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OTFS modulation
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Orthogonal Time Frequency Space (OTFS) modulation*

@ A promising modulation scheme for doubly-selective channels

@ Information is multiplexed in the delay-Doppler (DD) domain

e Map information from DD domain to time domain and transmit

o Direct approach:
@ use inverse Zak transform: DD domain — time domain

e Two-step approach:
o use ISFFT & Heisenberg transforms: DD domain — TF domain — time domain

@ Channel is viewed /represented in DD domain

@ Superior performance compared to OFDM
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(*) R. Hadani, S. Rakib, M. Tsatsanis, A. Monk, A. J. Goldsmith, A. F. Molisch, and R. Calderbank,
“Orthogonal time frequency space modulation,” in Proc. IEEE WCNC, San Francisco, CA, USA, March 2017,
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Why OTFS?

@ OTFS vs OFDM performance

10° T T - OFDM Parameter Value
fe=4GHz, Af =15 kHz oOTES Carrier frequency (GHz) 4
]leﬂgl(liz\lvl\([s:}z?dp:{) Subcarrier spacing (kHz) | 15
+ MMSE detection Frame size (M, N) (12,7)
107 Number of paths (P) 5
© Delay profile Exponential
g Maximum speed (km/h) 500
;§ Y Maximum Doppler (Hz) 1875
RN Modulation scheme BPSK
. * Smallest resource block used in LTE:
M=12, N=7
10°F .
o MMSE detection
0 5 10 15 20 25

SNRindB

o OFDM performs poor due to Doppler induced ICl
@ OTFS performs significantly better than OFDM

(*) G. D. Surabhi, R. M. Augustine, and A. Chockalingam, “On the diversity of uncoded OTFS modulation in
doubly-dispersive channels,” IEEE Trans. Wireless Commun., vol. 18, no. 6, pp. 3049-3063, Jun. 2019.
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Why OTFS?

e MIMO-OTFS vs MIMO-OFDM performance

- MIMO-OFDM| Parameter Value
_+MIMO-0TFS Carrier frequency (GHz) 4
Subcarrier spacing (kHz) 15
Frame size (M, N) (32,32)
2 Modulation scheme BPSK
8 MIMO configuration 2% 2
g Maximum speed (km/h) | 507.6
; Path index (i) 1 2 3 4 5
M Delay (7;./45) 2.1 4.2 6.3 8.4 10.4
Doppler (v/;,Hz) 0 470 | 940 | 1410 | 1880

105 2x 2 system, f,=4 GHz, M=32,
N=32, Af=15 kHz, P=5

1 1 L L L 1
0 2 4 6 8 10 12 14

SNR (dB)
@ MIMO-OTFS performs significantly better than MIMO-OFDM

@ Message passing detection

(*) M. K. Ramachandran and A. Chockalingam, “MIMO-OTFS in High-Doppler Fading Channels: Signal
Detection and Channel Estimation,” IEEE GLOBECOM'2018, December 2018.
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o Effect of IQ imbalance at the Tx and Rx

@ Ideal Tx chain
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Why OTFS?

o Effect of IQ imbalance at the Tx and Rx

@ Ideal Tx chain
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@ Gain and phase imbalance in Tx chain (AGr
cos(w,t — Adr/2)
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Why OTFS?

@ Performance of OTFS and OFDM in the presence of Tx IQI

10° T T i 100 . . . .
Tx IQI, BPSK Tx IQI, BPSK —+—OTFS
SNR=12dB, AG, =0 ——OFDM SNR=12dB, A, =0 —+—OFDM
10 10t ]
m -2 w 2L J
210 w10
107 103} 1
10 10 : : : :
0 20 40 60 80 0 02 0.4 0.6 0.8
Ang (deg) AGT
((2)) A¢r sensitivity ((b)) AGT sensitivity

@ OTFS is more robust to Tx IQI than OFDM

! Ashwitha Naikoti and A. Chockalingam, “A DNN-Based OTFS Transceiver With Delay-Doppler Channel
Training and 1QI Compensation,” I[EEE PIMRC’2021, September 2021.
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Why OTFS?

@ Performance of OTFS and OFDM in the presence of Rx IQI

10° ‘ ; 10° : ;
Rx IQI, BPSK ——OTFS Rx IQI, BPSK —+—OTES
SNR=12dB,AG,=0 ——OFDM SNR=12dB, Ag, =0 —+—OFDM

1071 // 1071 3 ]
E m VM

2 2T ]
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1078 103} 3
10-4 L L L 104 L L L L
0 20 40 60 80 0 0.2 04 0.6 08
Agp (deg) AGH

((c)) A¢r sensitivity

@ OTFS is more robust to Rx IQI than OFDM
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Why OTFS?

o Effect of oscillator phase noise

@ Oscillator phase noise spectrum at diff. carrier freauencies (4. 28, 60 GHz)?

60 Jo = 4Gz, Ly = —100 dBe/Hz, Ly, = 158 dBc/Hy]
|—, = 28 GHz, Ly = ~80 dBe/Hz, Lo, = ~140 dBe/Hy
_______________ - -f. = 60 GHz, Ly = ~74 dBc/Hz, Ly, = 132 dBc/Hy)
-80 ]
5 \ Af =78.125 kHz
5 Bprp = 10Af
1)
B0 | PLL
a
&
PR
g
2
Z-140 |
=
[
160 ‘ : ‘
10 10° 10° 10’ 108

Frequency offset (Hz)

— BSLLLO
° L(f) - BgLL+f2 + Lfloor

13GPP R1-163984: Discussion on phase noise modeling, 3GPP TSG RAN WG1 85, May 2016.
2L. Smaini, RF Analog Impairments Modeling for Communication Systems Simulation: Application to
OFDM-Based Transceivers, Wiley, 2012
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Why OTFS?

@ OTFS and OFDM performance with phase noise

10° i Parameter Value
©0FDM
4 7 Carrier frequency (GHz) 28
Bandwidth (MHz) 10
2 Subcarrier spacing, Af 78.125
s 10 (kHz)
2 Frame size (M, N) (128,64)
5 Rice factor (dB) 13
5 Bpii 10 Af
2 0+ Modulation BPSK
fe=28 GHz, Af =78.125 kHz Number of taps, P 5
M =128, N =64, P =5, BPSK
Path index (i) 1 2 3 4 5
Delay (7;.15) 0.3 1 1.7 2.4 3.1
100k ‘ ‘ Doppler (v/;.Hz) 0 200 | 400 | 1220 | 1220
0 5 10 15
SNR in dB @ Message passing detection

@ OTFS is more robust to phase noise

G. D. Surabhi, M. K. Ramachandran, and A. Chockalingam, “OTFS modulation with phase noise in mmWave
communications,” Proc. IEEE VTC'2019-Spring, Kuala Lumpur, Apr. 2019.

OTFS Transceivers Design using Deep Neural Network 23 February, 2022



OTES - Signaling in DD domain

k1 X t
alk, ] Inverse ZAK a(t) alk. ISFFT and [ m| Heisenberg 2(t)
R —_— . .
Transform Windowing Transform
@] Q
E E
ZAK Windowing Wigner
Transform and SFFT Transform
ylk, 1] y(t) ylk, ] Y[n,m| y(t)
Direct approach Two-step approach
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Channel in DD domain

@ DD domain impulse response h(7,v) is compact, sparse, stable

e channel taps in DD representation correspond to a cluster of reflectors with
specific delay and Doppler values

o the delay and Doppler values depend on reflectors’ relative distance and
relative velocity, respectively, with the transmitter and receiver

o relative velocity and distance remain roughly constant for at least a few msecs

Level (dB)

2002004

02

200
20070
. 100619
Time (s) 0 79061997

Frequency (MHz) Doppler

Channel in time-frequency H(t, f) and delay-Doppler h(7,v) domains
For a channel with P paths in the DD domain
P
h(r,v) =Y hid(r — 7:)5(v — vi)

i=1
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TF and DD grids

@ TF grid, A: TF plane is sampled at intervals T and Af, to obtain a 2D grid
AN=A{(nT,mAf),n=0,--- N—-1,m=0,--- ,M—1}

@ DD grid I': reciprocal to A
Fr={(#, ) k=0, N—1,/=0,--- ,M—1}

Delay

oy 1,\/

Frequency

A F 1M

2D SFFT

-—
2 2D ISFFT

-

% N
o Time
x 2

i

L2 N Doppler
:

@ In OTFS, information symbols are multiplexed in the DD grid (with Doppler

: 1 ; 1
resolution w7 and delay resolution 77)

@ MN symbols are sent over a time duration of NT secs occupying a BW of MAf
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Input-output relation

@ Received signal in DD domain:

o for 7 2 ;% and v; £ Pi a; and B; are integers

P
ylk, =" " b x[(k = Bi)n, (I = ci)m] + vIk, 1]

i=1
where h: — hl.e_j27Tl//‘Ti’ hi ~ C/\/(07 ]_/P)

transmitted OTFS symbols. Channel recelved OTFS symbols.

AL
TR
2 delay

Dopper

o Let H denote the N x M channel matrix in the DD domain
o Let A(k, 1) denote the (k, /)th element of H, which is given by

Ak, 1) = ki ifk=pB; & | = a; for some i € {1,2,-- , P}
"7 10 otherwise.
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Vectorized input-output relation

@ The input-output relation can be vectorized as'
y =Hx+v,

where Xk+NI = X[k, /], Yk+NI = y[k, /], Vk+NI = V[k, /],
k=0,---,N—-1, 1=0,--- ,M—1

H ¢ CMNXMN: jth row (j = k + NI) of H, denoted by H[j], is given by
Hj] =[A((k = 0)w, (I = 0)m) A((k — 1w, (I = O)wm) -~ h((k = N — 1)y, (I = M = 1)m)].

@ H is a block circulant matrix with circulant blocks, with each row having P
non-zero elements

o this can be exploited to devise low-complexity linear (MMSE) receivers*>

1p. Raviteja, K. T. Phan, and E. Viterbo, “Interference cancellation and iterative detection
for orthogonal time frequency space modulation,” IEEE Trans. Wireless Commun., vol. 17, no.
10, pp. 6501-6515, Oct. 2018.

2S. Tiwari, S. S. Das, and V. Rangamgari, “Low complexity MMSE receiver for OTFS,” IEEE
Commun. Lett., vol. 23, no. 12, pp. 2205-2209, Dec. 2019.

3G.D. Surabhi andA. Chockalingam, “Low-complexity linear equalization for OTFS
modulation,” I[EEE Commun. Lett., vol. 24, no. 2, pp. 330-334,Feb. 2020.
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Deep learning in communications

@ Deep learning (DL) has been increasingly studied in wireless communications
for designing intelligent communication systems!2

@ In the PHY layer, DL has been applied in two important ways

o as a replacement to the existing communication blocks like channel coding?,
signal detection®, channel estimation

o for designing end-to-end communication systems without traditional
communication blocks?

@ Both approaches are found to be promising

Ic. Jiang, H. Zhang, Y. Ren, Z. Han, K. C. Chen, and L. Hanzo, “Machine learning paradigms for
next-generation wireless networks,” IEEE Wireless Commun., vol. 24, no. 2, pp. 98-105, Apr. 2017.

2T. O'shea and J. Hoydis, “An introduction to deep learning for the physical layer,” IEEE Trans. Cognitive
Commun. and Netw., vol. 3, no. 4, pp. 563-575, Dec. 2017.

3H. Kim, Y. Jiang, R. Rana, S. Kannan, and P. Viswanath, “Communication algorithms via deep learning,”
Proc. ICLR'2018, pp. 1-17, Apr. 2018.

4N. Farsad and A. Goldsmith, “Neural network detection of data sequences in communication systems,”
IEEE Trans. Signal Process., vol. 66, no. 21, pp. 5663- 5678, Sep. 2018.
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Why deep learnin

Imperfections in/deviations from assumed models
@ Deep learning has shown robustness to such imperfections/deviations
@ Large amount of available data for training

@ Training takes time, but once trained the weights can be stored

Evolution of hardware to shorten training times
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Deep neural networks
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DNNs

@ Neuron - A basic cell.
@ uy, Uy, ..., U, are the inputs to the neuron.

@ wp, Ws,...,w, are the weights of the branches.
@ b is called the bias.

Figure: A single neuron

@ z and y are computed as follows

n
z= ZW,'U;—‘y-b, and ¥ = ¢(2)

i=1

@ ¢(-) is called the activation function. Examples are sigmoid, tanh, softmax,
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Deep learning

@ The goal is to update weights and bias in such a way that y is as close to the
required y as possible, y = f(uy,...,u,) + c.
@ This is achieved in two steps.

e Forward pass (finding y from u)
e Back propagation (finding the weights from )

o Weights are calculated by minimizing loss function, L(y,y). E.g., MSE, BCE

@ In a typical neural network, many neurons are placed together to form a layer
and such layers are interconnected.

@ A neural network with three or more layers is called a deep neural network.

Hidden layer 1 Hidden layer 2

(2]
wiy

Wl 13
Input layer "1

W ot Outpljt layer
QA

U2
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NN architectures

@ Fully connected NN (simply called a deep neural network (DNN))
e Each neuron in the current layer is connected to all the neurons
in the previous layer
e Convolutional NN (CNN)

e involves sparse connections and results in reduced complexity

e commonly used for learning involving images

@ Recurrent NN (RNN)

o A special architecture used for learning which involves time series
or sequence data
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DL programming frameworks

@ TensorFlow

o developed by the Google Brain team

o widely used deep learning framework

o Keras:
e written in python and works on top of tensorflow
o developed with a focus on quick experimentation
o Beginner friendly

o designed to minimize user actions and makes it easy to understand models

@ PyTorch:
o developed by Facebook

e strong competitor for TensorFlow

@ and many more...
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OTFS signal detection using DNNs
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OTES signal detection using DNNs

@ System model: y=Hx+v

@ Detection problem: Given y and H, obtain an estimate of x
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OTES signal detection using DNNs

@ System model: y=Hx+v
@ Detection problem: Given y and H, obtain an estimate of x

@ Two detection approaches using DNNs

OTFS Transceivers Design using Deep Neural Network 23 February, 2022



OTES signal detection using DNNs

System model: y=Hx+v

Detection problem: Given y and H, obtain an estimate of x

@ Two detection approaches using DNNs

Approach | (Full-DNN approach)

o Use a single large DNN at the OTFS signal vector level
o Input layer: 2MN neurons (real and imaginary parts of y vector)

Several large hidden layers

Output layer: |AMY| neurons (one for each possible x vector)

High complexity (# o/p neurons increases exponentially in size of vector x)
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OTES signal detection using DNNs

System model: y=Hx+v

Detection problem: Given y and H, obtain an estimate of x

@ Two detection approaches using DNNs

@ Approach | (Full-DNN approach)

o Use a single large DNN at the OTFS signal vector level

o Input layer: 2MN neurons (real and imaginary parts of y vector)

o Several large hidden layers

o Output layer: |AMY| neurons (one for each possible x vector)

e High complexity (# o/p neurons increases exponentially in size of vector x)
@ Approach Il (Symbol-DNN approach)

o Use multiple small DNNs at the modulation symbol level
@ One small DNN for each coordinate in the x vector (# small DNNs: MN)

e Common input layer: 2MN neurons (real amd imag. parts of y vector)

Relatively fewer/smaller hidden layers

Output layer of each DNN: |A| neurons (one for each possible symbol in A)
Reduced complexity (total # o/p neurons: MN|A|)
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OTFS signal detection using DNNs (Approach )

2M N Input neurons |AMN | Qutput neurons
M)
. Index-to-OTFS A
I]:hdden . Msa’; Index > signal vector > X
ayers . elector -~
L
L]

@ Each neuron in output layer corresponds to one OTFS signal vector

o If ith signal vector (i = 1,---,|AMN]) of the OTFS signal set is sent, then

e ith o/p neuron is likely to result in high probability value

o all other o/p neurons j, j # i, result in low probability values

@ This architecture requires learning a large number of parameters
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OTFS signal detection using DNN (Approach 1)

2M N Input neurons |A| Output neurons
Symbol Max Inde)l( to
¥, —> DNN-1 2 index |y |modulation| o % L
Hidden Layers 2 selector symbol
mapper
|A[| Output neurons
Y’ MN Index to
SDYIIII:I)OZI . illl/f;e}; modulation %
R . > — X2
Hidden Layers . selector smlb]
¥ mapper
1
. N . N .
. |A| Output neurons . : . .
Index t
Sy . s mond;l);li?)n a
Yiun—> DNN-MN : index | —| "0 e Ry
Hidden Layers selector
O— mappr

@ kth output neuron (k=1,--- ,|A|) of /th Symbol-DNN (/ =1,--- , MN)
gives the probability of kth symbol being transmitted from /th DD bin

@ Requires learning much fewer number of parameters and hence scales well

2 Ashwitha Naikoti Shamasundar and A. Chockalingam, “Low-complexity Delay-Doppler Symbol DNN for
OTFS Signal Detection,” IEEE VTC2021-Spring, Helsinki, April 2021.
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DNN detection performance (standard noise model)

@ Standard noise model: i.i.d Gaussian

@ OTFS system parameters
o fo =4 GHz, Af = 3.75 KHz,

noise

M=N=2, P=2, BPSK

@ Channel: an instance of Rayleigh fading channel
@ DNN parameters
[ Parameters [ Symbol-DNN [ Ful-DNN
No. of input neurons 2MN =8 2MN =8
No. of output neurons Al =2 2"V _ 16
No. of hidden layers 1 1
Hidden layer activation RelLU RelLU
Output layer activation Softmax Softmax
Optimization Adam Adam
Loss function Binary Categorical
crossentropy crossentropy
Training SNR 10 dB 10 dB
No. of training examples 30,000 30,000
No. of epochs 50 50

@ Full-DNN: input -+ 8 — ReLU — 12 — RelLU — 16 — Softmax.
@ Symbol-DNN: input — 8 — ReLU — 4 — ReLU — 2 — Softmax.

23 February, 2022
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DNN detection performance (standard noise model)

——&— ML det
—£— Symbol-DNN det
—*— Full-DNN det

ol 102 M=N=2, P=2, BPSK
'0:4GHZ’ Af=3.75 KHz

10

0 2 l; é é 1‘0 1‘2 1‘4 1‘5 18
SNR in dB

@ Symbol-DNN achieves similar performance as that of Full-DNN

@ Both DNNs achieve almost ML detection performance

o Complexity comparison (in no. of real operations):

[ Detector [ ML det. [ Symbol-DNN [ Ful-DNN ]
Complexity [ 1088 [ 304 [ 564 ]
[ Trainable parameters [ - [ 184 [ 316 ]
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DNN detection performance (standard noise model)

@ OTFS system parameters
o f =4 GHz, Af =15KHz, M =N =16, P =8, BPSK

M=N=16, P=8, BPSK

f =4GHz, Af=15 KH.
o : @ Full-DNN: No. of output neurons = 2256

(infeasible)

@ No. of Symbol-DNNs: MN = 256
@ Symbol-DNN: input — 512 — RelLU —

5 102
° 256 — ReLU — 2 — Softmax
@ Trained for 20 epochs with 80,000 training
wsk samples at SNR=8 dB

—H&— MMSE det
—~— Symbol-DNN det

0 5 10 15 20

SNRin dB
l Detector Complexity | Trainable parameters
MMSE 83951616 -
Symbol-DNN 67305472 33751552
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Model mismatch in noise

@ Deviations from standard noise model
o Non-Gaussian noise

o Correlated noise

o t-distributed noise
e t-distribution looks very similar to Gaussian
e parameterized by v
o deviates more from Gaussian for smaller values of v

04 --t-distribution pdf, v = 10|
035F - -t-distribution pdf, v = 5
: /—standard normal pdf
03r 1
025 1
z 0 ]
Y
0.15F 1
0.1 1
0.051 1
0 & -
-5 3 2 1 0 1 2 3 4 5
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DNN detection performance (noise model mismat

@ OTFS system parameters
o fc =4 GHz, Af=375KHz, M=N=2, P=2, BPSK
@ Performance with t-distributed noise

10° T .
f.=4GHz, Af=3.75 KHz
B! M=N=2, P=2, BPSK [-——— ML det - Gaussian
Tee—a —&— ML det - t-dist © =5
-~ —*— Symbol-DNN det - t-dist = 5
107" E
o
w 2
& 10
10
10'4 L L L L
0 5 10 15 20

SNR in dB
@ ML detection is not optimal in non-Gaussian noise

@ DNN detector learns the noise model and performs better than ML detector
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DNN detection performance (noise model mismatch)

@ OTFS system parameters
o ft =4 GHz, Af =15KHz, M=N =16, P=8, BPSK

@ Performance with t-distributed noise

0 0
o o M=N=16, P=8, BPSK
——— — MMSE det - Gaussian 1,=4GHz, Af=15 KHz, v, _ =1.875 KHz
—E5— MMSE det - tdist 1= 5
—%— Symbol-DNN det - t-dist 1 = 5 Sl — -G~ MMSE det - Gaussian

— 2~ Symbol-DNN det - Gaussian | |
—B— MMSE det - t-dist i = 5
—— Symbol-DNN - tdist 1= 5

o
2
g 10 .
M=N=16, P=8, BPSK ~
\\ f,=4GHz, Af=15 KHz AN

10 10°
0 5 10 15 20 0 2 4 6 8 10 12 14 16
SNRin dB SNRin dB
(a) Static channel (b) Max. Doppler=1.875 KHz
[ Path i ] [ [ 3 [ & [ 5 [ 6 [ 7 [ 8 ]

1 2
[ r;(us) T O [ 416 | 832 [ 1248 | 1664 | 208 | 2496 | 20.12 |
[ vj(Hz) [ o[ 0o [ 935 [ 9385 | 9385 | 1875 | 1875 | 1875 |

@ DNN detector performs better in non-Gaussian noise
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Correlated noise in MIMO-OTFS

Noise correlation across multiple receive antennas due to insufficient
spacing!?

@ Model that characterizes this correlation is receiver hardware dependent

@ DNNs can learn the underlying noise model specific to the receiver hardware
@ An example noise correlation matrix N.: n. = Ncn
1 p p2 pn,fl
P 1 P . p"r_2
Ne =
pn,—l pn,—2 . . 1

and p is the correlation coefficient such that 0 < p <1

@ Modified ML detector for the case of correlated noise

% = argmin (y — Hx)"X 71 (y — Hx)

x€AMN

15, Krusevac, P. Rapajic, and R. A. Kennedy, “Channel capacity estimation for MIMO systems with
correlated noise,” Proc. IEEE GLOBECOM’05, pp. 2812-2816, Dec. 2005.

2c. p. Domizioli, B. L. Hughes, K. G. Gard, and G. Lazzi, “Receive diversity revisited: correlation, coupling
and noise,” Proc. IEEE GLOBECOM’2007, pp. 3601-3606, Dec. 2007.
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DNN detection performance (in noise model mismatch)

@ MIMO-OTFS system parameters
e 4 x4 MIMO, f. =4 GHg,

@ Performance in correlated noise

Af = 3.75 KHz,

10°

— -G — ML det - i..d Gaussian

— >~ Modified ML det - p = 0.4
—B8—MLdet-p=04

—&— Symbol-DNN det - p = 0.4

o w
x_

S8 \\ﬂ\
NN

N
N

o
w102 F S

102 M=N=2, P=4, BPSK
fc=4GHz, f=3.75 KHz
N
n.= 4 n = 4 \&
N
10 )
0 2 4 6 8

SNRin dB

M=N=2 P=4, BPSK

@ Symbol-DNN: input — 32 — RelLU —
8 — ReLU — 16 — ReLU — 2 —
Softmax

@ Trained for 100 epochs with 80000
training examples at SNR = 4 dB

@ DNN detection performs better in correlated noise

OTFS Transceivers Design using Deep Neural Network

23 February, 2022



IQl compensation using DNNs
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|Q imbalance model - Tx IQI

@ Transmitter 1QI
cos(w,t — APt/ 2)

(;;ror vector
20T .
2

x(#) | S
x1g(H)

——{1+ —L

xg(f) ¢
sin(w,f + Apr/2)

@ Transmit signal x;g in the presence of Tx IQI can be modelled as

XjQ = arx + frx*, y =Hxjo +v
——

image
oar = % [cos (—A;’T) +j—A2GTsin (—A‘;T)] Bt = % [——A;;Tcos <—AfT) — jsin (AfTﬂ
Tx IQI generates an image signal (causes self interference in zero-IF receivers)

— |ﬂT|2 ~ AG% + A¢2T
|aT|2 4 4

ISR = EVM?; SNRg = ﬁ; SNR degradation due to Tx IQI o< ISR

Image suppression ratio (ISR)
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|Q imbalance model - Rx IQI

@ Receiver IQI

cos(w,t —APr/2) Error vector

o

. . }M{ ..
;? 14+ R

sin(w,t + Adg /2)

@ Received signal yjg in the presence of Rx IQl can be modelled as

YiQ = ary + Bry”
ar = % [cos (%) +j#sin (%)] Br = % [f#cos (AfR) — jsin (%)]
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@ Image signal causes SNR degradation
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Tx IQl compensation: DNN-1

Xcomp €
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Combination

o A fully-connected DNN with 2|A| input neurons and 2|A| output neurons
@ Training data is obtained using the compensation model, given by

Afomp| _ [T BT A
AGmp] BT af AT]T
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Paramaters of Tx IQl compensation DNN-1

@ Parameters of Tx IQI compensation DNN-1

l Parameters [ BPSK-DNN [ 4QAM-DNN [ 16QAM-DNN
No. of input neurons 21Al =4 2|A| =8 2|A| =32
No. of output neurons 2|Al =4 2|A| =8 2|A| =32
No. of hidden layers 4 3 3
Hidden layer activation Tanh Tanh Tanh
Output layer activation Linear Linear Linear
Optimization Adam Adam Adam
Loss function MSE MSE MSE
No. of training examples 1000 1000 1000
No. of epochs 5000 5000 5000
Batch size 5 5 5
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Tx IQI compensation using DNN-1: 4-QAM
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o DNN-1 for 4-QAM

e Input — 8 — Tanh — 64 — Tanh — 32 — Tanh — 16 — Tanh — 8 —
Linear

@ DNN effectively compensates the Tx 1QI
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Tx IQI compensation using DNN-1: BPSK, 16-QAM

OTEFS with Tx 1QI
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@ DNN-1 for BPSK

o Input — 4 — Tanh — 64 — Tanh — 32 — Tanh — 16 — Tanh — 8 —
Tanh — 4 — Linear
@ DNN-1 for 16-QAM

o Input — 32 — Tanh — 256 — Tanh — 128 — Tanh — 64 — Tanh — 32 —
Linear
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Rx IQI Estimation & comp

AaR : Estimated Rx gain imbalance

~ .
Ad, : Estimated Rx phase imbalance y Rx chain
: —* withIQI

Yiq : 1QI impaired received vector

Yeomp : Compensated received vector
T " Training |

A i PR raining raining 1
o G By s

Recelver AGg, Adg
1QI impaired Combination

Constellation

@ Estimation DNN-2: 2|A| input neurons and 2 output neurons
@ Compensation DNN-3: 2MN input neurons and 2MN output neurons
@ IQl impaired vector at the receiver

yiQ = ary + BrY".
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Rx IQl compensation: BPSK

OTES with Rx IQIL
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o Estimation DNN-2:
o Input — 4 — Tanh — 8 — Tanh — 2 — Linear

o Compensation DNN-3:
e Input — 32 — Tanh — 64 — Tanh — 32 — Linear

Parameters [ DNN-2 [ DNN-3
No. of input neurons 2|A] 2MN = 32
No. of output neurons 2 2MN = 32
No. of hidden layers 1 1
Hidden layer activation Tanh Tanh
Output layer activation Linear Linear
Optimization Adam Adam
Loss function MSE MSE
No. of training examples 1000 50000
No. of epochs 500 500
Batch size 5 50

Table: Parameters of DNN-2 and DNN-3.
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Rx IQl compensation: 4-QAM, 16-QAM

@ Performance of Rx IQI estimation and compensation DNNs for 4-QAM and
16-QAM
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Channel training and detection: DNN-4

DD Channel
training and
detection
DNN
Transmit

Data T

Trgiarg;ng [~ Training |

@ 4MN input neurons and MN output neurons
@ Input to the DNN consists of two OTFS frames - pilot frame and data frame

@ These two frames are vectorized to form the input to the DNN as y = [yp; yd]
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Channel training and detection: DNN-4

@ Performance of channel training and detection DNN-4

0

10 i T I i [ Parameters DNN-4
—— Perfect CSI, ML det
—+—Perfect CSI, MMSE det No. of input neurons AMN = 64
—*—Impulse based est, ML det No. of output neurons MN =16
—#— Impulse based est, MMSE det No. of hidden |ayers 2
-1 " i -
10 DNN based est and det Hidden layer activation RelLU
OTFS with M=N=4, P=4, BPSK Output layer activation Sigmoid
Af=3.75 KHz, f =4 GHz, v =938 Hz Training data SNR 10 dB
b SNR_ =10 dB, No IQI Ining ¢
d Training pilot SNR 10 dB
10724 * * Optimization Adam
\ Loss function MSE
T No. of training examples 200000
No. of epochs 500
3 | | | | Batch size 500

10 20 30 40 50
SNRp in dB

o DNN-4:

Table: Parameters of DNN-4.

o Input — 64 — ReLU — 256 — RelLU — 64 — RelLU — 16 — Sigmoid.
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DNN-based OTFS transceiver

DNN-2

Receiver
1QI impaired
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Combi n%on
Constellation
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| DNN-1: Tx IQI Compensation DNN

DNN-2: Rx IQI Estimation DNN

AGr, Adr

Combination| | DNN-3: Rx 1QI Compensation DNN

DNN-4: DD Channe! Training and Detection
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Combined performance of DNN-based OTFS transceiver

@ Combined performance of the DNN-based transceiver at different pilot SNRs
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@ DNN-based transceiver makes a big difference in low pilot SNR regime
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Concluding remarks

@ OTFS is a promising new modulation waveform for 6G and beyond

@ DNN approach is a promising approach for the design of practical
OTES transceivers

@ DNN approach can score over conventional approaches when there are
model mismatches

@ Deviations from the standard models can open learning opportunities,
leading to better solutions/performance

e Good tool for system design/optimization in dynamic environments
@ Need to pay closer attention to training and complexity view points

@ Potential for more research/investigations
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Thank you
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