s(f) = s_{fd}(f) = \sqrt{T} \operatorname{sinc}(fT)$.
 - Ambiguity function

$$A_{s,s}^{\text{fdm}}(\tau,\nu) = \begin{cases} \left(1 - \frac{|\tau|}{T}\right) e^{j\pi\nu\tau} \operatorname{sinc}((T - |\tau|)\nu) &, |\tau| < T \\ 0 &, |\tau| \geq T \end{cases}$$

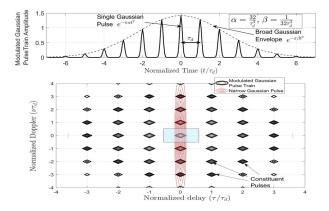
- Peak $A_{s,s}^{ ext{fdm}}(au,
 u)$ at (au,
 u)=(0,0)
- For au = 0, the spread along Doppler domain is $\propto \frac{1}{T}$
- Spread along delay domain is 2T
- Can resolve targets along Doppler domain but not along delay
- Because, FD pulses are localized in frequency and not in time

Ambiguity of TD and FD pulses



- TD/FD pulses cannot resolve targets simultaneously along delay and Doppler
- A good radar waveform <u>re-distributes</u> "ambiguity" such that simultaneous delay-Doppler resolvability is achieved

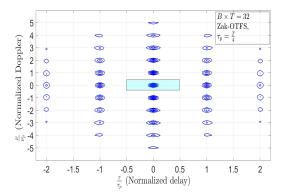
A good radar waveform



- Re-distributing ambiguity: P. M. Woodward (70 years back)*
- Woodward's trick: Modulate a train of narrow TD Gaussian pulses with a broad Gaussian envelope
- Woodward's waveform's resembalance to Zak-OTFS TD pulsone

*P. M. Woodward, Probability and Information Theory with Applications to Radar, Pergamon Press, 1953.

Ambiguity function of Zak-OTFS TD pulsone



- No ambiguity when crystallization condition is satisfied
- ullet Delay and Doppler domain resolution are $\propto 1/B$ and $1/\mathcal{T}$ respectively
- Ambiguity function can be expressed analytically in terms of the tx. pulse $w_{tx}(au,
 u)$
- Design of good radar waveforms therefore reduces to pulse design in the DD domain
- Zak theory provides a mathematical framework for design of good radar waveforms

- 6G presents an opportunity to reflect on wireless communication fundamentals with a focus on waveform design
- Information signaling and signal processing in the DD domain is attractive
- Zak-OTFS (OTFS 2.0)
 - information carrier: DD pulse (pulsone in TD)
 - DD pulse is localized in the fundamental DD period
 - channel action: twisted convolution
 - $\bullet\,$ leads to predictability of I/O relation and non-fading in the crystalline regime
 - more robust to larger channel spreads compared to MC-OTFS (OTFS 1.0)
 - good radar waveform with well-localized ambiguity function
- Research on Zak-OTFS is wide open

Thank you

2

• • • • • • • • • • •