
1

A Gaussian-Sinc Pulse Shaping Filter for Zak-OTFS
Arpan Das, Fathima Jesbin, and Ananthanarayanan Chockalingam

Department of ECE, Indian Institute of Science, Bangalore, 560012

Abstract—The choice of delay-Doppler domain (DD) pulse
shaping filter plays an important role in determining the per-
formance of Zak-OTFS. Sinc filter has good main lobe charac-
teristics (with nulls at information grid points) which is good
for equalization/detection, but has high side lobes which are
detrimental for input-output (I/O) relation estimation. Whereas,
Gaussian filter is highly localized with very low side lobes which
is good for I/O relation estimation, but has poor main lobe
characteristics which is not good for equalization/detection. In
this paper, we propose a new filter, termed as Gaussian-sinc
(GS) filter, which inherits the complementary strengths of both
Gaussian and sinc filters. The proposed filter does not incur
time or bandwidth expansion. We derive closed-form expressions
for the I/O relation and noise covariance of Zak-OTFS with
the proposed GS filter. We evaluate the Zak-OTFS performance
for different pulse shaping filters with I/O relation estimated
using exclusive and embedded pilots. Our results show that
the proposed GS filter achieves better bit error rate (BER)
performance compared to other filters reported in the literature.
For example, with model-free I/O relation estimation using
embedded pilot and 8-QAM, the proposed GS filter achieves
an SNR gain of about 4 dB at 10−2 uncoded BER compared to
Gaussian and sinc filters, and the SNR gain becomes more than
6 dB at a coded BER of 10−4 with rate-1/2 coding.

Index Terms—Zak-OTFS modulation, delay-Doppler domain,
pulse shaping filter, noise covariance, I/O relation estimation,
equalization/detection.

I. INTRODUCTION

ORTHOGONAL time frequency space (OTFS) modula-
tion is a delay-Doppler (DD) domain modulation suited

for doubly-selective channels. In multicarrier OTFS (MC-
OTFS) modulation introduced in [1], the information symbols
in the DD domain are converted to time-frequency (TF)
domain following which conversion to time domain is carried
out using a legacy multicarrier modulation scheme [2]-[8]. In
Zak transform based OTFS (Zak-OTFS) modulation, the infor-
mation symbols multiplexed in the DD domain are converted
to time domain for transmission using inverse Zak transform
[9],[10],[11]. At the receiver, the received time domain signal
is converted back to DD domain using Zak transform for
data detection. In this paper, we consider Zak-OTFS. Two key
aspects are central to Zak-OTFS. First, it provides a formal
mathematical framework using Zak theory for describing
OTFS and studying its fundamental properties [9],[11]. This
is analogous to how Fourier theory provides an appropriate
mathematical framework for describing and understanding
OFDM. Second, compared to the standard multicarrier OTFS
(MC-OTFS), Zak-OTFS waveform is more robust to a larger
range of delay and Doppler spreads of the channel (Fig. 18 in
[10]). This is because the input-output (I/O) relation in Zak-
OTFS is non-fading and predictable, even in the presence of
significant delay and Doppler spreads, and, as a consequence,

the channel can be efficiently acquired and equalized [10].
Recent works on Zak-OTFS have been reported in [12]-[19].

An important building block in the Zak-OTFS transmitter
is the DD domain transmit pulse shaping filter. The basic
information-bearing carrier in Zak-OTFS is a pulse in the DD
domain which is a quasi-periodic localized function. The Zak-
OTFS performance is influenced by how well these pulses
are localized in the DD domain. A DD filter matched to the
transmit filter is used at the receiver. The ‘effective’ channel in
Zak-OTFS includes the cascade of the transmit DD filter, the
physical channel, and the receive DD filter. Consequently, the
choice of the pulse shaping filter influences the DD spread
of the effective channel. Estimating the DD domain input-
output (I/O) relation in Zak-OTFS amounts to estimating the
coefficients of the effective channel. The estimated I/O rela-
tion is used for subsequent equalization/detection in the DD
domain. Therefore, the pulse shape influences the performance
of the two important receiver functions, namely, I/O relation
estimation and equalization/detection.

In the Zak-OTFS literature, the following DD pulse shaping
filters have been considered: 1) sinc filter [10]-[15],[18],[19],
2) root raised cosine (RRC) filter [10]-[18], and 3) Gaussian
filter [14]. The sinc filter has the benefit of good main lobe
characteristics with nulls at the Nyquist sampling points in
the DD domain (i.e., nulls at the information grid points).
This attribute has a positive influence on achieving good
equalization/detection performance. However, sinc filter has
the drawback of high side lobes which plays a negative role
in I/O relation estimation. Specifically, pulse shaping filters
cause aliasing between the received pilot and its own quasi-
periodic replicas (a.k.a. self-interaction). Because of this, the
high side lobes in the sinc filter result in increased aliasing
(self-interference due to quasi-periodic replicas) that leads to
poor I/O relation estimation. The RRC filter achieves reduced
side lobe levels compared to sinc filter, but this side lobe
reduction is achieved with bandwidth and time expansion.
More the bandwidth and time expansion, better will be the
side lobe reduction. The Gaussian filter, on the other hand,
has the advantage of good DD localization with very low
side lobe levels, but it has poor main lobe characteristics
without nulls at the Nyquist sampling points. This makes the
Gaussian filter superior for I/O relation estimation but inferior
for equalization/detection compared to sinc and RRC filters.

Based on the above observations, in this paper, we propose
a new pulse shaping filter, termed Gaussian-sinc (GS) filter,
which inherits the complementary strengths of Gaussian and
sinc filters. Unlike RRC filter, the proposed filter does not
incur time and bandwidth expansion. We derive closed-form
expressions for the I/O relation and noise covariance of Zak-
OTFS with the proposed GS filter. We evaluate the Zak-
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Figure 1: Block diagram of Zak-OTFS transceiver.

OTFS performance for different pulse shaping filters with I/O
relation estimated using exclusive and embedded pilots. We
consider ITU Vehicular-A (Veh-A) channel model [20] with
fractional delays and Dopplers in performance evaluation. Our
simulation results show that the proposed GS filter achieves
better bit error rate (BER) performance compared to other
filters reported in the literature.

We note that, while the Gaussian and sinc filters are
individually well-known, the proposed GS filter is a novel
construct in the context of Zak-OTFS. It is not a simple
reuse of existing filters but a carefully designed composite
filter that combines the desirable properties of both (nulls at
Nyquist points from the sinc filter and low side lobes from
the Gaussian filter), through a multiplicative energy-preserving
formulation. This design enables improved performance in
both I/O relation estimation and equalization/detection without
time or bandwidth expansion. To the best of our knowledge,
such a formulation and its analysis in the context of Zak-OTFS
have not been previously reported.

The rest of the paper is organized as follows. The Zak-OTFS
system model and the sinc, RRC, and Gaussian filters are
introduced in Sec. II. The model-free I/O relation estimation
using exclusive and embedded pilot frames is presented in
Sec. III. The proposed GS filter and the derivation of closed-
form expressions for the I/O relation and noise covariance are
presented in Sec. IV. Performance results and discussions are
presented in Sec. V. Conclusions are presented in Sec. VI.

II. ZAK-OTFS SYSTEM MODEL

Figure 1 shows the block diagram of a Zak-OTFS
transceiver. In Zak-OTFS, a pulse in the DD domain is the
basic information carrier. A DD pulse is a quasi-periodic
localized function defined by a delay period τp and a Doppler
period νp = 1

τp
. The fundamental period in the DD domain

is defined as D0 = {(τ, ν) : 0 ≤ τ < τp, 0 ≤ ν < νp},
where τ and ν represent the delay and Doppler variables,
respectively. The fundamental period is discretized into M
bins on the delay axis and N bins on the Doppler axis,
as
{
(k

τp
M , l

νp

N )|k = 0, . . . ,M − 1, l = 0, . . . , N − 1
}

. The
time domain Zak-OTFS frame is limited to a time duration
T = Nτp and a bandwidth B = Mνp. In each frame, MN
information symbols drawn from a modulation alphabet A,
x[k, l] ∈ A, k = 0, . . . ,M − 1, l = 0, . . . , N − 1, are
multiplexed in the DD domain. The information symbol x[k, l]
is carried by DD domain pulse xdd[k, l], which is a quasi-
periodic function with period M along the delay axis and
period N along the Doppler axis, i.e., for any n,m ∈ Z,

xdd[k + nM, l +mN ] = x[k, l]ej2πn
l
N . (1)

These discrete DD domain signals xdd[k, l]s are supported on
the information lattice Λdd =

{(
k
τp
M , l

νp

N

)
|k, l ∈ Z

}
. The

continuous DD domain information signal is given by

xdd(τ, ν) =
∑
k,l∈Z

xdd[k, l]δ
(
τ − kτp

M

)
δ
(
ν − lνp

N

)
, (2)

where δ(.) denotes the Dirac-delta impulse function. For
any n,m ∈ Z, we have xdd(τ + nτp, ν + mνp) =
ej2πnντpxdd(τ, ν), so that xdd(τ, ν) is periodic with period
νp along the Doppler axis and quasi-periodic with period τp
along the delay axis.

The DD domain transmit signal xwtx

dd (τ, ν) is given by
the twisted convolution of the transmit pulse shaping fil-
ter wtx(τ, ν) with xdd(τ, ν) as xwtx

dd (τ, ν) = wtx(τ, ν) ∗σ
xdd(τ, ν), where ∗σ denotes the twisted convolution1. The
transmitted time domain (TD) signal std(t) is the TD real-
ization of xwtx

dd (τ, ν), given by std(t) = Z−1
t (xwtx

dd (τ, ν)),
where Z−1

t denotes the inverse time-Zak transform operation2.
The transmit pulse shaping filter wtx(τ, ν) limits the time and
bandwidth of the transmitted signal std(t). The transmit signal
std(t) passes through a doubly-selective channel to give the
output signal rtd(t). The DD domain impulse response of the
physical channel hphy(τ, ν) is given by

hphy(τ, ν) =

P∑
i=1

hiδ(τ − τi)δ(ν − νi), (3)

where P denotes the number of DD paths, and the ith path
has gain hi, delay shift τi, and Doppler shift νi.

The received TD signal y(t) at the receiver is given by
y(t) = rtd(t) + n(t), where n(t) is AWGN with variance
N0, i.e., E[n(t)n(t + t′)] = N0δ(t

′). The TD signal y(t) is
converted to the corresponding DD domain signal ydd(τ, ν)
by applying Zak transform3, i.e.,

ydd(τ, ν) = Zt(y(t)) = rdd(τ, ν) + ndd(τ, ν), (4)

where rdd(τ, ν) = hphy(τ, ν) ∗σ wtx(τ, ν) ∗σ xdd(τ, ν) is the
Zak transform of rtd(t), given by the twisted convolution
cascade of xdd(τ, ν), wtx(τ, ν), and hphy(τ, ν), and ndd(τ, ν)

1Twisted convolution of two DD functions a(τ, ν) and b(τ, ν) is defined
as a(τ, ν) ∗σ b(τ, ν)

∆
=

∫∫
a(τ ′, ν′)b(τ − τ ′, ν − ν′)ej2πν′(τ−τ ′)dτ ′dν′.

2Inverse time-Zak transform of a DD function a(τ, ν) is defined as
Z−1
t (a(τ, ν))

∆
=

√
τp

∫ νp
0 a(t, ν)dν.

3Zak transform of a continuous TD signal a(t) is defined as Zt (a(t))
∆
=√

τp
∑

k∈Z a(τ + kτp)e−j2πνkτp .
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is the Zak transform of n(t). The receiver filter wrx(τ, ν) acts
on ydd(τ, ν) through twisted convolution to give the output

ywrx

dd (τ, ν) = wrx(τ, ν) ∗σ ydd(τ, ν)

= wrx(τ, ν) ∗σ hphy(τ, ν) ∗σ wtx(τ, ν)︸ ︷︷ ︸
∆
= heff (τ,ν)

∗σxdd(τ, ν)

+ wrx(τ, ν) ∗σ ndd(τ, ν)︸ ︷︷ ︸
∆
= nwrx

dd (τ,ν)

, (5)

where heff(τ, ν) denotes the effective channel consisting of
the twisted convolution cascade of wtx(τ, ν), hphy(τ, ν), and
wrx(τ, ν), and nwrx

dd (τ, ν) denotes the noise filtered through
the Rx filter. The DD signal ywrx

dd (τ, ν) is sampled on the
information lattice, resulting in the discrete quasi-periodic DD
domain received signal ydd[k, l] as

ydd[k, l] = ywrx

dd

(
τ =

kτp
M

,ν =
lνp
N

)
, k, l ∈ Z. (6)

The DD signal ywrx

dd (τ, ν) can be written as

ywrx

dd (τ, ν) = heff(τ, ν) ∗σ xdd(τ, ν) + nwrx

dd (τ, ν)

=

∫∫
heff(τ1, ν1)

∑
k′,l′∈Z

xdd[k
′, l′]δ

(
τ − τ1 −

k′τp
M

)
δ

(
ν − ν1 −

l′νp
N

)
ej2πν1(τ−τ1)dτ1dν1 + nwrx

dd (τ, ν)

=
∑

k′,l′∈Z
heff

(
τ − k′τp

M
,ν − l′νp

N

)
xdd[k

′, l′]

e
j2π

(
ν− l′νp

N

)
k′τp
M

+ nwrx

dd (τ, ν). (7)

Sampling ywrx

dd (τ, ν) on the information grid gives (Theorem
2.1 and Appendix 2.O in [11])

ydd[k, l] = ywrx

dd

(
τ =

kτp
M

,ν =
lνp
N

)
=
∑

k′,l′∈Z
heff

(
(k − k′)τp

M
,
(l − l′)νp

N

)
xdd[k

′, l′]

× e
j2π

(
(l−l′)νp

N

)
k′τp
M

+ nwrx

dd

(
kτp
M

,
lνp
N

)
=
∑

k′,l′∈Z
heff [k − k′, l − l′]xdd[k

′, l′]ej2π
k′(l−l′)

MN + ndd[k, l]. (8)

Hence, the ydd[k, l] samples are given by ydd[k, l] =
heff [k, l] ∗σd xdd[k, l] + ndd[k, l], where ∗σd is twisted con-
volution in discrete DD domain, i.e., heff [k, l] ∗σd xdd[k, l] =∑

k′,l′∈Z heff [k − k′, l − l′]xdd[k
′, l′]ej2π

k′(l−l′)
MN , where the

effective channel filter heff [k, l] and filtered noise samples
ndd[k, l] are given by

heff[k, l] = heff

(
τ =

kτp
M

,ν =
lνp
N

)
, (9)

ndd[k, l] = nwrx

dd

(
τ =

kτp
M

,ν =
lνp
N

)
. (10)

Owing to the quasi-periodicity in the DD domain, it is suf-
ficient to consider the received samples ydd[k, l] within the
fundamental period D0. Writing the ydd[k, l] samples as a

vector, the received signal model can be written in matrix-
vector form as [9],[10]

y = Heffx+ n, (11)

where x,y,n ∈ CMN×1, such that their (kN+l+1)th entries
are given by xkN+l+1 = xdd[k, l], ykN+l+1 = ydd[k, l],
nkN+l+1 = ndd[k, l], and Heff ∈ CMN×MN is the effective
channel matrix such that

Heff[k
′N + l′ + 1, kN + l + 1] =

∑
m,n∈Z

heff [k
′ − k − nM,

l′ − l −mN ]ej2πnl/Nej2π
(l′−l−mN)(k+nM)

MN , (12)

where k′, k = 0, . . . ,M − 1, l′, l = 0, . . . , N − 1.

A. DD pulse shaping filters

In the absence of pulse shaping, i.e., wtx(τ, ν) = δ(τ, ν),
the transmit signal has infinite time duration and bandwidth.
Pulse shaping limits the time and bandwidth of transmission.
We consider transmit DD pulse shaping filters of the form
wtx(τ, ν) = w1(τ)w2(ν) [10],[13]. The time duration T ′ of
each frame is approximately related to the spread of w2(ν)
along the Doppler axis as 1

T ′ . Likewise, the bandwidth B′

is approximately related to the spread of w1(τ) along the
delay axis as 1

B′ . That is, a larger bandwidth and time
duration implies a smaller DD spread of wtx(τ, ν), and hence
a smaller contribution to the spread of heff(τ, ν). Sinc, RRC,
and Gaussian filters have been considered in the Zak-OTFS
literature and are described below.

Sinc filter: For sinc filter, w1(τ) and w2(ν) are given by
w1(τ) =

√
Bsinc(Bτ) and w2(ν) =

√
T sinc(Tν), so that

wtx(τ, ν) =
√
Bsinc(Bτ)︸ ︷︷ ︸

w1(τ)

√
T sinc(Tν)︸ ︷︷ ︸

w2(ν)

. (13)

For sinc filter, the frame duration T ′ = T and frame bandwidth
B′ = B (i.e., there is no time or bandwidth expansion), result-
ing in a spectral efficiency of BT

B′T ′ = 1 symbol/dimension.
RRC filter: For RRC filter, wtx(τ, ν) is given by

wtx(τ, ν) =
√
B rrcβτ

(Bτ)︸ ︷︷ ︸
w1(τ)

√
T rrcβν

(Tν)︸ ︷︷ ︸
w2(ν)

, (14)

where 0 ≤ βτ , βν ≤ 1 and

rrcβ(x) =
sin (πx(1− β)) + 4βx cos (πx(1 + β))

πx (1− (4βx)2)
. (15)

It can be seen that the choice of βτ = βν = 0 in the RRC filter
(14) specializes to the sinc filter. Also, for βν > 0 and βτ > 0,
there is time and bandwidth expansion such that T ′ = T (1 +
βν) and B′ = B(1 + βτ ), resulting in a spectral efficiency of
BT
B′T ′ < 1 symbol/dimension.

Gaussian filter: For Gaussian filter, wtx(τ, ν) is given by
[14]

wtx(τ, ν)=

(
2ατB

2

π

) 1
4

e−ατB
2τ2

︸ ︷︷ ︸
w1(τ)

(
2ανT

2

π

) 1
4

e−ανT
2ν2

︸ ︷︷ ︸
w2(ν)

.

(16)
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The Gaussian pulse can be configured by adjusting the param-
eters ατ and αν . Because of the infinite support in Gaussian
pulse, a time duration T ′ where 99% of the frame energy
is localized in the time domain and a bandwidth B′ where
99% of the frame energy is localized in the frequency domain
are considered [14]. No time and bandwidth expansion (i.e.,
T ′ = T , B′ = B) in the Gaussian pulse corresponds to setting
ατ = αν = 1.584.

B. Crystalline region of operation

A Zak-OTFS system is said to be operating in the crystalline
region if the crystallization condition is met. The crystalliza-
tion condition is said to be met if the delay spread of the
effective channel is less than the delay period τp and the
Doppler spread of the effective channel is less than the Doppler
period νp. By operating the system in the crystalline region,
the leakage of the quasi-periodic replicas into the fundamental
region is limited. Because of this, the I/O relation, which
is required for equalization/detection, is predictable and non-
fading [9], [10]. This allows the estimation of the I/O relation
through a simple read-off in the fundamental region.

III. DELAY-DOPPLER I/O RELATION ESTIMATION

To perform the equalization/detection task at the receiver,
knowledge of the DD I/O relation, i.e., the effective channel
matrix Heff in (11), is needed. To compute the entries of Heff
as per (12), knowledge of the effective channel taps heff [k, l]
is needed. This can be obtained using two approaches, namely,
model-dependent and model-free approaches [10]. In model-
dependent approach, the parameters of the physical channel
hphy(τ, ν), i.e., {τi, νi, hi}s, are estimated using a channel
estimation scheme and these estimated parameters are then
used to construct the I/O relation. That is, use the estimated
{τi, νi, hi}s to compute heff(τ, ν) defined in (5) and sample
it to obtain heff[k, l] as in (9), which when substituted in (12)
gives the estimated I/O relation Ĥeff.

Model-free approach does not require explicit estimation
of the physical channel parameters {τi, νi, hi}s. Instead, the
I/O relation can be obtained by sending a pilot symbol in a
frame and directly reading out the corresponding DD domain
output samples in D0 at the receiver and using the read-off
samples in (12). Due to its simplicity, we consider model-free
approach for I/O relation estimation, which is presented below
for exclusive and embedded pilot frames.

A. Exclusive pilot frame

A point pilot symbol at the origin (k, l) = (0, 0) in the
discrete DD domain is given by xp[k, l] =

∑
n,m∈Z δ[k −

nM ]δ[l−mN ]ej2π
nl
N . Substituting xp[k, l] as xdd[k, l] in (8)

and ignoring noise (i.e., considering ndd[k, l] = 0, k, l ∈ Z),
we obtain the channel response as

heff[k, l] +
∑

n,m∈Z,(n,m)̸=(0,0)

heff[k − nM, l −mN ]ej2π
nl
N . (17)

Note that the first term in (17) corresponding to (n,m) =
(0, 0) is the true effective channel and the second term

Figure 2: Heatmaps of the channel response for a pilot at
the origin (k, l) = (0, 0) for sinc and Gaussian filters: (a)
true effective channel (first term in (17)), (b) quasi-periodic
replicas of the channel (second term in (17)), and (c) total
channel response (first+second terms in (17)).

corresponding to (n,m) ̸= (0, 0) is due to the quasi-periodic
replicas. The effect of the second term on the first term
in the total response depends on the pulse shaping filter
characteristics (e.g., side lobe levels). In Fig. 2, we provide
an illustration of the contribution of the second term in (17)
through heatmaps of the channel response for a pilot at the
origin (k, l) = (0, 0) in the absence of noise. The figure shows
the heatmaps of the first and second terms in (17) separately,
for sinc and Gaussian filters. It can be seen that for the sinc
filter, which has strong side lobes, the leakage from the quasi-
periodic replicas (second term) into the red box in the figure4

is significant. The smaller the leakage of the second term into
the read-off region, the better will be the estimation accuracy.

In an exclusive pilot frame, a pilot xp[k, l] located at
(kp, lp) = (M/2, N/2) and zeros at other locations is sent to
estimate the effective channel heff [k, l]. The channel response
for this exclusive pilot frame is given by

yp[k, l] = heff [k, l] ∗σd xp[k, l]

=
∑

m,n∈Z
heff [k − (kp + nM), l − (lp +mN)]

ej2π
nlp
N ej2π

(l−lp−mN)(kp+nM)

MN . (18)

In the crystalline regime, the total response in the fundamental
period coincides with the (0, 0)th local response (m = n = 0),
given by

yp[k, l] = heff [k −M/2, l −N/2]ejπ
(l−N

2 )
N , (19)

for 0 ≤ k < M and 0 ≤ l < N . Consequently, the effective
channel estimate is obtained as

ĥeff [k, l]=


yp
[
k + M

2 , l + N
2

]
e−jπ l

N , −M
2 ≤ k < M

2 ,

−N
2 ≤ l < N

2 ,

0, otherwise.

(20)

4The red box in Fig. 2, bounded by the points
(
−M

2
,−N

2

)
,(

−M
2
, N

2
− 1

)
,
(

M
2

− 1, N
2

− 1
)

,
(

M
2

− 1,−N
2

)
, represents the region

in which we perform the read-off to obtain the model-free channel estimates.
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Figure 3: Embedded pilot frame with pilot symbol, pilot
region, guard region, and data region.

The above estimated coefficients ĥeff [k, l] are used in (12) to
obtain the Ĥeff. Note that the accuracy of this estimate in
terms of normalized mean squared error (MSE), defined as
the average of ||Heff−Ĥeff||2F

||Heff||2F
, is influenced by the choice of

the filter, particularly the side lobe characteristics of the filter.
Lower the side lobe levels, better will be the accuracy, because
lower side lobes result in a weak second term in the channel
response due to the replicas (see Eq. (17)).

B. Embedded pilot frame

We consider the embedded pilot frame shown in Fig. 3 [14].
It consists of a pilot symbol located at (kp, lp) = (M/2, N/2),
a data region D = D1 ∪ D2 in which data symbols are trans-
mitted, and a region in between (pilot region P + guard region
G = G1∪G2) where no symbols are transmitted. The support of
the effective channel, denoted by S, is marked/represented by
the ellipse in Fig. 3. The pilot region is designed to encompass
S, and the guard regions act as buffers between the pilot
and data regions to mitigate interference between them. The
pilot region spans from kp − p1 to kp + kmax + p2, and the
guard region is defined by the boundaries kp − kmax − g1 and
kp+kmax+g2. Here, kmax = ⌈Bmax(τi)⌉ represents the max-
imum delay spread of the physical channel and p1, p2, g1, g2
are non-negative integers. The additional bins within these
regions represented by p1, p2, g1, g2 accommodate the signal
spread caused by the pulse shaping filters and can be chosen
according to the system bandwidth.

For 0 ≤ k ≤ M − 1 and 0 ≤ l ≤ N − 1, the symbol x[k, l]
in the frame is given by

x[k, l] =


√

Ep, (k, l) = (kp, lp),√
Ed
|D|xd[k, l], (k, l) ∈ D,

0, otherwise,

(21)

where xd[k, l] is the information symbol at location (k, l).
Taking E[|xd[k, l]|2] = 1, the average energy transmitted in a
frame is Ep +Ed and the average transmitted power is (Ep +

Ed)/T
′. Normalizing the channel gains as

∑P
i=1 E[|hi|2] = 1,

the data SNR is given by γd = Ed
N0B′T ′ and the pilot SNR is

Figure 4: Delay pulse magnitude |w1(τ)| (in dB) as a function
of the normalized delay Bτ .

given by γp =
Ep

N0B′T ′ . The term Ep/Ed is the ratio of the
pilot power to data power ratio (PDR).

In each frame, the effective channel coefficients {heff [k, l]}
are estimated based on the received pilot symbols at locations
within the pilot region P using (20). These estimates are used
to construct the estimated effective channel matrix Ĥeff. Note
that the estimation accuracy here is affected by the interference
from data symbols (in addition to self-interference due to pilot
symbol replicas and noise), which is determined by the pulse
shape. The received DD symbols ydd[k, l], (k, l) ∈ D ∪ G are
arranged as a vector of length MN −|P|, which is the vector
of the |D| transmitted symbols times the effective channel
matrix plus the noise vector [14]. Information symbols are
detected from the vector of received symbols in D ∪ G. Note
that, among other things, the equalizer/detection performance
here is affected by the interference from pilot.

IV. PROPOSED GAUSSIAN-SINC DD FILTER

In the Zak-OTFS literature, sinc, RRC, and Gaussian pulse
shaping filters have been considered. In this section, we present
the rationale for a new pulse shaping filter for Zak-OTFS,
the proposed Gaussian-sinc (GS) filter, and the derivation
of closed-form expressions for the I/O relation and noise
covariance with the proposed GS filter.

A. Rationale for a new filter

In Fig. 4, we plot the delay pulse magnitude |w1(τ)| in dB
scale as a function of the normalized delay Bτ for sinc, RRC,
and Gaussian filters. Similar characteristics can be observed
for Doppler pulse magnitude |w2(ν)| as a function of the
normalized Doppler Tν. The sinc filter has ideal main lobe
characteristics with nulls at the Nyquist sampling points on
the DD grid (i.e., at τ = k

B , ν = l
T , k, l ∈ Z\0). But it has

the drawback of high side lobe levels. The RRC filter alleviates
the issue of high side lobes in sinc filter through the choice of
βτ and βν parameters. But this is achieved at the expense
of increased time and bandwidth, since T ′ = T (1 + βν),
B′ = B(1 + βτ ), and 0 < βτ , βν ≤ 1 . The Gaussian filter
has very low side lobe levels, but it does not have good main
lobe characteristics. In particular, it does not have nulls at the
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(a) BER vs SNR with perfect CSI (b) MSE vs SNR with embedded pilot (c) BER vs SNR with embedded pilot

Figure 5: Performance of sinc and Gaussian filters (a) with perfect CSI and (b),(c) with model-free I/O relation estimation.

Path index (i) 1 2 3 4 5 6
Delay τi (µs) 0 0.31 0.71 1.09 1.73 2.51

Relative power (dB) 0 -1 -9 -10 -15 -20

Table I: Power delay profile of Veh-A channel model.

Nyquist sampling points. Instead, it has a high value closer to
the peak value. These varied characteristics of the sinc, RRC,
and Gaussian filters affect the receiver performance in different
ways. For example, presence of nulls at the Nyquist points
positively influences the equalization/detection performance,
while having high non-zero values at these points has a
negative influence on the equalization/detection performance.
Likewise, very low side lobes positively influences the I/O
relation estimation performance, while high side lobes influ-
ences it negatively. We illustrate the above points through the
performance plots in Figs. 5a, 5b, 5c.

For generating the performance plots in Figs. 5a, 5b, 5c, the
following system parameters are used. A Zak-OTFS system
with M = 12, N = 14, and BPSK is considered. The Doppler
period taken to be νp = 15 kHz. Therefore, the delay period
is τp = 1

νp
= 66.66 µs. Consequently, the time duration of a

Zak-OTFS frame is T = Nτp = 0.93 ms and the bandwidth
is B = Mνp = 180 kHz. The receive filter is matched to the
transmit filter [13]-[17], i.e.,

wrx(τ, ν) = w∗
tx(−τ,−ν)ej2πντ . (22)

The Veh-A fractional DD channel model [20] having P = 6
channel paths whose power delay profile is shown in Table
I and a maximum Doppler shift of νmax = 815 Hz is
considered. The Doppler shift of the ith path is modeled as
νi = νmax cos θi, i = 1, . . . , P , where θis are independent and
uniformly distributed in [0, 2π). The considered τp, νp values
and channel spreads satisfy the crystallization condition. Min-
imum mean square error (MMSE) detection is used. For RRC
filter, βτ = 0.05 and βν = 0.1 are used. For Gaussian filter,
ατ and αν are taken to be 1.584.

First, let us see how the choice of the filter affects the
equalization/detection performance at the receiver. For this,
we assume perfect channel state information (CSI). Figure 5a
shows the BER performance of Zak-OTFS using sinc, RRC,
and Gaussian filters with perfect CSI. We observe that the
sinc filter achieves nearly 5 dB better performance compared
to Gaussian filter. Note that, because of the perfect CSI

assumption, there is no effect of I/O relation estimation on the
detection performance. Consequently, the better performance
of sinc filter with perfect CSI is attributed to the fact that
it has nulls at Nyquist sampling points (leaving only a weak
influence by the physical channel spread), whereas Gaussian
filter has a high non-zero value at the τ = 1

B , ν = 1
T sampling

points (as per Fig. 4, this value is just 7 dB below the main
lobe peak), which leads to high inter-symbol interference. With
bandwidth and time expansion, RRC filter achieves slightly
better performance compared to sinc filter performance.

Now, let us see how the filters affect performance when
there is no perfect CSI assumption and a model-free I/O
relation estimation scheme is used with embedded pilot frame.
An embedded pilot frame structure shown in Fig. 3 with
a PDR of 5 dB is considered. As in Fig. 3, the pilot is
located at (kp, lp) = (M/2, N/2) and the embedded frame
parameters are fixed as p1 = p2 = 1, g1 = 1, g2 = 2,
and kmax = ⌈Bmax(τi)⌉ = 1. Figure 5b shows the MSE
performance of I/O relation estimation using sinc, RRC, and
Gaussian filters. It is interesting to observe that while Gaussian
filter’s BER performance with perfect CSI is the worst (Fig.
5a), its MSE performance of I/O relation estimation is the
best (Fig. 5b). This is attributed to the Gaussian filter’s very
low side lobes compared to those of sinc and RRC filters (see
Fig. 4), which help to isolate the influence of interference
from data/pilot replicas on estimation. However, for sinc filter,
because of its high side lobes and consequent high interference
levels, the MSE floors at a high value. Figure 5c shows
the BER performance comparison corresponding to the MSE
performance comparison in Fig. 5b. From Fig. 5c, it is seen
that, though Gaussian filter performs better than sinc filter in
terms of MSE, there is a cross-over in their BER performance.
This can be explained as follows. Because of its very good
I/O relation estimation, the Gaussian filter’s BER for perfect
CSI and estimated CSI are very close (see BER plots of
Gaussian filter in Figs. 5a and 5c). Whereas, because of its
poor I/O relation estimation, the sinc filter’s BER degrades
significantly and floors at high SNRs, where the MSE floor
(due to high data/pilot replicas’ interference and pilot-data
interference) dominates BER performance over noise variance.
At low SNRs, the sinc filter has the advantage of low inter-
symbol interference due to its nulls, whereas Gaussian filter
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suffers from high inter-symbol interference because of its poor
main lobe characteristics leading to its poorer performance
compared to sinc filter. Also, RRC filter performs slightly
better than sinc filter, and this comes at the cost of time and
bandwidth expansion.

The above observations indicate that the Gaussian and
sinc filters have complementary merits with respect to I/O
relation estimation and detection tasks. Therefore, a filter
which possesses the merits of both without bandwidth or time
expansion is of interest, and this forms the essence of the GS
filter proposed in the following subsection.

B. Proposed GS filter

The proposed GS filter aims to simultaneously achieve the
complementary strengths of Gaussian filter (good I/O relation
estimation) and sinc filter (good equalization/detection) with-
out bandwidth or time expansion. Towards this, the proposed
filter is devised in a separable form wtx(τ, ν) = w1(τ)w2(ν),
where w1(τ) is a product function in τ variable of the form

w1(τ) = Ωτ

√
Bsinc(Bτ)e−ατB

2τ2

, (23)

and w2(ν) is a product function in ν variable of the form

w2(ν) = Ων

√
T sinc(Tν)e−ανT

2ν2

, (24)

so that the overall proposed filter is given by

wtx(τ, ν) = ΩτΩν

√
BT sinc(Bτ)sinc(Tν)e−ατB

2τ2

e−ανT
2ν2

.
(25)

Note that w1(τ) and w2(ν) are constructed as product of sinc
and Gaussian shaping functions with energy normalization
parameters Ωτ and Ων . The parameters ατ and αν fix the
bandwidth B and the time duration T , respectively, and the
parameters Ωτ and Ων are used to normalize the energy of
the filter to unity, i.e.,

∫
|w1(τ)|2dτ =

∫
|w2(ν)|2dν = 1. The

expressions for Ωτ and Ων in terms of ατ and αν , respectively,
for unit energy normalization are obtained in Appendix A.

The delay pulse characteristics of the proposed GS filter is
plotted in Fig. 4 (along with those of sinc, RRC, and Gaussian
filters). It can be seen that the GS filter retains the nulls
of the sinc filter while reducing the side lobe levels without
bandwidth and time expansion. The values of ατ and αν in
the proposed filter in (25) for which there is no bandwidth
and time expansion (B′ = B, T ′ = T ) and 99% energy
is contained within bandwidth B and time duration T are
ατ = αν = 0.044, and the corresponding values of Ωτ and
Ων are Ωτ = Ων = 1.0278.

C. Closed-form expressions for I/O relation/noise covariance

To facilitate performance analysis/simulation of Zak-OTFS
with the proposed GS filter, here we derive closed-form
expressions for the DD domain I/O relation and noise covari-
ance with the proposed filter. A receive filter matched to the
proposed filter (as per Eq. (22)) is considered. The effective
channel in the continuous DD domain can be written as

heff(τ, ν) = wrx(τ, ν) ∗σ hphy(τ, ν) ∗σ wtx(τ, ν)

=wrx(τ, ν) ∗σ

(
P∑
i=1

hiδ(τ − τi)δ(ν − νi)

)
∗σ w1(τ)w2(ν)

=w∗
1(−τ)w∗

2(−ν)ej2πντ ∗σ
( P∑

i=1

hiw1(τ − τi)w2(ν − νi)

ej2πνi(τ−τi)

)
=

P∑
i=1

(∫
w∗

1(−τ ′)w1(τ − τi − τ ′)e−j2πνiτ
′
dτ ′
)

︸ ︷︷ ︸
∆
=I

(1)
i (τ)(∫

w∗
2(−ν′)w2(ν − νi − ν′)ej2πν

′τdν′
)

︸ ︷︷ ︸
∆
=I

(2)
i (τ,ν)

hie
j2πνi(τ−τi). (26)

We note that a general expression for heff(τ, ν) for an
arbitrary pulse-shaping filter in the matched filter configuration
is presented in [15] (see Eq. (57) in [15]). This heff(τ, ν)
expression in [15] is given in a form of two separable integrals,
corresponding to the auto-ambiguity functions of the time and
frequency domain representations of the Doppler and delay
domain components of the pulse-shaping filter, respectively.
Observe that the integrals in (26) are similar to those of the
auto-ambiguity integrals in [15]. Here, we further simplify the
integrals in (26) to closed-form for the proposed GS filter.
Accordingly, we specialize w1(τ) and w2(ν) in (26) with those
of the GS filter given in (23) and (24), respectively, and obtain
closed-form expression for heff(τ, ν) for the proposed GS filter
(see Theorem 1 below and Appendix B).

Theorem 1. The DD domain effective channel heff(τ, ν) in
closed-form for GS filter is given by

heff(τ, ν) =

P∑
i=1

hie
j2πνi(τ−τi)

·
(
I
(1)
i,1 (τ)1{τ ̸=τi} + I

(1)
i,2 (τ)1{τ=τi}

)
·
(
I
(2)
i,1 (τ, ν)1{ν ̸=νi} + I

(2)
i,2 (τ, ν)1{ν=νi}

)
, (27)

where 1{.} denotes the indicator function, and I
(1)
i,1 (τ),

I
(1)
i,2 (τ), I

(2)
i,1 (τ, ν), and I

(2)
i,2 (τ, ν) are defined in Appendix B.

Proof: See Appendix B.
Now, the continuous DD domain noise at the output is given

by

nwrx

dd (τ, ν) = wrx(τ, ν) ∗σ ndd(τ, ν)

= w∗
1(−τ)w∗

2(−ν)ej2πντ∗σ
(√

τp
∑
q∈Z

n(τ + qτp)e
−j2πνqτp

)
=

√
τp

∞∑
q=−∞

e−j2πνqτp

(∫
w∗

1(−τ ′)n(τ − τ ′ + qτp)dτ
′
)

(∫
w∗

2(−ν′)ej2πν
′(τ+qτp)

)
︸ ︷︷ ︸

∆
=I

(3)
q (τ)

. (28)
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A general expression for the noise covariance for an arbitrary
pulse shape with the matched filter configuration is presented
in [15] (see the expression after Eq. (47) in page 4469 of [15]).
This noise covariance expression in [15] consists of integrals
in the form of auto-ambiguity function of the delay domain
component of the pulse-shaping filter, and auto-correlation
function of the Doppler domain component of the pulse-
shaping filter. Here, using the DD domain noise in (28), we
derive the covariance of the noise in closed-form for the
proposed GS filter (see Theorem 2 below and Appendix C).

Theorem 2. For all k1, k2 = 0, 1, ...,M − 1, l1, l2 =
0, 1, ..., N − 1, the (k1N + l1 +1, k2N + l2 +1)th element of
the noise covariance matrix is given by

E[ndd[k1, l1], n
∗
dd[k2, l2]] = τp

∞∑
q1=−∞

∞∑
q2=−∞

ej2π
q2l2−q1l1

N

·g
(
k1τp
M

+ q1τp

)
g∗
(
k2τp
M

+ q2τp

)
·
(
S
(1)
{k1,k2,q1,q2}1{x{k1,k2,q1,q2} ̸=0} + S(2)

1{x{k1,k2,q1,q2}=0}

)
,

(29)

where g(.), x{k1,k2,q1,q2}, S(1)
{k1,k2,q1,q2}, and S(2) are defined

in Appendix C.

Proof: See Appendix C.

D. A perspective on optimal filter design

The pulse shaping filter design is fundamentally constrained
by the Balian-Low Theorem [23], which states that a function
cannot be localized perfectly in time-frequency and form an
orthonormal basis. This implies that the filter design must
trade off between localization (which aids better I/O relation
estimation) and orthogonality (which benefits better equaliza-
tion/detection). The proposed GS filter is a heuristic design,
obtained through a multiplicative energy preserving composite
construction using Gaussian and sinc filters. More generally,
the GS filter represents one point in a broader design space
of pulse shaping filters. Other composite constructions using
known filters can be explored. More formally, localization-
orthogonality optimal designs formulated in an optimization
framework which maximizes/minimizes certain suitably de-
fined localization-orthogonality metrics is open for research.

V. RESULTS AND DISCUSSIONS

In this section, we present the numerical results on the MSE
and BER performance of Zak-OTFS for sinc, RRC, Gaussian,
and GS filters with model-free I/O relation estimation using
exclusive and embedded pilots. We consider a system with
M = 32, N = 48, and fix the pilot location at (kp, lp) =
(M/2, N/2). The Doppler period is fixed at νp = 15 kHz and
the delay period is τp = 1

νp
= 66.66 µs. The time duration

of a frame is T = Nτp = 3.2 ms and the bandwidth is
B = Mνp = 480 kHz. Receive filter wrx(τ, ν) is matched
to the transmit filter wtx(τ, ν) (see Eq. (22)). We consider
the Veh-A channel model [20] having P = 6 paths with
fractional DDs and a PDP as detailed in Table I. The maximum
Doppler shift is νmax = 815 Hz, and the Doppler shift of

Figure 6: MSE vs pilot SNR performance for different filters
with exclusive pilot frame.

the ith path is modeled as νi = νmax cos θi, i = 1, . . . , P ,
where θis are independent and uniformly distributed in [0, 2π).
The considered system parameters satisfy the crystallization
condition. Also, in the simulations, the range of values of m
and n in (12) is limited to -1 to 1, and this is found to ensure
an adequate support set of heff [k, l] that captures the channel
spread accurately. BPSK and 8-QAM modulation alphabets
are considered. MMSE detection is used at the receiver. No
bandwidth/time expansion (B′ = B, T ′ = T ) is considered
for the filters except RRC filter. For RRC filter, an expanded
bandwidth of B′ = 1.05B (βτ = 0.05) and an expanded time
duration of T ′ = 1.1T (βν = 0.1) are considered.

A. Performance with exclusive pilot frame

Figures 6 and 7 show the MSE and BER performance of
sinc, RRC, Gaussian, and the proposed GS filters using exclu-
sive pilot frame. Figure 8 presents the effect of limited read-off
from the exclusive pilot frame for I/O relation estimation.

1) MSE performance: Figure 6 shows the MSE perfor-
mance as a function of pilot SNR. It is observed that the
Gaussian filter performs better than the other three filters in
terms of MSE performance. This characteristic is attributed
to the highly localized nature of the Gaussian filter with very
low side lobes, resulting in negligible spread of the effective
channel

(
heff [k, l]

)
outside the fundamental region D0, and

this results in a very good estimate of the effective channel
matrix Ĥeff . The MSE performance of the sinc filter is the
poorest among all, which is due to its high side lobe levels
that result in high effective channel spreads outside D0, leading
to poor estimates. RRC filter performs slightly better than sinc
filter, which is an artifact of the comparatively lower side lobe
levels due to bandwidth and time expansion (refer Fig. 4).
The proposed GS filter has low side lobe levels and achieves
almost the same MSE performance as that of the RRC filter,
but it achieves it without bandwidth and time expansion.

2) BER performance: Figure 7 shows the corresponding
BER performance as a function of data SNR with BPSK at
a pilot SNR of 30 dB. Performance with perfect CSI is also
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Figure 7: BER vs data SNR performance of different filters
with exclusive pilot frame at 30 dB pilot SNR. Perfect CSI
performance is also shown.

Figure 8: MSE vs pilot SNR performance for sinc and Gaus-
sian filters with limited read-off in exclusive pilot frame.

plotted for comparison. The sinc filter performs the best with
perfect CSI, because its nulls at the sampling points cause
weak inter-symbol interference among the data symbols which
aids good detection performance. However, with I/O relation
estimation using exclusive pilot, the presence of high side lobe
levels and consequent high interference from pilot replicas
results in a higher MSE (as seen in Fig. 7), and this makes
the BER to floor. RRC filter performs better due to time and
bandwidth expansion. The Gaussian filter performs the worst
with perfect CSI because of the absence of nulls at the sam-
pling points, thereby causing high inter-symbol interference
which results in poor data detection performance. However,
its highly localized pulse shape results in a very accurate I/O
relation estimation, and hence its performance with estimated
CSI closely follows its own perfect CSI performance. With
I/O relation estimation, the proposed GS filter strikes a good
balance between estimation and detection performance (with
its low side lobes and nulls at sampling points) and achieves
very good BER performance.

Figure 9: MSE vs data SNR performance of different filters
with embedded pilot frame at 0 dB PDR.

3) Effect of limited read-off for I/O relation estimation: In
model-free I/O relation estimation, we estimate the effective
channel coefficients by reading off the received samples (see
Eq. (20)) which are used in the summation for constructing
the effective channel matrix (see Eq. (12)). Here, we assess
the effect of limiting/truncating the read-off region on MSE
performance. Let ndc denote the number of delay columns
around the pilot considered in the read-off. This determines
the support of the estimated effective channel. Note that,
ndc = M is used in exclusive pilot-based estimation, i.e.,
the entire received frame is read off. In embedded pilot-based
estimation, the received samples are read off only from the
pilot region, i.e., ndc < M . Figure 8 presents an assessment
of the effect of ndc < M (i.e., limited read-off) in exclusive
pilot-based estimation. The figure shows the MSE performance
for sinc and Gaussian filters for ndc = M,M/2,M/4,M/8.
We observe that ndc affects the MSE performance differently
at low and high pilot SNR regions. That is, at low pilot SNRs,
a small ndc (e.g., ndc = M/8) gives better MSE, whereas a
larger ndc (e.g., ndc = M/2) provides better MSE at high pilot
SNRs. This is because a smaller ndc means a fewer terms to be
summed up to obtain the estimate of Heff as per (12), which
reduces the effect of noise samples on this estimate at low
pilot SNRs (where noise is dominant), leading to better MSE.
Whereas, a larger ndc incorporates more number of terms in
(12) in the construction of Heff , which is beneficial to achieve
better MSE at high pilot SNRs (where signal is dominant).

B. Performance with embedded pilot frame
Here, we present the MSE and BER performance with

embedded pilot frame for different filters. As shown in Fig. 3,
the pilot symbol is placed at (kp, lp) = (M/2, N/2) and the
embedded pilot frame parameters are fixed as p1 = 3, p2 = 1,
g1 = 2, g2 = 3, and kmax = ⌈Bmax(τi)⌉ = 2.

1) MSE performance: In Fig. 9, the MSE performance
of I/O relation estimation is plotted as a function of data
SNR at a fixed PDR of 0 dB. It can be observed that the
Gaussian filter consistently demonstrates the highest estima-
tion accuracy, followed by the proposed GS filter, the RRC
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Figure 10: BER vs PDR performance of different filters with
embedded pilot frame at 15 dB data SNR.

Figure 11: BER vs data SNR performance of different filters
with embedded pilot frame at 0 dB PDR.

filter, and finally the sinc filter. Two sources of interference
arise due to the higher side lobe levels inherent in non-
Gaussian filters: 1) aliasing due to interference from quasi-
periodic replicas which is self-interaction and 2) pilot-data
interference within the same frame. While aliasing affects both
exclusive and embedded pilot scenarios, pilot-data interference
is an additional challenge specific to the embedded pilot
setting. This combined interference significantly degrades the
estimation accuracy of non-Gaussian filters, particularly at
higher SNRs where the impact of noise diminishes and these
interference effects become more prominent. This manifests
as flooring in the MSE performance at high SNRs, and a
wider performance gap emerges between Gaussian and non-
Gaussian filters. Comparing the MSE performance of exclusive
and embedded pilots in Figs. 6 and 9, respectively, we see
a similar trend of MSE performance at low and high SNRs
reported in Fig. 8, i.e., at low SNRs, embedded pilot-based
estimation is better because of the small ndc for the read-off.

2) BER performance: Figure 10 shows the BER perfor-
mance of different filters as a function of PDR at a fixed

Figure 12: BER vs νmax performance of different filters with
embedded pilot frame at 18 dB data SNR and 0 dB PDR.

data SNR of 15 dB. The BER curves exhibit U-shaped
characteristics with respect to PDR. At low PDRs, poor
estimation due to low pilot SNR degrades data detection and
increases BER. The BER improves with increase in PDR
due to more accurate estimation. Conversely, excessive pilot
power at high PDRs leads to significant pilot-data interference
more than the noise effect, particularly more detrimental to
non-Gaussian filters due to their higher side lobe levels. This
manifests in a steeper increase in BER for non-Gaussian filters
compared to Gaussian filter at high PDR values, indicating a
higher sensitivity to strong pilot signals. The Gaussian filter,
with its better DD localization and lower side lobe levels,
is less susceptible to this interference, resulting in a more
gradual increase in BER at high PDRs. The proposed GS filter
consistently demonstrates the best performance because of its
pulse shape which balances the complementary strengths of
Gaussian and sinc filters.

In Fig. 11, we present the BER performance of different
filters corresponding to the MSE performance depicted in
Fig. 9. At low SNRs, the Gaussian filter exhibits the poorest
performance among the evaluated filters. This can be attributed
to its relatively high main lobe value at the sampling instants,
significantly increasing inter-symbol interference and conse-
quently degrading data detection performance when the noise
effects are more pronounced. While the sinc filter outperforms
the Gaussian filter at low SNRs, its significant side lobe levels
cause substantial pilot-data interference. As a result, the BER
performance of the sinc filter starts to floor around 20 dB data
SNR, as evident from the corresponding MSE performance.
The proposed GS filter consistently outperforms the sinc filter
with flooring beyond 25 dB. This improved performance
is attributed to its lower side lobe levels compared to the
sinc filter, which reduces interference, consequently improving
both channel estimation and data detection accuracy. The
RRC filter with bandwidth/time expansion, also due to its
favorable side lobe properties, outperforms sinc filter but
performs poorer than the proposed GS filter. However, the
Gaussian filter has crossovers with these non-Gaussian filters.
Notably, these crossover points in BER performance closely
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Figure 13: BER vs data SNR performance of different filters
with embedded pilot frame at 0 dB PDR for 8-QAM.

align with the SNR values where the MSE performance of
the filters begin to floor as shown in Fig. 9. As the MSE
of non-Gaussian filters floors, further SNR improvements do
not significantly enhance channel estimation accuracy, which
ultimately impacts the detection performance.

Figure 12 shows the BER performance of different filters
as a function of maximum Doppler νmax at 0 dB PDR and 18
dB data SNR. The robustness of Zak-OTFS for large Doppler
spreads can be seen (i.e., BER remains almost flat across the
range of Dopplers considered). Due to the good characteristics
of its main lobe and side lobes, the GS filter achieves better
BER performance compared to those of other filters.

Figure 13 shows the BER performance of different filters
with 8-QAM and embedded pilot frame at a PDR of 0 dB. It
can be seen that the performance of the proposed GS filter is
superior compared to Gaussian and sinc filters. For example,
at a BER of 10−2, the GS filter achieves an SNR gain of about
4 dB compared to Gaussian and sinc filters. Corresponding to
the uncoded BER performance in Fig. 13, Fig. 14 shows the
coded BER performance with a rate-1/2 convolutional code
with constraint length 7. From Fig. 14, we can see that the
proposed GS filter achieves an SNR gain in excess of 6 dB at
a coded BER of 10−4 compared to Gaussian and sinc filters.

In Fig. 15, we assess the BER performance of RRC,
Gaussian, and GS filters with bandwidth and time expansion
by varying the pulse shaping filter parameters. We have consid-
ered a bandwidth expansion of about 5% (B′ = 1.05B) and a
time expansion of about 10% (T ′ = 1.1T ). For the RRC filter,
the corresponding roll-off factors are βτ = 0.05, βν = 0.1.
For the Gaussian filter, the parameters are ατ = 1.746,
αν = 1.917. For the GS filter, the parameters are ατ = 0.15,
αν = 0.28, and the corresponding energy normalization
factors are Ωτ = 1.0531, Ων = 1.0748. The BER performance
follows a trend similar to that in Fig. 11. The RRC filter’s
BER performance floors roughly at 20 dB. The comparatively
higher side lobes of the RRC filter lead to poor channel
estimation, and hence poor data detection at higher SNRs.
The Gaussian filter performs better at higher SNRs as a result
of reduced side lobes, resulting in better estimation accuracy.

Figure 14: Coded BER vs data SNR performance of different
filters with embedded pilot frame at 0 dB PDR for 8-QAM
and rate-1/2 coding.

Figure 15: BER vs data SNR performance of different filters
with embedded pilot frame for B′ = 1.05B, T ′ = 1.1T , and
PDR = 0 dB.

The performance of the GS filter is the best, as it combines
the strengths of reduced side lobes (good channel estimation)
and nulls at the sampling points (good data detection).

Figure 16 shows the BER performance of different filters in
a system with M = 12, N = 14, and system parameters same
as those in Fig. 5c, except for PDR which is taken as 0 dB
here. It can be seen that the GS filter significantly outperforms
the sinc and Gaussian filters. Even with 10% time and 5%
bandwidth expansion in RRC, the performance of the RRC
filter is about the same or inferior compared to that of the GS
filter which does not have time/bandwidth expansion.

In all the BER results reported in the above, MMSE
detection is used. In Fig. 17, we consider the performance
of other detectors, such as the message passing (MP) detector
[24] and a neighborhood search-based detector called the like-
lihood ascent search (LAS) detector [19]. The LAS detector is
initialized with the solution vector from the MMSE detector
(hence, it is termed the MMSE-LAS detector). Figure 17a
shows a BER performance comparison between the MMSE
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Figure 16: BER vs data SNR performance of different filters
for a system with M = 12, N = 14 system with embedded
pilot frame at 0 dB PDR.

(a) GS filter with MMSE, MP, and
MMSE-LAS detection

(b) Sinc, Gaussian, and GS filters
with MMSE-LAS detection

Figure 17: BER vs data SNR performance with embedded
pilot frame at 0 dB PDR: (a) GS filter with MMSE, MP, and
MMSE-LAS detection. (b) Sinc, Gaussian, and GS filters with
MMSE-LAS detection.

detector, the MP detector, and the MMSE-LAS detector with
embedded pilot frame and GS filter at 0 dB pilot SNR. It
can be seen that the MP detector performs better than the
MMSE detector at low to moderate SNRs but worse at high
SNRs. This is because as the data SNR increases, the pilot
power also increases (PDR = 0 dB) causing increased pilot
interference to the data, which affects the effectiveness of
the message passing solution. The MMSE-LAS detection is
found to outperform both MMSE and MP detection. This
better performance is attributed to the iterative refinement of
the solution vector through the neighborhood search. Figure
17b shows the performance of sinc, Gaussian, and GS filters
with MMSE-LAS detection. It can be seen that the GS filter
outperforms the sinc and Gaussian filters.

VI. CONCLUSION

In this paper, we brought out the role of DD domain
pulse shaping filters on the individual performance of model-
free I/O relation estimation and equalization/detection in Zak-
OTFS. The Gaussian and sinc filters reported in the literature
were shown to possess complementary strengths with respect

to these two receiver tasks, viz., Gaussian pulse shape is
good for the I/O relation estimation task but poor for the
equalization/detection task, whereas sinc pulse shape is poor
for I/O relation estimation but good for equalization/detection.
Based on this observation, we proposed a new filter, termed as
Gaussian-sinc (GS) filter, which inherited the complementary
strengths of both Gaussian and sinc filters. The proposed filter
did not incur time or bandwidth expansion. We derived closed-
form expressions for the I/O relation and noise covariance
of Zak-OTFS with the proposed GS filter. Our simulation
results with Veh-A fractional DD channels using model-free
I/O relation estimation with exclusive and embedded pilot
frames showed that the proposed GS filter achieves better BER
performance compared to Gaussian and sinc filters (e.g., an
SNR gain in excess of 6 dB at a coded BER of 10−4 in favor of
the proposed filter). The GS filter performance in comparison
with those of other filters using superimposed/spread pilot
(where there will be no pilot/guard regions and consequent
loss in throughput) can be investigated as future work.

APPENDIX A
ENERGY NORMALIZATION EXPRESSIONS FOR GS FILTER

The delay domain filter in (23) should have unit normalized
energy, i.e.,∫

|w1(τ)|2dτ = Ω2
τB

∫
sinc2(Bτ)e−2ατB

2τ2

dτ = 1. (30)

Assume x1(τ) = sinc2(Bτ) and x∗
2(τ) = e−2ατB

2τ2

. The
frequency domain representation of the delay domain signals
x1(τ) and x2(τ), denoted by X1(f) and X2(f), respectively,
are given by

X1(f) =

(
B − |f |
B2

)
1{0≤|f |≤B}, (31)

X2(f) =

√
π

2ατB2
e
− π2f2

2ατB2 . (32)

Using Parseval’s theorem, the integral in (30) can be written
as∫

|w1(τ)|2dτ =

(
Ω2

τ

B

)√
π

2ατ

∫
X1(f)X

∗
2 (f)df

=

(
Ω2

τ

B2

)√
π

2ατ

(
B

∫ B

−B

e
− π2f2

2ατB2 df −
∫ B

0

fe
− π2f2

2ατB2 df

+

∫ 0

−B

fe
− π2f2

2ατB2 df

)

= Ω2
τ

√
π

2ατ

(√
2ατ

π
erf

(
π√
2ατ

)
− 2ατ

π2

(
1− e−

π2

2ατ

))

= Ω2
τ

(
erf

(
π√
2ατ

)
−
√

2ατ

π3

(
1− e−

π2

2ατ

))
. (33)

Equating (33) to 1, we get

Ωτ =
1√(

erf
(

π√
2ατ

)
−
√

2ατ

π3

(
1− e−

π2

2ατ

)) . (34)
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A similar line of derivation for the Doppler domain filter in
(24) gives

Ων =
1√(

erf
(

π√
2αν

)
−
√

2αν

π3

(
1− e−

π2

2αν

)) . (35)

APPENDIX B
DERIVATION OF (27)

First, consider the I
(1)
i (τ) term in (26). Using the w1(τ)

expression for the GS filter in (23), the I
(1)
i (τ) term in (26)

can be written as

I
(1)
i (τ) = Ω2

τB

∫
e−ατB

2τ2
1 e−ατB

2(τ−τi−τ1)
2

e−j2πνiτ1︸ ︷︷ ︸
∆
=x1(τ1)

sinc(Bτ1)sinc(B(τ − τi − τ1))︸ ︷︷ ︸
∆
=x∗

2(τ1)

dτ1

= Ω2
τB

∫
X1(f)X

∗
2 (f)df, (by Parseval’s theorem) (36)

where X1(f) and X2(f) are the frequency domain repre-
sentations of the delay domain signals x1(τ1) and x2(τ1),
respectively, given by

X1(f) = κτe
−ατB2

2

(
(τ−τi)

2+2j
π(f+νi)(τ−τi)

ατB2 +
π2(f+νi)

2

(ατB2)2

)
, (37)

where κτ =
√

π
2ατB2 , and

X2(f) =
1

B2

[
1

j2π(τ − τi)

((
ejπ(B−2f)(τ−τi)

−e−jπB(τ−τi)
)
1{0<f<B}+

(
ejπB(τ−τi) − e−jπ(2f+B)(τ−τi)

)
1{−B<f<0}

)]
1{τ ̸=τi} +

1

B2

[
(B − f)1{0<f<B}

+(B + f)1{−B<f<0}

]
1{τ=τi}. (38)

Now, consider the case of τ ̸= τi. Substituting z = f + νi,
(36) becomes

I
(1)
i,1 (τ) = C1,1(τ, τi)

[
ejπB(τ−τi)

∫ B+νi

νi

e
− π2

2ατB2 z2−jπ(τ−τi)zdz︸ ︷︷ ︸
∆
=I

(1)
i,1,1(τ)

−e−jπ(B+2νi)(τ−τi)

∫ B+νi

νi

e
− π2

2ατB2 z2+jπ(τ−τi)zdz︸ ︷︷ ︸
∆
=I

(1)
i,1,2(τ)

+ejπ(B−2νi)(τ−τi)

∫ νi

−B+νi

e
− π2

2ατB2 z2+jπ(τ−τi)zdz︸ ︷︷ ︸
∆
=I

(1)
i,1,3(τ)

−e−jπB(τ−τi)

∫ νi

−B+νi

e
− π2

2ατB2 z2−jπ(τ−τi)zdz︸ ︷︷ ︸
∆
=I

(1)
i,1,4(τ)

]
, (39)

where C1,1(τ, τi)
∆
= Ω2

τ

√
π

2ατ

(
e−

ατB2

2
(τ−τi)

2

j2πB2(τ−τi)

)
,

f1(a, x, y, z)
∆
=

e−
z2

4a
√
π

2
√
a

[
erf

(√
a

(
x+

jz

2a

))
−erf

(√
a

(
y +

jz

2a

))]
, (40)

and the integral terms in (39) become
I
(1)
i,1,1(τ) = f1

(
a1, B + νi, νi, b

(1)
i

)
,

I
(1)
i,1,2(τ) = f1

(
a1, B + νi, νi,−b

(1)
i

)
,

I
(1)
i,1,3(τ) = f1

(
a1, νi, νi −B,−b

(1)
i

)
,

I
(1)
i,1,4(τ) = f1

(
a1, νi, νi −B, b

(1)
i

)
, where a1 = π2

2ατB2 and

b
(1)
i

∆
= π(τ − τi).

Now, consider the case of τ = τi. Substituting z = f + νi,
the integral in (36) becomes

I
(1)
i,2 (τ) = C1,2

[
(B + νi)

∫ B+νi

νi

e
− π2

2ατB2 z2

dz︸ ︷︷ ︸
∆
=I

(1)
i,2,1

−
∫ B+νi

νi

ze
− π2

2ατB2 z2

dz︸ ︷︷ ︸
∆
=I

(1)
i,2,2

+(B − νi)

∫ νi

−B+νi

e
− π2

2ατB2 z2

dz︸ ︷︷ ︸
∆
=I

(1)
i,2,3

+

∫ νi

−B+νi

ze
− π2

2ατB2 z2

dz︸ ︷︷ ︸
∆
=I

(1)
i,2,4

]
, (41)

where f2(a, x, y)
∆
=

√
π

2
√
a
(erf(

√
ax)− erf(

√
ay)), C1,2 =

Ω2
τ

√
π

2ατ

(
1
B2

)
, f3(a, x, y)

∆
= 1

2a

(
e−ax2 − e−ay2

)
, and the

integrals in (41) become I
(1)
i,2,1 = f2(a1, B + νi, νi), I

(1)
i,2,2 =

f3(a1, νi, B + νi), I
(1)
i,2,3 = f2(a1, νi, νi − B), and I

(1)
i,2,4 =

f3(a1, νi −B, νi).
Next, consider the I

(2)
i (τ, ν) term in (26). For the GS filter

in (23), the I
(2)
i (τ, ν) term in (26) can be written as

I
(2)
i (τ, ν) = Ω2

νT

∫
e−ανT

2ν2
1 e−ανT

2(ν−νi−ν1)
2

e+j2πν1τ︸ ︷︷ ︸
∆
=X1(ν1)

sinc(Tν1)sinc(T (ν − νi − ν1))︸ ︷︷ ︸
∆
=X∗

2 (ν1)

dτ1

= Ω2
νT

∫
x1(t)x

∗
2(t)dt, (by Parseval’s theorem) (42)

where x1(t) and x2(t) are the time domain representations
of Doppler domain signals X1(ν1) and X2(ν1), respectively,
given by

x1(t) = κνe
−ανT2

2

(
(ν−νi)

2−2j
π(t+τ)(ν−νi)

ανT2 +
π2(t+τ)2

(ανT2)2

)
, (43)
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where κν =
√

π
2ανT 2 , and

x2(t) =
1

j2πT 2(ν − νi)

[((
ejπ(ν−νi)T − ejπ(ν−νi)(2t−T )

)
1{0<t<T} +

(
ejπ(ν−νi)(2t+T ) − e−jπ(ν−νi)T

)
1{−T<t<0}

)]
1{ν ̸=νi} +

1

T 2

[
(T − t)1{0<t<T}

+(T + t)1{−T<t<0}

]
1{ν=νi}. (44)

For the case of ν ̸= νi, substituting z = t+ τ , (42) becomes

I
(2)
i,1 (τ, ν) = C2,1(ν, νi)[

ejπ(ν−νi)(T+2τ)

∫ τ+T

τ

e
− π2z2

2ανT2 −jπ(ν−νi)zdz︸ ︷︷ ︸
∆
=I

(2)
i,1,1(τ,ν)

−e−jπ(ν−νi)T

∫ T+τ

τ

e
− π2z2

2ανT2 +jπ(ν−νi)zdz︸ ︷︷ ︸
∆
=I

(2)
i,1,2(τ,ν)

+ejπ(ν−νi)T

∫ τ

−T+τ

e
− π2z2

2ανT2 +jπ(ν−νi)zdz︸ ︷︷ ︸
∆
=I

(2)
i,1,3(τ,ν)

−e−jπ(ν−νi)(T−2τ)

∫ τ

−T+τ

e
− π2z2

2ανT2 −jπ(ν−νi)zdz︸ ︷︷ ︸
∆
=I

(2)
i,1,4(τ,ν)

]
, (45)

where C2,1(ν, νi) = Ω2
ν

√
π

2αν

(
e−

ανT2

2
(ν−νi)

2

j2πT 2(ν−νi)

)
, and the

integral terms in (45) become
I
(2)
i,1,1(τ, ν) = f1

(
a2, τ + T, τ, b

(2)
i

)
,

I
(2)
i,1,2(τ, ν) = f1

(
a2, τ + T, τ,−b

(2)
i

)
,

I
(2)
i,1,3(τ, ν) = f1

(
a2, τ, τ − T,−b

(2)
i

)
,

I
(2)
i,1,4(τ, ν) = f1

(
a2, τ, τ − T, b

(2)
i

)
, where a2 = π2

2ανT 2 and

b
(2)
i

∆
= π(ν − νi).

For the case of ν = νi, substituting z = t+ τ , the integral
in (42) becomes

I
(2)
i,2 (τ, ν) = C2,2

[
(T + τ)

∫ T+τ

τ

e
− π2

2ανT2 z2

dz︸ ︷︷ ︸
∆
=I

(2)
i,2,1(τ)

−
∫ T+τ

τ

ze
− π2

2ανT2 z2

dz︸ ︷︷ ︸
∆
=I

(2)
i,2,2(τ)

+(T − τ)

∫ τ

−T+τ

e
− π2

2ανT2 z2

dz︸ ︷︷ ︸
∆
=I

(2)
i,2,3(τ)

+

∫ τ

−T+τ

ze
− π2

2ανT2 z2

dz︸ ︷︷ ︸
∆
=I

(2)
i,2,4(τ)

]
, (46)

where C2,2 = Ω2
ν

√
π

2αν

(
1
T 2

)
, and the integrals in (46) become

I
(2)
i,2,1(τ) = f2(a2, τ + T, τ), I

(2)
i,2,2(τ) = f3(a2, τ, τ + T ),

I
(2)
i,2,3(τ) = f2(a2, τ, τ − T ), I(2)i,2,4(τ) = f3(a2, τ − T, τ).

Combining the expressions for I
(1)
i,1 (τ) in (39) for τ ̸=

τi and I
(1)
i,2 (τ) in (41) for τ = τi, we get I

(1)
i (τ) as

I
(1)
i (τ) = I

(1)
i,1 (τ)1{τ ̸=τi} + I

(1)
i,2 (τ)1{τ=τi}. Similarly, com-

bining the expressions for I
(2)
i,1 (τ, ν) in (45) for ν ̸= νi

and I
(2)
i,2 (τ, ν) in (46) for ν = νi, we get I

(2)
i (τ, ν) as

I
(2)
i (τ, ν) = I

(2)
i,1 (τ, ν)1{ν ̸=νi} + I

(2)
i,2 (τ, ν)1{ν=νi}. These

I
(1)
i (τ) and I

(2)
i (τ, ν) expressions used in (26) gives the

effective channel expression in (27).
The erf(.) functions in the derived expressions can be

computed using accurate closed-form approximations for the
erf(.) function [21],[22].

APPENDIX C
DERIVATION OF (29)

For the GS filter in (23), the term I
(3)
q (τ) in (28) can be

written as

I(3)q (τ) = Ων

√
T

∫
e−ανT

2ν2
1 ej2πν1(τ+qτp)︸ ︷︷ ︸

∆
=X1(ν1)

sinc(Tν1)︸ ︷︷ ︸
∆
=X∗

2 (ν1)

dν1

= Ων

√
T

∫
x1(t)x

∗
2(t)dt, (by Parseval’s theorem) (47)

where x1(t) and x2(t) are the time domain representations of
X1(ν1) and X2(ν1), respectively, given by

x1(t) =

√
π

ανT 2
e
−π2(τ+qτp+t)2

ανT2 , (48)

x2(t) =
1

T
rect

(
t

T

)
. (49)

Carrying out the integration in (47) using (48) and (49) gives

I(3)q (τ) =
Ων

T
3
2

√
π

αν

∫ T
2

−T
2

e
−π2(τ+qτp+t)2

ανT2 dt

=
Ων

2
√
T

(
erf

√ π2

ανT 2

(
τ + qτp +

T

2

)
−erf

√ π2

ανT 2

(
τ + qτp −

T

2

))
∆
= g(τ + qτp). (50)

Sampling (28) on Λdd gives

ndd[k, l] =
√
τp

∞∑
q=−∞

e−j2π ql
N g

(
kτp
M

+ qτp

)
(∫

w∗
1(−τ1)n

(
kτp
M

− τ1 + qτp

)
dτ1

)
. (51)
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The (k1N+l1+1, k2N+l2+1)th term of the noise covariance
matrix is given by

E[ndd[k1, l1], n
∗
dd[k2, l2]] = τp

∞∑
q1=−∞

∞∑
q2=−∞

ej2π
q2l2−q1l1

N

g

(
k1τp
M

+ q1τp

)
g∗
(
k2τp
M

+ q2τp

)(∫∫
w∗

1(−τ1)w
∗
1(−τ2)

E

[
n

(
k1τp
M

− τ1 + q1τp

)
n∗
(
k2τp
M

− τ2 + q2τp

)]
︸ ︷︷ ︸

=N0δ(τ2−τ1−( k2−k1
M )τp−(q2−q1)τp)

dτ1dτ2

)
.

(52)

Defining the term x{k1,k2,q1,q2}
∆
=
(
k2−k1

M

)
τp + (q2 − q1)τp,

the double integral in (52) becomes

S{k1,k2,q1,q2}
∆
= Ω2

τN0B[∫
sinc(Bτ1)sinc

(
B
(
τ1 + x{k1,k2,q1,q2}

))
︸ ︷︷ ︸

∆
=x∗

2(τ1)

e−ατB
2τ2

1 e−ατB
2(τ1+x{k1,k2,q1,q2})

2︸ ︷︷ ︸
∆
=x1(τ1)

dτ1

]

= Ω2
τN0B

∫
X∗

2 (f)X1(f)df, (53)

where X1(f) and X2(f) are the frequency domain represen-
tations of x1(τ1) and x2(τ1), respectively, given by

X1(f) = κτe
−ατB2

2

(
x2
{k1,k2,q1,q2}−2j

πfx{k1,k2,q1,q2}
ατB2 + π2f2

(ατB2)2

)
,

(54)

X2(f) =
1

B2

[
1

j2πx{k1,k2,q1,q2}

((
ejπBx{k1,k2,q1,q2}

−ejπ(2f−B)x{k1,k2,q1,q2}

)
1{0<f<B}

+

(
ejπ(2f+B)x{k1,k2,q1,q2}

−e−jπBx{k1,k2,q1,q2}

)
1{−B<f<0}

)]
1{x{k1,k2,q1,q2} ̸=0}

+
1

B2

[
(B − f)1{0<f<B} + (B + f)1{−B<f<0}

]
1{x{k1,k2,q1,q2}=0}, (55)

Now, consider the case x{k1,k2,q1,q2} ̸= 0. The integral in (53)
becomes

S
(1)
{k1,k2,q1,q2} = C3,1(x{k1,k2,q1,q2})[
ejπBx{k1,k2,q1,q2}

∫ B

0

e
− π2f2

2ατB2 −jπfx{k1,k2,q1,q2}df︸ ︷︷ ︸
∆
=S

(1)

1,{k1,k2,q1,q2}

− e−jπBx{k1,k2,q1,q2}

∫ B

0

e
− π2f2

2ατB2 +jπfx{k1,k2,q1,q2}df︸ ︷︷ ︸
∆
=S

(1)

2,{k1,k2,q1,q2}

+ ejπBx{k1,k2,q1,q2}

∫ 0

−B

e
− π2f2

2ατB2 +jπfx{k1,k2,q1,q2}df︸ ︷︷ ︸
∆
=S

(1)

3,{k1,k2,q1,q2}

− e−jπBx{k1,k2,q1,q2}

∫ 0

−B

e
− π2f2

2ατB2 −jπfx{k1,k2,q1,q2}df︸ ︷︷ ︸
∆
=S

(1)

4,{k1,k2,q1,q2}

]
,

(56)

where

C3,1(x{k1,k2,q1,q2})
∆
= N0Ω

2
τ

√
π

2ατ

e
−ατB2

2
x2
{k1,k2,q1,q2}

j2πx{k1,k2,q1,q2}B2 , and
the integrals in (56) are given by
S
(1)
1,{k1,k2,q1,q2} = f1

(
a1, B, 0, πx{k1,k2,q1,q2}

)
,

S
(1)
2,{k1,k2,q1,q2} = f1

(
a1, B, 0,−πx{k1,k2,q1,q2}

)
,

S
(1)
3,{k1,k2,q1,q2} = f1

(
a1, 0,−B,−πx{k1,k2,q1,q2}

)
,

S
(1)
4,{k1,k2,q1,q2} = f1

(
a1, 0,−B, πx{k1,k2,q1,q2}

)
.

Now, consider the case x{k1,k2,q1,q2} = 0. The integral in
(53) becomes

S(2) = C3,2

[
B

∫ B

0

e
− π2f2

2ατB2 df︸ ︷︷ ︸
∆
=S

(2)
1

−
∫ B

0

fe
− π2f2

2ατB2 df︸ ︷︷ ︸
∆
=S

(2)
2

+B

∫ 0

−B

e
− π2f2

2ατB2 df︸ ︷︷ ︸
∆
=S

(2)
3

+

∫ 0

−B

fe
− π2f2

2ατB2 df︸ ︷︷ ︸
∆
=S

(2)
4

]
, (57)

where the constant C3,2 = N0Ω
2
τ

√
π

2ατ

(
1
B2

)
, and the in-

tegrals in (57) are obtained as S
(2)
1 =

√
π

2
√
a1
erf
(√

a1B
)
,

S
(2)
2 = 1

2a1

(
1 − e−a1B

2)
, S

(2)
3 =

√
π

2
√
a1
erf
(√

a1B
)
, and

S
(2)
4 = 1

2a1

(
e−a1B

2 − 1
)
.

The erf(.) functions in the derived expressions can be
computed using accurate closed-form approximations for the
erf(.) function [21],[22].
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