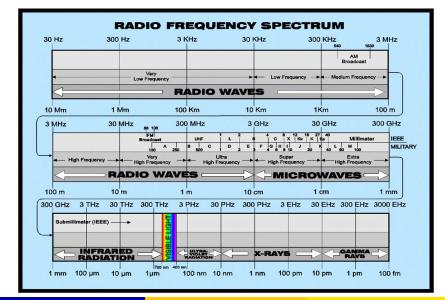
WIRELESS TECHNOLOGIES IN 5G

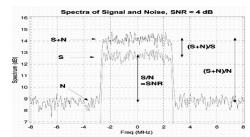
A. Chockalingam

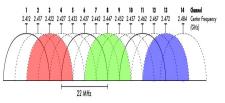
Department of ECE, IISc


Science Academies' SRFP Special Lecture Bangalore 13 June 2014

1 WIRELESS: SOME BASICS

- **2** CELLULAR MOBILE COMMUNICATION
- 3 TECHNOLOGIES AND SERVICES IN 1G TO 4G
- TECHNOLOGIES FOR 5G
- **5** CONCLUDING REMARKS


Wireless spectrum



A. Chockalingam (Department of ECE, IISc

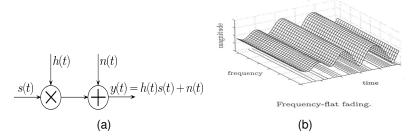
Some wireless terminologies

- Carrier frequency (Hertz; Hz)
- Bandwidth (Hz)
- Data rate (bits per second; bps)
- Spectral efficiency (bps per Hz; bps/Hz)
- Signaling interval (sec)
- Signal-to-noise ratio (SNR)
- Channel capacity (bps)
- Probability of bit error
- Multipath fading

AWGN channel

$$s(t) \xrightarrow{y(t) = s(t) + n(t)}$$

• e.g., satellite channel

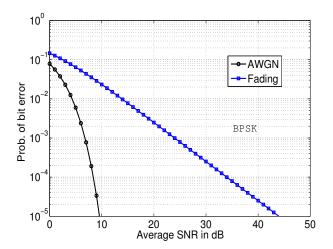

Channel	Error Probability (Pe)	Capacity (C), bps
AWGN	$P_e \propto e^{-SNR}$	$C = W \log(1 + SNR)$

- Prob. of error falls exponentially with SNR \sim
- Almost error-free communication possible even at -1.6 dB SNR (i.e., even when signal level is below noise level)

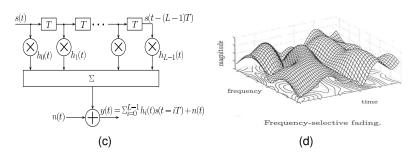
Multipath fading

- Fading channel characterization
 - Variation in time
 - Doppler spread (*B_D*) and coherence time (*T_{coh}*)
 - $B_D = \frac{velocity}{carrier wavelength}$, carrier wavelength = $\frac{speed of light}{carrier frequency}$
 - $T_{coh} \propto B_D^{-1}$
 - Slow fading: Coherence time > signaling interval $(T_{coh} > T)$
 - Fast fading: Coherence time < signaling interval ($T_{coh} < T$)
 - Variation in frequency
 - Delay spread (T_D) and coherence bandwidth (B_{coh})
 - $B_{coh} \propto T_D^{-1}$
 - Frequency-flat fading: Coherence BW > Signaling BW (*B_{coh}* > *W*)
 - Frequency-selective fading: Coherence BW < Signaling BW (*B_{coh}* < *W*)

Fading channel



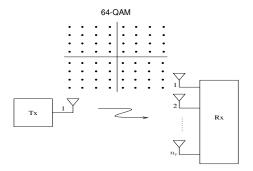
• e.g., mobile radio channel


Channel	Error Probability (Pe)	Capacity (<i>C</i>), bps	
Fading	$P_e \propto SNR^{-1}$	$C = W \log(1 + SNR)$	

• Prob. of error falls only linearly with SNR

Prob. of bit error performance

ISI channel

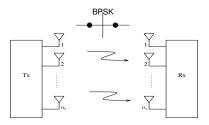


• e.g., mobile radio channel

Channel	Error Probability (Pe)	Capacity (C), bps	
ISI	$P_e \propto SNR^{-L}$	$C = W \log(1 + SNR)$	

• Prob. of error falls with *L*th power of SNR (multipath diversity)

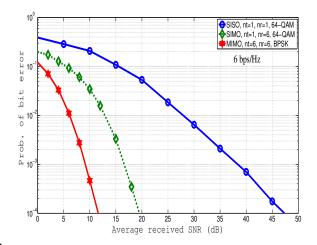
SIMO channel



• e.g., mobile radio channel

Channel	Error Probability (Pe)	Capacity (C), bps
SIMO	$P_e \propto SNR^{-n_r}$	$C = W \log(1 + SNR)$

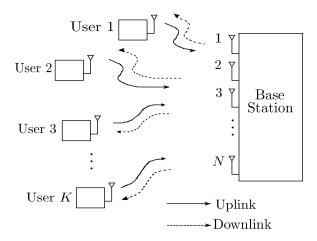
• Prob. of error falls with n_r th power of SNR (receive diversity) $\ddot{-}$


MIMO channel

Channel	Error Probability (Pe)	Capacity (<i>C</i>), bps
MIMO	$P_e \propto SNR^{-n_t n_r}$	$C = \min(n_t, n_r) W \log(1 + SNR)$

- Prob. of error falls with $n_t n_r$ th power of SNR (tx & rx diversity)
- Capacity grows linearly with $n_t, n_r \stackrel{\sim}{\smile}$
- Large no. of antennas \implies large capacity and diversity gains

Prob. of bit error performance



MIMO

• spectrally efficient, reliable, power efficient

A. Chockalingam (Department of ECE, IISc

Multiuser communication



Multiple access

- FDMA (frequency division multiple access) 1G
- TDMA (time division multiple access) 2G
- CDMA (code division multiple access) 2G, 3G
- OFDMA (orthogonal frequency division multiple access) 4G
- SDMA (Space division multiple access) 5G
- A performance measure of interest in multiple access
 - No. of users supported in a given system bandwidth

Cellular concept

- Cells, base stations, spatial reuse
- Frequency reuse factor: 7

Service	Voice
Frequency band	850 MHz
Modulation	Analog (FM)
Multiple access	FDMA
BW per user	30 KHz

- Suppose 1.25 MHz of BW is allotted
- Reuse factor: 7
- \implies No. of users supported per cell = $\frac{1.25 \times 10^6}{30 \times 10^3} \times \frac{1}{7} \approx 6$

2G (GSM)

Service	Voice / Data
Frequency band	900 MHz / 1800 MHz
Digitally encoded voice	13 Kbps
Modulation	GMSK
Multiple access	TDMA
BW per TDMA carrier	200 KHz
No. of TDMA slot per carrier	8
Error correcting code	Convolutional code
Equalization	Yes

- Suppose 1.25 MHz of BW is allotted
- Reuse factor: 7
- \implies No. of users supported per cell = $\frac{1.25 \times 10^6}{200 \times 10^3} \times 8 \times \frac{1}{7} \approx 7$
- Spectral efficiency: $13 \times 10^3 \times \frac{8}{200 \times 10^3} \approx 0.5$ bps/Hz

2G (CDMA)

Service	Voice / Data
Frequency band	900 MHz / 1800 MHz
Digitally encoded voice (R)	9.6 Kbps
Modulation	BPSK
Multiple access	CDMA
BW per CDMA carrier	1.25 MHz
Chip rate (R_c)	1.2288 Mcps
Processing gain $(G_{\rho} = \frac{R_c}{R})$	128
Error correcting code	Convolutional code

Key features

- Users transmissions overlap in both time and frequency
- Users indentified using different spreading codes for different users
- Reuse factor 1
- Power control (to alleviate near-far effect)
- RAKE receiver (achieves multipath diversity)

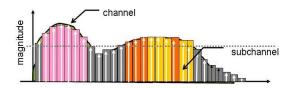
2G (CDMA)

- No. of users in CDMA (soft capacity)
 - CDMA exploits voice activation (*G_v*), sectorization (*G_A*), coding/diversity gains to increase no. of users

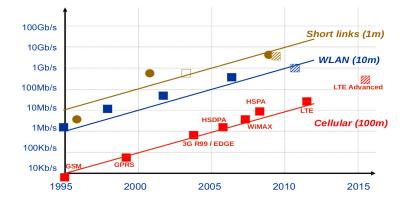
No. of users,
$$K \approx \frac{G_p G_v G_A}{G_f (E_b/I_0)_{req}}$$

• For typical values of G_v , G_A , G_f , $(E_b/I_0)_{req}$,

 $K \approx G_p$


- \implies No. users supported per cell \approx 128
- Spectral efficiency: $\frac{128 \times 9.6 \times 10^3}{1.25 \times 10^6} \approx 1$ bps/Hz

Service	Voice / Data (more speed)
Frequency band	1.8 - 2.5 GHz
Data rate	up to 40 Mbps
Modulation	QAM
Multiple access	CDMA
Bandwidth	5 MHz, 10 MHz
Processing gain	Variable PG
Spectral efficiency	up to 8 bps/Hz
Error correcting code	Turbo code


4G (OFDMA)

Service	Voice / Data (even more speed)
Frequency band	2 - 8 GHz
Data rate	100 Mbps - 600 Mbps
Modulation	QAM, MIMO-OFDM
Multiple access	OFDMA, SC-OFDMA
Bandwidth	40 MHz
Spectral efficiency	up to 15 bps/Hz
Error correcting code	Turbo code/LDPC

OFDM

Moore's law drives wireless data rates

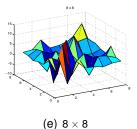
Source: SPAWC'2010 plenary talk slides of Dr. Gerhard Fettweis

Cellular evolution

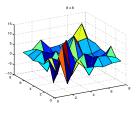
Generation	Frequency	PHY features	Data rate	Spectral Eff.
	band			(bps/Hz)
1G	850 MHz	FDMA, FM	N/A	N/A
2G	900 MHz,	TDMA/CDMA,		
	1.8 GHz	GMSK/QPSK,	10 Kbps	< 1
		FEC, PC		
3G	1.8–2.5 GHz	CDMA, QAM	1–40 Mbps	1–8
4G	2–8 GHz	OFDMA, SC-FDMA	100 Mbps-	15
		QAM, MIMO-OFDM	600 Mbps	
	2.5, 5 GHz	large-scale MIMO		
5G	mm wave ?	beamforming?	multi-Gbps	several tens
	visible light?	spatial modulation?		

Increasing wireless data rates

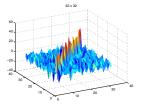
- New spectrum
 - increase BW (e.g., 60 GHz band, mm wavelength, 7 GHz BW)
 - +: unlicensed (free)
 - -: propagation characteristics, devices, short range, cost
- Increase QAM size
 - -: need for high SNRs
- Large-scale MIMO
 - +: Theory has predicted unlimited capacity
 - -: Practicality, complexity, cost
- Dense deployments
 - Femtocells
 - +: 1000x speed up (claimed)
 - -: interference management, backhaul, cost


Large-scale MIMO systems

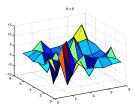
- Larger the number of antennas, better will be the
 - spectral efficiency
 - power efficiency
 - reliability
- Large-scale MIMO systems
 - Use tens to hundreds of antennas
 - Achieve very high spectral efficiencies in the range of tens to hundreds of bps/Hz

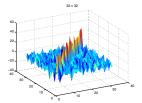

Technological challenges

- Placement of large no. of antenna elements
 - · Feasible in moderately sized communication terminals
 - Use high carrier frequencies (small carrier wavelengths); e.g., 5 GHz, 60 GHz
 - Compact antenna arrays
- RF technologies
 - Multiple IF/RF transmit and receive chains
 - Spatial modulation
 - Allows use of less number of Tx RF chains than the number of Tx antennas
- Large MIMO signal processing
 - Signal detection, channel estimation, decoding, precoding
 - Channel hardening in large random matrices help

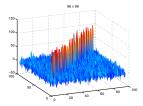

• Magnitude plots of **H**^H**H** for different sizes of random matrix **H**

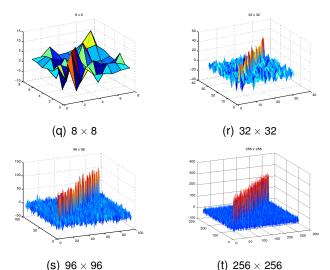
• Magnitude plots of H^HH for different sizes of random matrix H





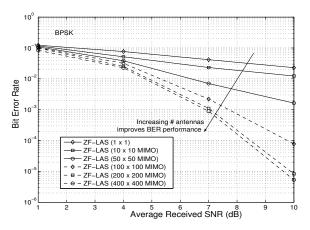
(j) 32×32


• Magnitude plots of H^HH for different sizes of random matrix H



(n) 32×32

(o) 96 × 96


• Magnitude plots of H^HH for different sizes of random matrix H

A. Chockalingam (Department of ECE, IISc

Simple algorithms – Good performance

Local search based signal detection

* K. V. Vardhan, S. K. Mohammed, A. Chockalingam, and B. S. Rajan, A low-complexity detector for large MIMO systems and multicarrier CDMA systems, IEEE J. Sel. Areas Commun., vol. 26, no. 3, pp. 473-485, Apr. 2008.

A. Chockalingam (Department of ECE, IISc)

US patent

(12) United States Patent Chockalingam et al.

(10) Patent No.: US 8,116,411 B2 (45) Date of Patent: Feb. 14, 2012

- (54) METHOD TO DETECT DATA TRANSMITTED FROM MULTIPLE ANTENNAS AND SYSTEM THEREOF
- (75) Inventors: Ananthanarayanan Chockalingam, Bangalore (IN); Balaji Sundar Rajan, Bangalore (IN); Kalepalli Vishnu Vardhan, Bangalore (IN); Saif Khan Mohammed, Bangalore (IN)
- (73) Assignce: Indian Institute of Science, Bangalore (IN)
- (*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 1201 days.
- (21) Appl. No.: 11/842.963
- (22) Filed: Aug. 22, 2007
- (65) Prior Publication Data US 2009/0041145 A1 Feb. 12, 2009

(30) Foreign Application Priority Data

Aug. 6, 2007 (IN) 01725/CHE/2007

- (51) Int. CL
- H04L 27/06 (2006.01) (52) U.S.Cl 275/2
- U.S. Cl. 375/341; 375/147
 Field of Classification Search 375/130–132, 375/140, 147, 218, 316, 340, 341, 349
 See application file for complete search bistory

(56) References Cited

U.S. PATENT DOCUMENTS

2004/0083082	A1*	4/2004	Onggosanusi et al	
2006/0256888	A1 *			
2007/0280370	AL*	12/2007	Liu	
2008/0279299	A1*	11/2008	Reuven et al	

OTHER PUBLICATIONS

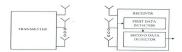
Y. Sun, "A Family of Linear Complexity Likelihood Ascent Search Multiuser Detectors for CDMA Communications", in Conf. Record of the Thirty-Fourth Asilomar Conf. on Signals, Systems and Computers, 2000, pp. 1163-1167; ISBN 0-7803-6514-3.*

J. Fan et al. "Near Moximum Likelihood Detection for Wireless MIMO Systems". IEEE Transactions on Wireless Communications, vol. 3, No. 5, Sep. 2004. pp. 1427-1430. ISSN: 1536-1276.* H. Jafarkhani, Space-Time Coding: Theory and Practice, Cambridge

D. Diversity Press, 2015. D. Tse and P. Viswanath, Fundamentals of Wireless Communication, Chapter I, Cambridge University Press, 2005.

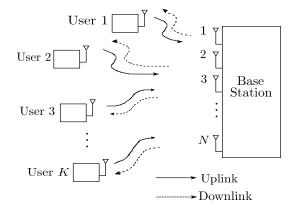
G. J. Foschini, "Layered space-time architecture for wireless communication in a fading environment when using multi-element antennas," Bell Labs Tech. J., vol. 1, pp. 41-59, Aug. 1996.

G. J. Foschini and M. J. Gans, "On limits of wireless communications in a fidding environment when using multiple antennas," Wireless Pers. Commun., vol. 6, pp. 311-335, Mar. 1998.


(Continued

Primary Examiner — David C. Payne Assistant Examiner — James M Perez (74) Attorney, Agent, or Firm — Perkins Coie LLP; Aaron Wininger

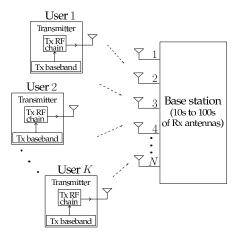
ABSTRACT


A method to detect data transmitted from multiple antennas, and method comparing steps of subscript a starting data and method comparing steps of subscript a starting data and book as a check candidate set, applying update rule to data block as a check candidate set, applying update rule to the check candidate set, wherein the update is made in suds the check candidate set, wherein the update is made in suds the check candidate set, wherein the update is made in suds the check candidate block. The starting and the the blocks are the same; if yes, declare the update data block as the observed that block. If non-made updated data block as

28 Claims, 15 Drawing Sheets

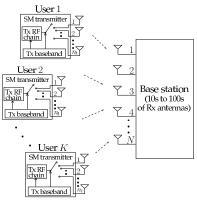
Large-scale multiuser MIMO (Massive MIMO)

• Proposed architecture for 5G

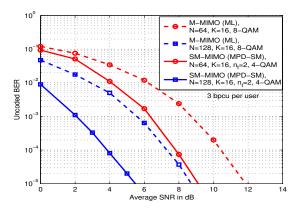


- N: no. of BS antennas (hundreds)
- K: no. of users (tens)

A. Chockalingam (Department of ECE, IISc)


Massive MIMO

- One Tx RF chain for each Tx antenna
- Information bits carried only on modulation symbols (e.g., QAM)

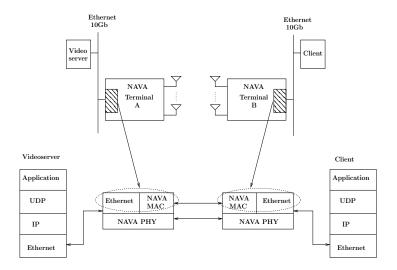

Spatial modulation for 5G

- Only one Tx RF chain and multiple Tx antennas
- One among the multiple Tx antennas is activated at a time
- Remaining Tx antennas remain silent
- Index of the active Tx antenna also conveys information bits
- $(\log_2 M + \log_2 n_t)$ bpcu

SM-MIMO versus massive MIMO

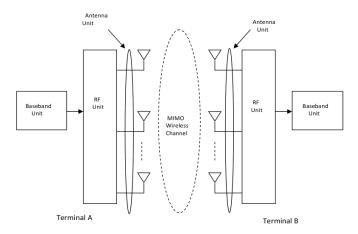
- SM-MIMO outperforms massive MIMO by several dBs for the same spectral efficiency
- 4 to 5 dB SNR advantage over massive MIMO

P. Raviteja, T. Lakshmi Narasimhan, A. Chockalingam, *Multiuser SM-MIMO versus Massive MIMO: Uplink Performance Comparison*, Available online arXiv:1311.1291 [cs.IT] 6 Nov 2013.


A. Chockalingam (Department of ECE, IISc)

Project NAVA

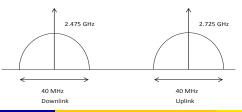
- A large-MIMO technology demonstrator project
- Goal
 - Demonstrate Gigabit transmission over-the-air
- Joint project: IISc, DRDO, and private industry
- IISc provides system design, core algorithms, and IP
- Private industry: develop/manufacture main subsystems


Technologies for 5G

NAVA

NAVA

• System



NAVA

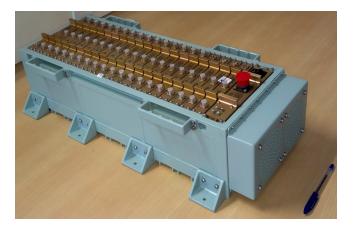
• High level specifications

Parameter	Value
Data rate	1 Gbps
Bandwidth	40 MHz
Spectral efficiency	25 bps/Hz
Carrier frequency	2.5 GHz
No. transmit antennas	16
No. receive antennas	20

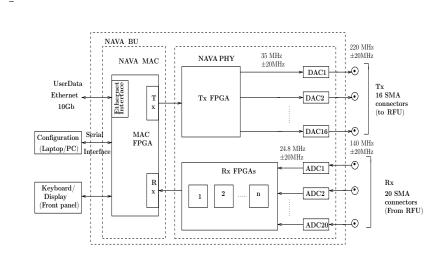
Frequency plan

A. Chockalingam (Department of ECE, IISc)

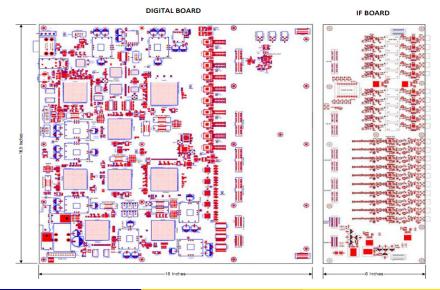
Wireless Technologies in 5G


NAVA - Antenna unit

- 20-antenna MIMO cube at 2.5 GHz
- technology: PIFA



NAVA - RF unit


- $\bullet~16~Tx~chains:~$ IF: 220 \pm 20 MHZ; ~ RF: 2725 \pm 20 MHz
- $\bullet~$ 20 Rx chains: ~ RF: 2475 \pm 20 MHz; ~ IF: 140 \pm 20 MHz

NAVA Baseband unit

NAVA - Baseband unit

A. Chockalingam (Department of ECE, IISc

Wireless Technologies in 5G

NAVA - Digital board

A. Chockalingam (Department of ECE, IISc

NAVA - Digital board

A. Chockalingam (Department of ECE, IISc

Inside NAVA FPGAs

(12) United States Patent Chockalingam et al.

(10) Patent No.: US 8,116,411 B2 (45) Date of Patent: Feb. 14, 2012

(54) METHOD TO DETECT DATA TRANSMITTED FROM MULTIPLE ANTENNAS AND SYSTEM THEREOF

- (75) Inventors: Ananthanarayanan Chockalingam, Bangalore (IN); Balaji Sundar Rajan, Bangalore (IN); Kalepaili Vishnu Vardhan, Bangalore (IN); Saif Khan Mohammed, Bangalore (IN);
- (73) Assignce: Indian Institute of Science, Bangalore (IN)
- (*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 1201 days.
- (21) Appl. No.: 11/842.963
- (22) Filed: Aug. 22, 2007

(65) Prior Publication Data

US 2009/0041145 A1 Feb. 12, 2009

(30) Foreign Application Priority Data

Aug. 6, 2007 (IN) 01725/CHE/2007

- (51) Int. CL
- H04L 27/06 (2006.01) (52) U.S.Cl 275/2
- U.S. Cl. 375/341; 375/147
 Field of Classification Search 375/130–132, 375/140, 147, 218, 316, 340, 341, 349
 See application file for complete search bistory

(56) References Cited

U.S. PATENT DOCUMENTS

2004/0083082	A1*	4/2004	Onggosanusi et al
2006/0256888	A1 *		
2007/0280370	A1*	12/2007	Liu
2008/0279299	A1*	11/2008	Reuven et al

OTHER PUBLICATIONS

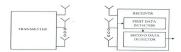
Y. Sun, "A Family of Linear Complexity Likelihood Ascent Search Multiuser Detectors for CDMA Communications", in Conf. Record of the Thirty-Fourth Asilomar Conf. on Signals, Systems and Computers, 2000, pp. 1163-1167; ISBN 0-7803-6514-3.*

J. Fan et al. "Near Moximum Likelihood Detection for Wireless MIMO Systems". IEEE Transactions on Wireless Communications, vol. 3, No. 5, Sep. 2004. pp. 1427-1430. ISSN: 1536-1276.* H. Jafarkhani, Space-Time Coding: Theory and Practice, Cambridge

D. Diversity Press, 2015. D. Tse and P. Viswanath, Fundamentals of Wireless Communication, Chapter I, Cambridge University Press, 2005.

G. J. Foschini, "Layered space-time architecture for wireless communication in a fading environment when using multi-element antennas," Bell Labs Tech. J., vol. 1, pp. 41-59, Aug. 1996.

G. J. Foschini and M. J. Gans, "On limits of wireless communications in a fidding environment when using multiple antennas," Wireless Pers. Commun., vol. 6, pp. 311-335, Mar. 1998.


(Continued

Primary Examiner — David C. Payne Assistant Examiner — James M Perez (74) Attorney, Agent, or Firm — Perkins Coie LLP; Aaron Wininger

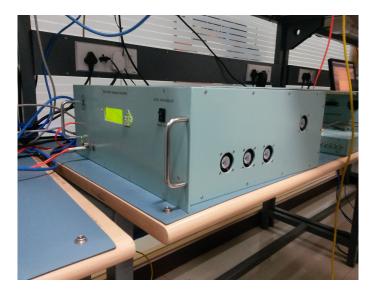
ABSTRACT

A method to detect data transmitted from multiple antennas, and method comparing steps of subscript a starting data and method comparing steps of subscript a starting data and book as a check candidate set, applying update rule to data block as a check candidate set, applying update rule to the check candidate set, wherein the update is made in suda the check candidate set, wherein the update is made in suda the check candidate set, wherein the update is made in suda the check candidate set, wherein the update is back as the check candidate block. If we can subscript the update is the blocks are the same; if yes, declare the update data block as the observed that block. If we can subscript the update is block as the observed that block. If we can subscript blocks are the update the block as the observed that block. If we can subscript blocks are the update the block as the observed that block. If we can subscript blocks are the update the block as the observed that block as the update the block are the update the update the block as the update the block as the update the update the block are the update the update the block are the update the update the block are the update the upd

28 Claims, 15 Drawing Sheets

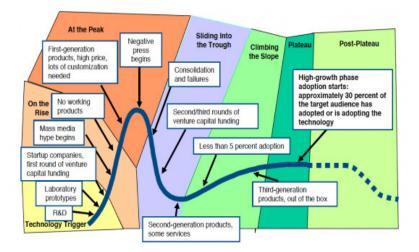
Wireless Technologies in 5G

NAVA - IF board



A. Chockalingam (Department of ECE, IISc)

NAVA - Baseband unit

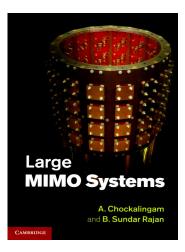

NAVA - Baseband unit

NAVA terminal

Gartner's hype cycle

Source: Internet

A. Chockalingam (Department of ECE, IISc


Gartner's hype cycle

• Hype cycle for Communication and Networking, 2013

A. Chockalingam (Department of ECE, IISc

Book

• Released February 2014

A. Chockalingam (Department of ECE, IISc) Wireless Technologies in 5G

"This cutting-edge portrayal of large-scale MIMO systems provides a shrewd long-term outlook on this salient wireless subject."

Lajos Hanzo University of Southampton

"This is a very timely and useful book written by authors who are pioneers in the area of large MIMO systems."

Vijay K. Bhargava

The University of British Columbia

"Large MIMO will power our wireless networks before this decade is out and the race is just starting. Chockalingam and Sundar Rajan and have compiled an excellent companion for this journey."

Arogyaswami Paulraj Stansford University

- Large-scale MIMO (Massive MIMO)
 - prime driver of 5G PHY

- Large-scale MIMO (Massive MIMO)
 - prime driver of 5G PHY
 - multi-gigabit transmission capability

- Large-scale MIMO (Massive MIMO)
 - prime driver of 5G PHY
 - multi-gigabit transmission capability
 - tens of bps/Hz spectral efficiency

- Large-scale MIMO (Massive MIMO)
 - prime driver of 5G PHY
 - multi-gigabit transmission capability
 - tens of bps/Hz spectral efficiency
 - spatial modulation to reduce number of RF chains

- Large-scale MIMO (Massive MIMO)
 - prime driver of 5G PHY
 - multi-gigabit transmission capability
 - tens of bps/Hz spectral efficiency
 - spatial modulation to reduce number of RF chains
- Major technological bottlenecks have been cleared

- Large-scale MIMO (Massive MIMO)
 - prime driver of 5G PHY
 - multi-gigabit transmission capability
 - tens of bps/Hz spectral efficiency
 - spatial modulation to reduce number of RF chains
- Major technological bottlenecks have been cleared
- Under various stages of development and testing worldwide

- Large-scale MIMO (Massive MIMO)
 - prime driver of 5G PHY
 - multi-gigabit transmission capability
 - tens of bps/Hz spectral efficiency
 - spatial modulation to reduce number of RF chains
- Major technological bottlenecks have been cleared
- Under various stages of development and testing worldwide
- 28 GHz and 60 GHz operation possibilities are open

- Large-scale MIMO (Massive MIMO)
 - prime driver of 5G PHY
 - multi-gigabit transmission capability
 - tens of bps/Hz spectral efficiency
 - spatial modulation to reduce number of RF chains
- Major technological bottlenecks have been cleared
- Under various stages of development and testing worldwide
- 28 GHz and 60 GHz operation possibilities are open
- India to participate in and influence 5G standardization efforts
 - India's Telecom Standards body launched in Nov'2013 (TSDSI - Telecommunication Standards Development Society India)

- Large-scale MIMO (Massive MIMO)
 - prime driver of 5G PHY
 - multi-gigabit transmission capability
 - tens of bps/Hz spectral efficiency
 - spatial modulation to reduce number of RF chains
- Major technological bottlenecks have been cleared
- Under various stages of development and testing worldwide
- 28 GHz and 60 GHz operation possibilities are open
- India to participate in and influence 5G standardization efforts
 - India's Telecom Standards body launched in Nov'2013 (TSDSI - Telecommunication Standards Development Society India)
- Visible light communication (may be for beyond 5G)

Thank you