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On the Capacity and Performance of Generalized Spatial Modulation
T. Lakshmi Narasimhan and A. Chockalingam

Abstract—Generalized spatial modulation (GSM) uses N
antenna elements but fewer radio frequency (RF) chains (R) at
the transmitter. In GSM, apart from conveying information bits
through R modulation symbols, information bits are also conveyed
through the indices of the R active transmit antennas. In this let-
ter, we derive lower and upper bounds on the the capacity of a
(N, M, R)-GSM MIMO system, where M is the number of receive
antennas. Further, we propose a computationally efficient GSM
encoding method and a message passing-based low-complexity
detection algorithm suited for large-scale GSM-MIMO systems.

Index Terms—GSM-MIMO capacity, GSM encoding, combi-
nadics, low-complexity detection, message passing.

I. INTRODUCTION

S PATIAL modulation (SM) is emerging as a promising
multi-antenna modulation scheme (see [1] and the refer-

ences therein). SM uses multiple antenna elements but only
one radio frequency (RF) chain at the transmitter. In SM, only
one antenna element is activated in a given channel use and a
QAM/PSK symbol is sent on the activated antenna; the remain-
ing antenna elements remain silent. The index of the active
antenna element also conveys information bits. It has been
shown that SM can achieve better performance than spatial
multiplexing (SMP) under certain conditions [1].

Generalized spatial modulation (GSM) is a generalization
of SM, where the transmitter uses multiple (N ) antenna ele-
ments and more than one (R) RF chain [2]. R among the
N available antenna elements are activated in a given chan-
nel use, and R QAM/PSK symbols are sent simultaneously
on the active antennas. The indices of the R active anten-
nas also convey information bits. Both SM and SMP can be
seen as special cases of GSM with R = 1 and R = N , respec-
tively. It has been shown that for the same spectral efficiency,
GSM can perform better than both SM and SMP [3]. While
most studies on SM/GSM in the literature so far have focused
mainly on performance analysis and receiver algorithms, capac-
ity of SM/GSM systems remains to be studied. The need for
capacity analysis of SM has also been highlighted in [1]. In
[4], the authors have obtained the capacity of SM for MISO
systems through simulation. However, an analytical characteri-
zation of the capacity of SM/GSM has not been explored. Our
contribution in this letter addresses this gap. In particular, we
derive lower and upper bounds on the capacity of GSM, which
have not been reported before. Another contribution is the pro-
posal of low complexity encoding and detection methods suited
for GSM-MIMO systems with large number of antennas. The
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proposed encoding makes use of combinadic representations in
combinatorial number system, and the detection makes use of
layered message passing.

II. GSM-MIMO SYSTEM MODEL

Consider a (N , M, R)-GSM MIMO system with N anten-
nas and R RF chains at the transmitter (1 ≤ R ≤ N ), and M
antennas at the receiver. An R × N switch connects the R RF
chains to the N transmit antennas. In each channel use, R out
of N transmit antennas are chosen and activated. The remaining
N − R antennas remain silent. The selection of the R antennas
to activate in a channel use is done based solely on �log2(

N
R)�

information bits (not based on CSIT). Therefore, the indices of
the active antennas convey �log2(

N
R)� information bits per chan-

nel use. On the active antennas, R modulation symbols (one on
each active antenna) from a modulation alphabet A are trans-
mitted. This conveys R�log2 |A|� additional information bits.
Therefore, the total number of bits conveyed in a channel use in
GSM is given by

ηgsm = R
⌊

log2 A
⌋︸ ︷︷ ︸

Modulation symbol bits

+ ⌊log2(
N
R)
⌋︸ ︷︷ ︸

Antenna index bits

bpcu. (1)

A. GSM Signal Set

Let G denote the GSM signal set, which is the set of all possi-
ble GSM signal vectors that can be transmitted. Therefore, if x
is the N × 1 signal vector transmitted by the GSM transmitter,
then x ∈ G.

Let s denote the vector of modulation symbols transmitted in
a channel use over the R chosen antennas, i.e., s ∈ A

R .
Definition: Define a matrix A of size N × R as the antenna

activation pattern matrix. The matrix A represents a particu-
lar choice of R antennas from the available N antennas, such
that the N × 1 GSM signal vector x = As ∈ G. The matrix A
is a sparse matrix consisting only of 1’s and 0’s, with exactly
one non-zero entry in every column and one non-zero entry in
R rows. If I1, I2, . . . , Ir , . . . , IR are the indices of the chosen
antennas, then A is constructed as

Ai j =
{

1 if j = r and i = Ir

0 otherwise,
(2)

where Ai j denotes the element in the i th row and j th column of
A. For example, in a system with N = 8 and R = 4, to activate
antennas 1, 3, 6 and 8, the matrix A is given by1

A =
⎡
⎢⎣

1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1

⎤
⎥⎦

T

. (3)

Note that the indices of the non-zero rows in matrix A give the
support of the GSM signal vector x. Out of the (N

R) possible

1Note that, since the active antennas are chosen based only on information
bits and not based on CSIT (i.e., GSM does not require CSIT), the A matrix
does not depend on the channel matrix.
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antenna activation choices, only 2�log2 (N
R)� are needed for sig-

naling. Let A denote this set of all allowed antenna activation

pattern matrices, where |A| = 2�log2(
N
R)� and A ∈ A. Let L �

|A|. Now, G is given by

G =
{

x : x = As, for some A ∈ A, s ∈ A
R
}

. (4)

Note that any GSM signal vector x j ∈ G, j = 1, . . . , |G|, can
be represented as x j = Ai sk with some Ai ∈ A, i = 1, . . . , |A|
and sk ∈ A

R , k = 1, . . . , |A|R , and |G| = |A||A|R . Conversely,
given any Ai ∈ A and sk ∈ A

R , there exists a GSM signal vec-
tor x j ∈ G such that x j = Ai sk . Since Ai and sk are chosen
by two independent information bit sequences, Ai and sk are
independent. That is, p(x) = p(As) = p(A)p(s). The M × 1
received signal vector y = [y1 y2 · · · yM ]T at the receiver can
be written as

y = Hx + w = HAs + w, (5)

where x ∈ G is the transmit vector, H ∈ C
M×N is the channel

gain matrix whose (i, j)th entry Hi, j ∼ CN(0, 1) denotes the
complex channel gain from the j th transmit antenna to the i th
receive antenna, and w = [w1 w2 · · · wM ]T is the noise vec-
tor whose entries are modeled as complex Gaussian with zero
mean and variance σ 2. Since x is obtained based only on ηgsm
information bits, x and H are independent. Since x = As, As
and H are independent. Also, A and s are independent. So, A
and H are independent. So, the mutual information between x
and y in GSM is given by I (x; y|H) = I (A, s; y|H).

III. GSM-MIMO CAPACITY

The capacity of a spatially multiplexed M × N MIMO
channel with channel state information at the receiver is

C = EH

{
log2

[
det

(
IM + 1

σ 2
H�HH

)]}
, (6)

where � is the covariance matrix of the transmit signal vector
with elements from Gaussian codebook. For i.i.d. modulation
symbols and total power σ 2

x , the capacity expression becomes

C = EH

{
log2

[
det

(
IM + σ 2

x

Nσ 2
HHH

)]}
. (7)

Here, we are interested in the capacity of GSM-MIMO, where
the symbols sent on the active antennas are from Gaussian
codebook. The capacity of GSM-MIMO can be written as

CGSM = EH(I (x; y))

= EH(h(y) − h(y|x)) = EH(h(y) − h(w))

= EH(h(y) − log2[det(πeσ 2IM )]), (8)

where h(.) denotes the differential entropy. To compute CGSM ,
we need to evaluate h(y), which requires the knowledge of the
distribution of y. From (5), we can see that the distribution of y
is a Gaussian mixture given by

p(y) =
L∑

i=1

p(y, Ai ) =
L∑

i=1

p(y|Ai )p(Ai ) =
L∑

i=1

N(μi ,�i )pi , (9)

pi = p(Ai ), Ai ∈ A, i = 1, 2, . . . , L , (10)
μi = E(y|Ai ) = E(HAi s + w) = 0, (11)

�i = E(yyH |Ai ) = HAiEs(ssH )AH
i HH + σ 2IM . (12)

If all the possible antenna activation patterns are equally
likely, then pi = 1

L . When the transmitted modulation symbols

are independent of each other, E(ssH ) = σ 2
x

R IR . Now, (9)
becomes

y ∼ 1

L

L∑
i=1

N

(
0,

σ 2
x

R
HAi AH

i HH + σ 2IM

)
. (13)

The differential entropy of y is given by

h(y) = − 1

L

L∑
i=1

∫
y
N(0,�i ) log2

(
1

L

L∑
i=1

N(0,�i )

)
dy. (14)

It is difficult to get a closed-form solution to (14). Hence, we
bound it above and below by the following techniques.

Lower bound 1, L1: Since − log(.) is a convex function,
by Jensen’s inequality, E[− log p(y)] ≥ − logE[p(y)]. Hence,
the differential entropy h(y) can be lower bounded as

h(y) ≥ − log2

∫
p2(y)dy = − log2

∫ (
1

L

L∑
i=1

N(0,�i )

)2

dy,

which can be simplified as

h(y) ≥ − log2

⎧⎨
⎩ 1

L2π M

L∑
i=1

L∑
j=1

1

det(�i + � j )

⎫⎬
⎭ � l1. (15)

It can be noted that det(�i ) > 0,∀i . From (8) and (15), a lower
bound on CGSM can be obtained as

CGSM ≥ L1 � EH(l1 − log2 det(πeσ 2IM )). (16)

Lower bound 2, L2: Since differential entropy is a concave
function, we can write

h(y) = h

(
1

L

L∑
i=1

N(0,�i )

)

≥ 1

L

L∑
i=1

h (N(0,�i )) = 1

L

L∑
i=1

log2 det(πe�i ) � l2.

From the above equation, CGSM can be lower bounded as

CGSM ≥ L2 � EH(l2 − log2 det(πeσ 2IM )). (17)

Based on the two lower bounds L1 and L2, a refined lower
bound on GSM-MIMO capacity is given by

CGSM ≥ L � max(L1, L2). (18)

Upper bound 1, U1: By the property of entropy,

h(y) = h(y, A) − h(A|y) ≤ h(y, A).

Using this property, an upper bound on h(y) can be

h(y) ≤ h(y, A) = h(y|A) + h(A)

=
∫ ∑

∀A

p(y, A) log2
p(A)

p(y, A)
dy +

L∑
i=1

−pi log2 pi

= 1

L

L∑
i=1

log2 det(πe�i ) + log2 L � u1.

Now, an upper bound on CGSM can be written as

CGSM ≤ U1 � EH(u1 − log2 det(πeσ 2IM )). (19)

Upper bound 2, U2: Here, we approximate the probability
distribution of y to a Gaussian distribution. This leads to an
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Fig. 1. Capacity bounds for different GSM-MIMO configurations.

upper bound because the entropy of any random variable is
bounded above by the entropy of a Gaussian random variable
with the same mean and variance. The mean of y is 0 and the
covariance of y is given by

E(yyH ) = HEA[AiEs(ssH )AH
i ]HH + σ 2IM

= H

(
1

L

L∑
i=1

Ai

(
σ 2

x

R
IR

)
AH

i

)
HH + σ 2IM

= σ 2
x

RL
H

(
L∑

i=1

Di

)
HH + σ 2IM , (20)

where Di � Ai AH
i . Let {I i

1, I i
2, . . . , I i

r , . . . , I i
R} be the set of

active antenna indices that corresponds to the antenna activa-
tion pattern matrix Ai . It can then be seen that Di is a diagonal
matrix, such that

(Di ) j,k =
{

1 if j = k = I ∈ {I i
1, I i

2, . . . , I i
R}

0 otherwise,

where (Di ) j,k is the element in the j th row and kth column of
Di . Assuming that all (N

R) activation patterns are allowed, i.e.,
|A| = L = (N

R), the number of times any particular antenna will
be active among the (N

R) activation patterns is (N−1
R−1). Therefore,∑L

i=1 Di = (N−1
R−1)IN = RL

N IN , and (20) becomes

E(yyH ) = σ 2
x

N
HHH + σ 2IM � �′.

Now, an upper bound on GSM-MIMO capacity is given by

CGSM ≤ U2 � EH(log2 det(πe�′) − log2 det(πeσ 2IM ))

= EH

{
log2

[
det

(
IM + σ 2

x

Nσ 2
HHH

)]}
, (21)

which is the same as the capacity of a M × N spatially multi-
plexed MIMO system. Based on the two upper bounds U1 and
U2, a refined upper bound on GSM capacity is

CGSM ≤ U � min(U1, U2). (22)

Numerical results: We evaluated the lower and upper bounds
on the GSM-MIMO capacity for different system configu-
rations. Figure 1(a) shows the lower and upper bounds for
GSM-MIMO systems with N = 16, R = 12, M = 16. We see
that the lower bound L2 and upper bound U2 are tighter at
low SNRs. Whereas, the lower bound L1 and upper bound U1
are tighter at high SNRs. It can be noted from the figure that
the lower and upper bounds are very close at low SNRs; so,
in this regime, the GSM-MIMO capacity is almost same as
that of a spatially multiplexed MIMO system with the same
N and M . In Figs. 1(b) and 1(c), we compare the bounds

on GSM-MIMO capacity with the true GSM-MIMO capacity
obtained through simulation. We consider GSM-MIMO with
N = 8, M = 1, SNR = 2,32 dB, and varying R. In Fig. 1(b), we
observe that, at SNR = 2 dB (top figure), the gap between the
upper and lower bounds is U − L = 0.188 bps/Hz for R = 1
and U − L < 10−2 bps/Hz for R > 5. Also, in Fig. 1(c), at
SNR = 32 dB (bottom figure), the gap is U − L = 0.782 bps/Hz
for R = 1 and U − L < 10−2 bps/Hz for R > 6.

IV. LOW-COMPLEXITY ENCODING AND DETECTION

A. GSM Encoding Using Combinadics

In GSM-MIMO, �log2(
N
R)� bits are used to choose an acti-

vation pattern matrix A from A, and R
⌊

log2 A
⌋

bits are used
to generate s from A

R . While the mapping of R
⌊

log2 A
⌋

bits
to modulation symbols in s is straight-forward, the mapping of
�log2(

N
R)� bits to a choice of activation pattern is not. A table or

a map of bit sequence to activation patterns has to be main-
tained both at the transmitter and receiver. For large values
of N , M, R, the size of this map can become prohibitively
large. For example, if N = 64, R = 32, then |A| = (64

32) ≈
1.83 × 1018 ≈ 260. Implementation of an encoding map of this
size is impractical. To address this issue, we use combinadic
representations in combinatorial number system.

Definition: The combinadic of a number n ∈ [0, (N
R) − 1]

is the R-tuple (N1, N2, . . . , NR) such that n =∑R
i=1(

Ni
i ) and

N1 < N2 < · · · < NR < N . The values of Ni for a given n can
be obtained as [5]

Ni =Largest non-negative integer s.t. n−∑R
j=i

(
N j
j

)
≥0.

The following encoding procedure maps the bits to antenna
activation pattern. Let ηa � �log2(

N
R)�.

1) Accumulate ηa bits to form the bit sequence b =
[bηa−1, . . . , b1, b0]. Obtain g(b) =∑ηa−1

i=0 2i bi .
2) Find the combinadic of g(b).
3) Construct A matrix such that the indices of the R non-zero

rows of A are given by the combinadic of g(b).
For example, for N = 10, R = 4, the combinadic of n = 19 can
be computed as (N1, N2, N3, N4) = (0, 1, 4, 6). The computa-
tional complexity to find the combinadic of a number is just
O(R), which enables GSM encoding for large values of N , R.
A reverse procedure can perform the combinadic to information
bits demapping at the receiver.

B. GSM Detection: Layered Message Passing Algorithm

The maximum a posteriori probability detection rule is

x̂ = argmax
x∈G

p(x|y). (23)

Note that |G| = 2ηgsm . So, exact computation of (23) requires
exponential complexity in N , R. To address this problem,
here we propose a low complexity layered message passing
(LaMP) algorithm which gives an approximate solution to (23).

Definition: A variable ai is called the antenna activity
indicator if ai = 1 if the i th antenna is active, else ai = 0.
Therefore, xi = ai s, s ∈ A. Note that

∑N
i=1 ai = R, which we

call as the GSM system constraint G. Now, p(x|y) in (23) can
be written as

p(x, a|y) ∝ p(y|x, a)p(x, a) = p(y|x)p(x|a)p(a)

=
⎧⎨
⎩

M∏
j=1

p(yi |x)

N∏
i=1

p(xi |ai )

⎫⎬
⎭ p(a). (24)
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Fig. 2. Graphical model and messages passed in the proposed LaMP detector.

Fig. 3. BER performance comparison between proposed LaMP detection, CSR
detection in [6], MMSE detection, and ML detection.

Thus, by defining a new layer of variables corresponding
to antenna activity, we have effectively decoupled the depen-
dences present among the elements of the transmit vector x.
Based on (24), we model the GSM-MIMO system as a graph
with four types of nodes, namely, (i) M observation nodes
corresponding to y, (i i) N variable nodes corresponding to x,
(i i i) N antenna activity nodes corresponding to a, and (iv) a
constraint node G. This is illustrated in Fig. 2. On this graph,
we iteratively pass messages between nodes and obtain the
marginal probabilities of the transmitted symbols. The differ-
ent messages passed in this graph are (1) v ji : from observation
node y j to variable node xi , (2) pi j : from variable node xi to
observation node y j , (3) qi : from variable node xi to antenna
activity node ai , and (4) ui : from antenna activity node ai to
variable node xi . The messages are exchanged between two lay-
ers, namely, (i) Layer 1: observation nodes and variable nodes
(denoted by unshaded nodes in Fig 2); these layers generate
an approximate a posteriori probabilities of the individual ele-
ments of x, and (i i) Layer 2: antenna activity nodes and GSM
constraint node (denoted by shaded nodes in Fig 2); these lay-
ers generate an approximate a posteriori probabilities of the
individual elements of a. In constructing the messages pi j at
the variable nodes, we employ a Gaussian approximation of the
interference as described below. This significantly reduces the
detection complexity.

From (5), we can write

y j = Hji xi + g ji , g ji �
N∑

l=1,l �=i

H jl xl + w j . (25)

Approximate g ji to be Gaussian. Then,

μ j i � E(g ji ) =
∑
l �=i

H jlE(xl) =
∑
l �=i

H jl

∑
x∈A∪0

xpi j (x), (26)

σ 2
j i � Var(g ji ) = σ 2 +

∑
l �=i

H2
jlVar(xl). (27)

Using the above approximation, the messages are given by

v ji (x) � p(xi = x |y j ) ≈ 1

σ 2
j i

√
2π

exp

(
−(y j − μ j i − Hji x)2

2σ 2
j i

)
, (28)

pi j (x) � p(xi = x |y\ j )

≈
M∏

k=1,k �= j

p(xi = x |yk) ∝ ui (x�)
∏
k �= j

vki (x),

qi (b) � p(ai = b|x), ui (b) � p(ai = b|x\i ),

qi (b) ≈

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∑
x∈A

M∏
k=1

p(xi = x |yk) ∝ ∑
x∈A

M∏
k=1

vki (x) if b = 1

M∏
k=1

p(xi = 0|yk) ∝
M∏

k=1
vki (0) if b = 0,

ui (b) ∝

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

p

(∑
l �=i

al = R − 1|a\i

)
≈ φi (R − 1) if b = 1

p

(∑
l �=i

al = R|a\i

)
≈ φi (R) if b = 0,

here x� = 0 if x = 0 and x� = 1 if x �= 0. x\i denotes the set
of all elements of x except xi , and φi =⊗N

l=1,l �=i ql , where
⊗

is the convolution operation.
Simulation results: Figure 3(a) presents a performance com-

parison between the proposed LaMP detection, the maximum
likelihood (ML) detection, and the convex superset relaxation
(CSR) based detection in [6] for different (N , M, R)- GSM
MIMO systems with BPSK. It can be seen that the LaMP
performance is away from ML performance by about 3 dB
and 1.6 dB for (8, 8, 4)- and (16, 16, 4)-GSM MIMO systems,
respectively, at 10−5 BER. Also, LaMP detection performs bet-
ter than the CSR detection in [6] – e.g., by about 1.8 dB at 10−5

BER in (16, 16, 4)-GSM MIMO system. Figure 3(b) presents a
performance comparison between the LaMP detection, MMSE
detection (performed as [HH H + 1

SN R I]−1HH y), CSR detec-
tion in [6] for the following large-scale GSM-MIMO system
configurations: (i) (32, 32, 16)-GSM, 4-QAM, |A| = 229, 61
bpcu, (i i) (64, 64, 16)-GSM, 4-QAM, |A| = 248, 80 bpcu, and
(i i i) (64, 64, 32)-GSM, 4-QAM, |A| = 260, 124 bpcu. It can
be seen that the LaMP algorithm performs better and its per-
formance improves as the dimensionality of the GSM signal
increases.
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