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OTFS modulation
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Orthogonal Time Frequency Space (OTFS) modulation∗

A promising modulation scheme for doubly-selective channels

Information is multiplexed in the delay-Doppler (DD) domain

Map information from DD domain to time domain and transmit

Direct approach:
use inverse Zak transform: DD domain → time domain

Two-step approach:
use ISFFT & Heisenberg transforms: DD domain → TF domain → time domain

Channel is viewed/represented in DD domain

Superior performance compared to OFDM

——————
(*) R. Hadani, S. Rakib, M. Tsatsanis, A. Monk, A. J. Goldsmith, A. F. Molisch, and R. Calderbank,

“Orthogonal time frequency space modulation,” in Proc. IEEE WCNC, San Francisco, CA, USA, March 2017.
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Why OTFS?

OTFS vs OFDM performance
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Parameter Value
Carrier frequency (GHz) 4
Subcarrier spacing (kHz) 15
Frame size (M,N) (12, 7)
Number of paths (P) 5
Delay profile Exponential
Maximum speed (km/h) 500
Maximum Doppler (Hz) 1875
Modulation scheme BPSK

* Smallest resource block used in LTE:

M = 12, N = 7

MMSE detection

OFDM performs poor due to Doppler induced ICI

OTFS performs significantly better than OFDM

——————
(*) G. D. Surabhi, R. M. Augustine, and A. Chockalingam, “On the diversity of uncoded OTFS modulation in

doubly-dispersive channels,” IEEE Trans. Wireless Commun., vol. 18, no. 6, pp. 3049-3063, Jun. 2019.

OTFS Transceivers Design using Deep Neural Networks 23 February, 2022 5 / 51



Why OTFS?

MIMO-OTFS vs MIMO-OFDM performance
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Parameter Value
Carrier frequency (GHz) 4
Subcarrier spacing (kHz) 15
Frame size (M,N) (32, 32)
Modulation scheme BPSK
MIMO configuration 2 × 2
Maximum speed (km/h) 507.6

Path index (i) 1 2 3 4 5

Delay (τi ,µs) 2.1 4.2 6.3 8.4 10.4

Doppler (νi ,Hz) 0 470 940 1410 1880

Message passing detection

MIMO-OTFS performs significantly better than MIMO-OFDM

——————
(*) M. K. Ramachandran and A. Chockalingam, “MIMO-OTFS in High-Doppler Fading Channels: Signal

Detection and Channel Estimation,” IEEE GLOBECOM’2018, December 2018.
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Why OTFS?

Effect of IQ imbalance at the Tx and Rx

Ideal Tx chain

cos
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Gain and phase imbalance in Tx chain (∆GT , ∆ϕT )
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Why OTFS?

Performance of OTFS and OFDM in the presence of Tx IQI
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OTFS is more robust to Tx IQI than OFDM

1Ashwitha Naikoti and A. Chockalingam, “A DNN-Based OTFS Transceiver With Delay-Doppler Channel

Training and IQI Compensation,” IEEE PIMRC’2021, September 2021.
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Why OTFS?

Performance of OTFS and OFDM in the presence of Rx IQI
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OTFS is more robust to Rx IQI than OFDM
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Why OTFS?

Effect of oscillator phase noise

Oscillator phase noise spectrum at diff. carrier frequencies (4, 28, 60 GHz)1
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13GPP R1-163984: Discussion on phase noise modeling, 3GPP TSG RAN WG1 85, May 2016.
2L. Smaini, RF Analog Impairments Modeling for Communication Systems Simulation: Application to

OFDM-Based Transceivers, Wiley, 2012
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Why OTFS?

OTFS and OFDM performance with phase noise
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Parameter Value

Carrier frequency (GHz) 28
Bandwidth (MHz) 10
Subcarrier spacing, ∆f
(kHz)

78.125

Frame size (M,N) (128,64)
Rice factor (dB) 13
BPLL 10 ∆f
Modulation BPSK
Number of taps, P 5

Path index (i) 1 2 3 4 5

Delay (τi ,µs) 0.3 1 1.7 2.4 3.1

Doppler (νi ,Hz) 0 −400 400 1220 1220

Message passing detection

OTFS is more robust to phase noise

—————
G. D. Surabhi, M. K. Ramachandran, and A. Chockalingam, “OTFS modulation with phase noise in mmWave

communications,” Proc. IEEE VTC’2019-Spring, Kuala Lumpur, Apr. 2019.
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OTFS - Signaling in DD domain

C
hannel

C
hannel

One-step approach

ISFFT and

Windowing

Heisenberg

Transform

Wigner

Transform

Windowing

and SFFT

Inverse ZAK

Transform

ZAK

Transform

C
hannel

C
hannel

One-step approach

ISFFT and

Windowing

Heisenberg

Transform

Wigner

Transform

Windowing

and SFFT

Inverse ZAK

Transform

ZAK

Transform

Direct approach Two-step approach

OTFS Transceivers Design using Deep Neural Networks 23 February, 2022 12 / 51



Channel in DD domain

DD domain impulse response h(τ, ν) is compact, sparse, stable

channel taps in DD representation correspond to a cluster of reflectors with
specific delay and Doppler values

the delay and Doppler values depend on reflectors’ relative distance and
relative velocity, respectively, with the transmitter and receiver

relative velocity and distance remain roughly constant for at least a few msecs

SFFT−−−→
←−−−
ISFFT

Channel in time-frequency H(t, f ) and delay-Doppler h(τ, ν) domains

For a channel with P paths in the DD domain

h(τ, ν) =
P∑
i=1

hiδ(τ − τi )δ(ν − νi )
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TF and DD grids

TF grid, Λ: TF plane is sampled at intervals T and ∆f , to obtain a 2D grid

Λ = {(nT ,m∆f ), n = 0, · · · ,N − 1,m = 0, · · · ,M − 1}

DD grid Γ: reciprocal to Λ

Γ = {( k
NT

, l
M∆f

), k = 0, · · · ,N − 1, l = 0, · · · ,M − 1}

In OTFS, information symbols are multiplexed in the DD grid (with Doppler
resolution 1

NT
and delay resolution 1

M∆f
)

MN symbols are sent over a time duration of NT secs occupying a BW of M∆f
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Input-output relation

Received signal in DD domain:

for τi ≜
αi

M∆f
and νi ≜

βi
NT

, αi and βi are integers

y [k , l ]=
P∑
i=1

h′i x [(k − βi )N , (l − αi )M ] + v [k, l ]

where h′i = hie
−j2πνiτi , hi ∼ CN (0, 1/P).

Let Ĥ denote the N ×M channel matrix in the DD domain
Let ĥ(k, l) denote the (k, l)th element of Ĥ, which is given by

ĥ(k, l) =

{
h′
i if k = βi & l = αi for some i ∈ {1, 2, · · · ,P}

0 otherwise.
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Vectorized input-output relation

The input-output relation can be vectorized as1

y = Hx+ v,

where xk+Nl = x [k , l ], yk+Nl = y [k , l ], vk+Nl = v [k , l ],
k = 0, · · · ,N − 1, l = 0, · · · ,M − 1

H ∈ CMN×MN : jth row (j = k + Nl) of H, denoted by H[j ], is given by

H[j] =[ĥ((k − 0)N , (l − 0)M) ĥ((k − 1)N , (l − 0)M) · · · ĥ((k − N − 1)N , (l −M − 1)M)].

H is a block circulant matrix with circulant blocks, with each row having P
non-zero elements

this can be exploited to devise low-complexity linear (MMSE) receivers2,3

1P. Raviteja, K. T. Phan, and E. Viterbo, “Interference cancellation and iterative detection
for orthogonal time frequency space modulation,” IEEE Trans. Wireless Commun., vol. 17, no.
10, pp. 6501-6515, Oct. 2018.

2S. Tiwari, S. S. Das, and V. Rangamgari, “Low complexity MMSE receiver for OTFS,” IEEE
Commun. Lett., vol. 23, no. 12, pp. 2205–2209, Dec. 2019.

3G.D. Surabhi andA. Chockalingam, “Low-complexity linear equalization for OTFS
modulation,” IEEE Commun. Lett., vol. 24, no. 2, pp. 330–334, Feb. 2020.
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Deep learning in communications

Deep learning (DL) has been increasingly studied in wireless communications
for designing intelligent communication systems1,2

In the PHY layer, DL has been applied in two important ways

as a replacement to the existing communication blocks like channel coding3,
signal detection4, channel estimation

for designing end-to-end communication systems without traditional
communication blocks2

Both approaches are found to be promising

1C. Jiang, H. Zhang, Y. Ren, Z. Han, K. C. Chen, and L. Hanzo, “Machine learning paradigms for

next-generation wireless networks,” IEEE Wireless Commun., vol. 24, no. 2, pp. 98-105, Apr. 2017.
2T. O’shea and J. Hoydis, “An introduction to deep learning for the physical layer,” IEEE Trans. Cognitive

Commun. and Netw., vol. 3, no. 4, pp. 563-575, Dec. 2017.
3H. Kim, Y. Jiang, R. Rana, S. Kannan, and P. Viswanath, “Communication algorithms via deep learning,”

Proc. ICLR’2018, pp. 1-17, Apr. 2018.
4N. Farsad and A. Goldsmith, “Neural network detection of data sequences in communication systems,”

IEEE Trans. Signal Process., vol. 66, no. 21, pp. 5663- 5678, Sep. 2018.

OTFS Transceivers Design using Deep Neural Networks 23 February, 2022 17 / 51



Why deep learning?

Imperfections in/deviations from assumed models

Deep learning has shown robustness to such imperfections/deviations

Large amount of available data for training

Training takes time, but once trained the weights can be stored

Evolution of hardware to shorten training times
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Deep neural networks
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DNNs

Neuron - A basic cell.

u1, u2, . . . , un are the inputs to the neuron.

w1,w2, . . . ,wn are the weights of the branches.

b is called the bias.

Figure: A single neuron

z and ŷ are computed as follows

z =
n∑

i=1

wiui + b, and ŷ = φ(z)

φ(·) is called the activation function. Examples are sigmoid, tanh, softmax.
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Deep learning

The goal is to update weights and bias in such a way that ŷ is as close to the
required y as possible, y = f (u1, . . . , un) + c .

This is achieved in two steps.

Forward pass (finding ŷ from u)
Back propagation (finding the weights from ŷ)

Weights are calculated by minimizing loss function, L(y , ŷ). E.g., MSE, BCE

In a typical neural network, many neurons are placed together to form a layer
and such layers are interconnected.

A neural network with three or more layers is called a deep neural network.
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NN architectures

Fully connected NN (simply called a deep neural network (DNN))

Each neuron in the current layer is connected to all the neurons
in the previous layer

Convolutional NN (CNN)

involves sparse connections and results in reduced complexity

commonly used for learning involving images

Recurrent NN (RNN)

A special architecture used for learning which involves time series
or sequence data
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DL programming frameworks

TensorFlow

developed by the Google Brain team

widely used deep learning framework

Keras:

written in python and works on top of tensorflow

developed with a focus on quick experimentation

Beginner friendly

designed to minimize user actions and makes it easy to understand models

PyTorch:

developed by Facebook

strong competitor for TensorFlow

and many more...
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OTFS signal detection using DNNs
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OTFS signal detection using DNNs

System model: y=Hx+v

Detection problem: Given y and H, obtain an estimate of x

Two detection approaches using DNNs

Approach I (Full-DNN approach)

Use a single large DNN at the OTFS signal vector level
Input layer: 2MN neurons (real and imaginary parts of y vector)

Several large hidden layers

Output layer: |AMN | neurons (one for each possible x vector)

High complexity (# o/p neurons increases exponentially in size of vector x)

Approach II (Symbol-DNN approach)
Use multiple small DNNs at the modulation symbol level

One small DNN for each coordinate in the x vector (# small DNNs: MN)

Common input layer: 2MN neurons (real amd imag. parts of y vector)

Relatively fewer/smaller hidden layers

Output layer of each DNN: |A| neurons (one for each possible symbol in A)
Reduced complexity (total # o/p neurons: MN|A|)
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OTFS signal detection using DNNs (Approach I)

Each neuron in output layer corresponds to one OTFS signal vector

If ith signal vector (i = 1, · · · , |AMN |) of the OTFS signal set is sent, then

ith o/p neuron is likely to result in high probability value

all other o/p neurons j , j ̸= i , result in low probability values

This architecture requires learning a large number of parameters
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OTFS signal detection using DNN (Approach II)

kth output neuron (k = 1, · · · , |A|) of lth Symbol-DNN (l = 1, · · · ,MN)
gives the probability of kth symbol being transmitted from lth DD bin

Requires learning much fewer number of parameters and hence scales well

2Ashwitha Naikoti Shamasundar and A. Chockalingam, “Low-complexity Delay-Doppler Symbol DNN for

OTFS Signal Detection,” IEEE VTC2021-Spring, Helsinki, April 2021.
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DNN detection performance (standard noise model)

Standard noise model: i.i.d Gaussian noise

OTFS system parameters

fc = 4 GHz, ∆f = 3.75 KHz, M = N = 2, P = 2, BPSK

Channel: an instance of Rayleigh fading channel

DNN parameters
Parameters Symbol-DNN Full-DNN

No. of input neurons 2MN = 8 2MN = 8

No. of output neurons |A| = 2 2MN = 16
No. of hidden layers 1 1

Hidden layer activation ReLU ReLU
Output layer activation Softmax Softmax

Optimization Adam Adam
Loss function Binary Categorical

crossentropy crossentropy
Training SNR 10 dB 10 dB

No. of training examples 30,000 30,000
No. of epochs 50 50

Full-DNN: input → 8 → ReLU → 12 → ReLU → 16 → Softmax.

Symbol-DNN: input → 8 → ReLU → 4 → ReLU → 2 → Softmax.
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DNN detection performance (standard noise model)
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Symbol-DNN achieves similar performance as that of Full-DNN

Both DNNs achieve almost ML detection performance

Complexity comparison (in no. of real operations):

Detector ML det. Symbol-DNN Full-DNN

Complexity 1088 304 564
Trainable parameters - 184 316
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DNN detection performance (standard noise model)

OTFS system parameters

fc = 4 GHz, ∆f = 15 KHz, M = N = 16, P = 8, BPSK

0 5 10 15 20

SNR in dB

10
-3

10
-2

10
-1

B
E

R

M=N=16, P=8, BPSK
f
c
=4GHz, f=15 KHz

MMSE det

Symbol-DNN det

Full-DNN: No. of output neurons = 2256

(infeasible)

No. of Symbol-DNNs: MN = 256

Symbol-DNN: input → 512 → ReLU →
256 → ReLU → 2 → Softmax

Trained for 20 epochs with 80,000 training
samples at SNR=8 dB

Detector Complexity Trainable parameters

MMSE 83951616 -
Symbol-DNN 67305472 33751552
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Model mismatch in noise

Deviations from standard noise model

Non-Gaussian noise

Correlated noise

t-distributed noise

t-distribution looks very similar to Gaussian
parameterized by ν
deviates more from Gaussian for smaller values of ν
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DNN detection performance (noise model mismatch)

OTFS system parameters

fc = 4 GHz, ∆f = 3.75 KHz, M = N = 2, P = 2, BPSK

Performance with t-distributed noise
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ML detection is not optimal in non-Gaussian noise

DNN detector learns the noise model and performs better than ML detector
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DNN detection performance (noise model mismatch)

OTFS system parameters

fc = 4 GHz, ∆f = 15 KHz, M = N = 16, P = 8, BPSK

Performance with t-distributed noise
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(b) Max. Doppler=1.875 KHz

Path, i 1 2 3 4 5 6 7 8

τi (µs) 0 4.16 8.32 12.48 16.64 20.8 24.96 29.12

νi (Hz) 0 0 938.5 938.5 938.5 1875 1875 1875

DNN detector performs better in non-Gaussian noise
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Correlated noise in MIMO-OTFS

Noise correlation across multiple receive antennas due to insufficient
spacing1,2

Model that characterizes this correlation is receiver hardware dependent

DNNs can learn the underlying noise model specific to the receiver hardware

An example noise correlation matrix Nc : nc = Ncn

Nc =


1 ρ ρ2 · · · ρnr−1

ρ 1 ρ · · · ρnr−2

. . .

ρnr−1 ρnr−2 · · · 1


and ρ is the correlation coefficient such that 0 ≤ ρ ≤ 1

Modified ML detector for the case of correlated noise

x̂ = argmin
x∈AMN

(y −Hx)HΣ−1(y −Hx)

1S. Krusevac, P. Rapajic, and R. A. Kennedy, “Channel capacity estimation for MIMO systems with

correlated noise,” Proc. IEEE GLOBECOM’05, pp. 2812-2816, Dec. 2005.
2C. P. Domizioli, B. L. Hughes, K. G. Gard, and G. Lazzi, “Receive diversity revisited: correlation, coupling

and noise,” Proc. IEEE GLOBECOM’2007, pp. 3601-3606, Dec. 2007.
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DNN detection performance (in noise model mismatch)

MIMO-OTFS system parameters

4× 4 MIMO, fc = 4 GHz, ∆f = 3.75 KHz, M = N = 2, P = 4, BPSK

Performance in correlated noise
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Symbol-DNN: input → 32 → ReLU →
8 → ReLU → 16 → ReLU → 2 →
Softmax

Trained for 100 epochs with 80000
training examples at SNR = 4 dB

DNN detection performs better in correlated noise
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IQI compensation using DNNs
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IQ imbalance model - Tx IQI

Transmitter IQI
cos

sin

Transmit signal xIQ in the presence of Tx IQI can be modelled as

xIQ = αTx+ βTx
∗︸ ︷︷ ︸

image

, y = HxIQ + v

αT = 1
2

[
cos

(
∆ϕT
2

)
+ j ∆GT

2
sin

(
∆ϕT
2

)]
, βT = 1

2

[
−∆GT

2
cos

(
∆ϕT
2

)
− jsin

(
∆ϕT
2

)]
Tx IQI generates an image signal (causes self interference in zero-IF receivers)

Image suppression ratio (ISR) = |βT |2
|αT |2 ≈

∆G 2
T

4 +
∆ϕ2

T

4

ISR = EVM2; SNRIQI =
1

ISR; SNR degradation due to Tx IQI ∝ ISR
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IQ imbalance model - Rx IQI

Receiver IQI

cos

sin

Received signal yIQ in the presence of Rx IQI can be modelled as

yIQ = αRy + βRy
∗

αR = 1
2

[
cos

(
∆ϕR
2

)
+ j ∆GR

2
sin

(
∆ϕR
2

)]
, βR = 1

2

[
−∆GR

2
cos

(
∆ϕR
2

)
− jsin

(
∆ϕR
2

)]
ISR = |βR |2

|αR |2 ≈
∆G 2

R

4 +
∆ϕ2

R

4

Image signal causes SNR degradation
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Tx IQI compensation: DNN-1

Tx IQI
compensation
DNN

Rx chain
with IQI

TrainingTraining
data

Compensated
Constellation

Combination

+

Tx chain
with IQI

Tx chain
with IQI

Channel
mapping

A fully-connected DNN with 2|A| input neurons and 2|A| output neurons
Training data is obtained using the compensation model, given by[

A′
comp

A′∗
comp

]
=

[
αT βT

β∗
T α∗

T

]−1 [ A
A∗

]
.
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Paramaters of Tx IQI compensation DNN-1

Parameters of Tx IQI compensation DNN-1

Parameters BPSK-DNN 4QAM-DNN 16QAM-DNN

No. of input neurons 2|A| = 4 2|A| = 8 2|A| = 32
No. of output neurons 2|A| = 4 2|A| = 8 2|A| = 32
No. of hidden layers 4 3 3
Hidden layer activation Tanh Tanh Tanh
Output layer activation Linear Linear Linear
Optimization Adam Adam Adam
Loss function MSE MSE MSE
No. of training examples 1000 1000 1000
No. of epochs 5000 5000 5000
Batch size 5 5 5
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Tx IQI compensation using DNN-1: 4-QAM
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DNN-1 for 4-QAM

Input → 8 → Tanh → 64 → Tanh → 32 → Tanh → 16 → Tanh → 8 →
Linear

DNN effectively compensates the Tx IQI
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Tx IQI compensation using DNN-1: BPSK, 16-QAM
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((d)) 16-QAM

DNN-1 for BPSK

Input → 4 → Tanh → 64 → Tanh → 32 → Tanh → 16 → Tanh → 8 →
Tanh → 4 → Linear

DNN-1 for 16-QAM

Input → 32 → Tanh → 256 → Tanh → 128 → Tanh → 64 → Tanh → 32 →
Linear
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Rx IQI Estimation & compensation: DNN-2, DNN-3

Rx chain
with IQI

Rx IQI
compensation
DNN

TrainingTraining
dataRx chain

with IQI

Rx IQI
estimation
DNN

IQI impaired
Constellation

Combination+Training Training
data

Receiver

Estimation DNN-2: 2|A| input neurons and 2 output neurons

Compensation DNN-3: 2MN input neurons and 2MN output neurons

IQI impaired vector at the receiver

yIQ = αRy + βRy
∗.
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Rx IQI compensation: BPSK
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Parameters DNN-2 DNN-3

No. of input neurons 2|A| 2MN = 32
No. of output neurons 2 2MN = 32
No. of hidden layers 1 1
Hidden layer activation Tanh Tanh
Output layer activation Linear Linear
Optimization Adam Adam
Loss function MSE MSE
No. of training examples 1000 50000
No. of epochs 500 500
Batch size 5 50

Table: Parameters of DNN-2 and DNN-3.

Estimation DNN-2:

Input → 4 → Tanh → 8 → Tanh → 2 → Linear

Compensation DNN-3:

Input → 32 → Tanh → 64 → Tanh → 32 → Linear
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Rx IQI compensation: 4-QAM, 16-QAM

Performance of Rx IQI estimation and compensation DNNs for 4-QAM and
16-QAM
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Channel training and detection: DNN-4

DD Channel
training and
detection
DNN

TrainingTraining
data

Transmit
Data

Channel
coefficients

+

DD

4MN input neurons and MN output neurons

Input to the DNN consists of two OTFS frames - pilot frame and data frame

These two frames are vectorized to form the input to the DNN as y = [yp; yd]
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Channel training and detection: DNN-4

Performance of channel training and detection DNN-4
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Parameters DNN-4

No. of input neurons 4MN = 64
No. of output neurons MN = 16
No. of hidden layers 2
Hidden layer activation ReLU
Output layer activation Sigmoid
Training data SNR 10 dB
Training pilot SNR 10 dB
Optimization Adam
Loss function MSE
No. of training examples 200000
No. of epochs 500
Batch size 500

Table: Parameters of DNN-4.

DNN-4:

Input → 64 → ReLU → 256 → ReLU → 64 → ReLU → 16 → Sigmoid.
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DNN-based OTFS transceiver
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compensation
DNN

Tx chain
with IQI

Channel Rx chain
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Training

Training

Training

Training
data

Training
data

Training
dataRx chain

with IQI
Rx IQI
estimation
DNN

Transmit
Data

Channel
coefficients

+

Compensated
Constellation

Combination

+

mapping

Tx chain
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IQI impaired
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DNN-1

DNN-2
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DNN-4

DNN-1: Tx IQI Compensation DNN

DNN-2: Rx IQI Estimation DNN

DNN-3: Rx IQI Compensation DNN

DNN-4: DD Channel Training and Detection DNN

Receiver
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Combined performance of DNN-based OTFS transceiver

Combined performance of the DNN-based transceiver at different pilot SNRs
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DNN-based transceiver makes a big difference in low pilot SNR regime
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Concluding remarks

OTFS is a promising new modulation waveform for 6G and beyond

DNN approach is a promising approach for the design of practical
OTFS transceivers

DNN approach can score over conventional approaches when there are
model mismatches

Deviations from the standard models can open learning opportunities,
leading to better solutions/performance

Good tool for system design/optimization in dynamic environments

Need to pay closer attention to training and complexity view points

Potential for more research/investigations
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Thank you
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