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C. D. Kabade, A. Das, and A. Chockalingam, Zak-OTFS with Superimposed Spread Pilot: CNN-Aided Channel Estimation, to be presented in IEEE

PIMRC’2025 Workshop on Emerging Modulation Techniques Towards 6G Networks, Istanbul, Sep. 2025.
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Wireless systems evolution

Demand for increased

data rate, spectral efficiency, energy efficiency (earlier focus)
mobility, # use cases, radar sensing support (new/current focus)

2G and 3G used CDMA
(voice driven)

4G and 5G use OFDM,
5G uses massive MIMO
(Internet/data driven)

6G and beyond: expect
to be AI driven

Several emerging
technologies (including
new waveforms) in 6G

1
M. Z. Chowdhury, M. Shahjalal, S. Ahmed and Y. M. Jang, ”6G Wireless Communication Systems: Applications, Requirements, Technologies,

Challenges, and Research Directions,” IEEE Open Journal of the Communications Society, vol. 1, pp. 957-975, Jul. 2020

Learning in Zak-OTFS 16 August 2025 3 / 32



Zak-OTFS - A new waveform

Zak-OTFS

a modulation waveform as well as a radar sensing waveform in the
delay-Doppler (DD) domain

An analogy

Waveform for LTI channels:
CP-OFDM

Information domain:
Frequency domain

Theory for describing and
understanding: Fourier theory

Transform: Fourier transform

Fourier transform

Invented: 1822 (J.B.J.Fourier)
For modulation: 1966
(OFDM)

Operation: Linear convolution

Waveform for LTV channels:
Zak-OTFS

Information domain:
Delay-Doppler domain

Theory for describing and
understanding: Zak theory

Transform: Zak transform

Zak transform

Invented: 1967 (Joshua Zak)
For modulation: 2022
(Zak-OTFS)

Operation: Twisted convolution
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Why a new waveform?

Historically

PHY waveform has been a key differentiator between different
generations of wireless

FDMA (1G) → TDMA (2G) → CDMA (2G,3G) → OFDM (4G,5G) → ??

New use cases are emerging

High-mobility support

High-speed trains, aeroplanes

Non-terrestrial networks (NTN)

Drones, UAVs, LEOS

Radar sensing support

Autonomous cars/vehicles

Legacy waveforms may not be adequate to meet new demands
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Zak transform

Zak transform

Parameterized by parameters (τp, νp) with τpνp = 1

τp: Doppler period, νp: Doppler period

Maps a time domain signal to a unique quasi-periodic DD domain signal

Zak transform of a continuous time domain
signal a(t) is defined as

a(τ, ν) = Zt (a(t))
∆
=

√
τp

∑
k∈Z

a(τ + kτp)e
−j2πνkτp

Quasi-periodicity

For any n,m ∈ Z, a(τ, ν) satisfies

a(τ + nτp, ν +mνp) = e j2πnντpa(τ, ν)

Periodic along Doppler, and periodic with a
multiplicative phase term e j2πnντp along delay

a(τ, ν) - a DD pulse

a(t) - Pulsone
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Inverse Zak transform

Inverse Zak transform

Gives the time domain realization of a
quasi-periodic DD domain signal

Exists only for DD functions which are
quasi-periodic

Inverse Zak transform of a DD signal
a(τ, ν) is defined as

a(t) = Z−1
t (a(τ, ν))

∆
=

√
τp

∫ νp

0
a(t, ν)dν

Transform triangle

Twisted convolution (∗σ)
TC between two DD functions a(τ, ν) and b(τ, ν) is defined as

a(τ, ν) ∗σ b(τ, ν) =

∫ ∞

−∞

∫ ∞

−∞
a(τ ′, ν′)b(τ − τ ′, ν − ν′)e j2πν′(τ−τ ′)dτ ′dν′

Associative. Non-commutative

Twisted convolution operation preserves quasi-periodicity
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Information multiplexing in DD domain

Basic information carrier: a DD domain pulse (a pulsone in time domain)

Fundamental DD period, D0 (red box):

D0 = {(τ, ν) : 0 ≤ τ < τp, 0 ≤ ν < νp}

Period lattice Λp

τp is sliced into M delay bins

Delay resolution: ∆τ =
τp
M

νp is sliced into N Doppler bins

Doppler resolution: ∆ν =
νp
N

MN symbols mounted on MN

DD bins in D0 (information grid)

Information grid/lattice

Example: τp = 50µs, νp = 20kHz

B = 10 MHz

∆τ = 1
B = 0.1 µs

M=
τp
∆τ = 50µs

0.1µs = 500

T = 1 ms

∆ν = 1
T = 1 kHz

N=
νp
∆ν = 20 kHz

1 kHz = 20

B = Mνp, T = Nτp, BT = MN

Learning in Zak-OTFS 16 August 2025 8 / 32



Zak-OTFS transceiver

End-to-end I/O relation (continuous)

ywrx
dd (τ, ν) = wrx(τ, ν) ∗σ hphy(τ, ν) ∗σ wtx(τ, ν)︸ ︷︷ ︸

∆
= heff(τ,ν) (effective channel)

∗σxdd(τ, ν) + wrx(τ, ν) ∗σ ndd(τ, ν)︸ ︷︷ ︸
∆
= n

wrx
dd

(τ,ν)

DD domain sampling on the information grid

ydd[k, l ] = ywrx
dd

(
τ =

kτp

M
, ν =

lνp

N

)
, k, l ∈ Z
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End-to-end I/O relation

End-to-end I/O relation (discrete) [2]

ydd[k, l ] =
∑

k′,l′∈Z
heff[k − k ′, l − l ′]xdd[k

′, l ′]e j2π
k′(l−l′)

MN + ndd[k, l ]

Vectorized form of end-to-end I/O relation [3]: y = Heffx+ n

Heff ∈ CMN×MN : effective channel matrix

Heff[k
′N + l′ + 1, kN + l + 1] =

∑
m,n∈Z

heff[k
′ − k − nM, l′ − l −mN]e j2πnl/Ne j2π

(l′−l−mN)(k+nM)
MN (1)

x, y, n ∈ CMN×1, xkN+l+1 = xdd[k, l ], ykN+l+1 = ydd[k, l ], nkN+l+1 = ndd[k, l ]

Closed-form expressions for heff[k , l ] and noise covariance

Derived for sinc and Gaussian filters in [4]

Channel estimation problem: Estimation of Heff matrix

2
S. K. Mohammed, R. Hadani, A. Chockalingam, and R. Calderbank, “OTFS − a mathematical foundation for communication and radar sensing in

the delay-Doppler domain,” IEEE BITS The Inform. Theory Mag., vol. 2, no. 2, pp. 36-55, 1 Nov. 2022.
3
S. K. Mohammed, R. Hadani, A. Chockalingam, and R. Calderbank, “OTFS − predictability in the delay-Doppler domain and its value to

communication and radar sensing,” IEEE BITS The Inform. Theory Mag., vol. 3, no. 2, pp. 7-31, Jun. 2023
4
A. Das, F. Jesbin, and A. Chockalingam, “Closed-form expressions for I/O relation in Zak-OTFS with different delay-Doppler filters,” IEEE Trans.

Veh. Tech., 2025. doi: 10.1109/TVT.2025.3564419.
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Pulse shaping filters

Sinc filter: wtx(τ, ν) =
√
BT sinc(Bτ) sinc(Tν)

Gaussian filter5: wtx(τ, ν) =
(

2ατB2

π

) 1
4
e−ατB2τ2

(
2ανT 2

π

) 1
4
e−ανT 2ν2

Rx filter is matched to the Tx filter: wrx(τ, ν) = w∗
tx(−τ,−ν)e j2πντ

5
99% energy contained within bandwidth B and time T corresponds to ατ = αν = 1.584.
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Choice of (τp, νp)

Crystallization condition: τmax < τp and νmax < νp

τmax : maximum delay spread of the effective channel

νmax : maximum Doppler spread of the effective channel

Choose τp and νp such that the crystallization condition is satisfied

Non-crystalline regime (results in DD

aliasing) Crystalline regime
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DD domain channel estimation

Types of pilot frames

Two approaches of effective channel estimation
Model-dependent approach:

Estimate underlying physical channel parameters to obtain ĥeff [k, l ], i.e.,

{τ̂i , ν̂i , ĥi}s → ĥphy(τ, ν) → ĥeff(τ, ν) → ĥeff [k, l ] → Heff

Model-free approach: Direct read-off to obtain ĥeff [k, l ]

ĥeff [k, l ]=


yp,dd

[
k + M

2 , l + N
2

]
e−jπ l

N ,−M
2 ≤ k < M

2 ,

− N
2 ≤ l < N

2 ,

0, otherwise
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Channel estimation (Exclusive pilot)

Transmission scheme
Send a pilot frame followed by data frames
Estimate Ĥeff during pilot frame and use it for symbol detection in data frames

DD point pilot at (kp, lp): xp[k, l ] = δ[k − kp]δ[l − lp], (kp, lp) = (M/2,N/2)

Exclusive point pilot signal:

xp,dd[k, l ] = δ[k − kp]δ[l − lp]∗σdx0,dd[k, l ]

=
∑

n,m∈Z
δ[k − kp − nM]δ[l − lp − mN]e j2π

nlp
N , k, l ∈ Z

Data signal: xd,dd[k, l ] = x[k, l ] ∗σd x0,dd[k, l ]

x[k, l ], 0≤ k ≤ M − 1, 0 ≤ l ≤ N − 1 are the MN information symbols
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Model-free channel estimation

Received pilot signal
yp,dd[k, l ] =heff [k, l ] ∗σd xp,dd[k, l ] + ndd[k, l ]

= heff [k − kp, l − lp]e
jπ

(
l− N

2

)
N︸ ︷︷ ︸

Effective channel

+ ndd[k, l ]︸ ︷︷ ︸
Receiver noise(i)

+
∑

m,n∈Z, (m,n)̸=(0,0)

heff [k − (kp + nM), l − (lp + mN)]e j2π
nlp
N e j2π

(l−lp−mN)(kp+nM)
MN

︸ ︷︷ ︸
DD aliasing(ii)

Effective channel estimate read-off

ĥeff [k, l ] =


yp,dd

[
k + M

2 , l + N
2

]
e−jπ l

N ,−M
2 ≤ k < M

2
(iii)

,

− N
2 ≤ l < N

2 ,

0, otherwise
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Model-free channel estimation

Advantages

1 Simple

2 Natural and effective in acquiring fractional DDs

Drawbacks

1 Read-off provides an estimate only over a limited region (F) in the DD plane

Does not provide the estimate for the region outside (Fc)

This affects estimation performance depending on the pulse shaping
characteristics of the filter used

A poorly localized pulse shape results in increased degradation

2 The read-off samples are corrupted by the DD aliases and receiver noise

Learning approach to address the drawbacks

Treat the read-off samples as an DD image

Use learning techniques to enhance the quality of this ‘image’
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Channel images

True effective channel image (ground truth)

HI[k
′, l ′] = heff [k

′ − (n′ + 1)M, l ′ − (m′ + 1)N],

k ′ = 0, . . . , 2(n′ + 1)M, l ′ = 0, . . . , 2(m′ + 1)M, where n,m in (1) are
n ∈ [−n′, n′], m ∈ [−m′,m′]

m′ = n′ = 2 is adequate to consider dominant terms in the sum in (1)

Effective channel estimate image

ĤI[k
′, l ′] =


ĥeff [k

′ − (n′ + 1)M, l ′ − (m′ + 1)N],

for− M
2 ≤ k ′ − (n′ + 1)M < M

2 ,

−N
2 ≤ l ′ − (m′ + 1)N < N

2 ,

0, otherwise

k ′ = 0, . . . , 2(n′ + 1)M, l ′ = 0, . . . , 2(m′ + 1)M

ĤI complex-valued → ℜ(ĤI) and ℑ(ĤI) serves as independent real-valued
inputs to the same network
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CNN framework

CNN architecture: Three layer hierarchical network6

First layer: 64 filters with 9× 9 kernel → ReLU activation
Second layer: 32 filters with 1× 1 kernel → ReLU activation
Third layer: Single 5× 5 filter

ĤI,CNN : Enhanced effective channel image

Enhanced channel estimate

ĥeff,CNN[k, l ] = HI[k + (n′ + 1)M, l + (m′ + 1)N],

k = −(n′ + 1)M, . . . , (n′ + 1)M, l = −(m′ + 1)M, . . . , (m′ + 1)M

6
C. Dong, C. C. Loy, K. He and X. Tang, ”Image super-resolution using deep convolutional networks,” IEEE Trans. Pattern Anal. and Mach. Intel.,

vol. 38, no. 2, pp. 295-307, Feb. 2016.
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CNN parameters

Parameters Values

Training pilot SNR (in dB) 15
Training data size 10000
Testing data size 2000

Batch size 128
Number of epochs 1000

Learning rate 0.001
Optimizer Adam

Total trainable CNN parameters 8129
Stride 1
Padding same (input size preserved)

Training methodology: Optimize loss function to minimize MSE

L(Θ) =
1

Ns

Ns−1∑
i=0

(∥∥∥fCNN

(
Θ;ℜ(Ĥ(i)

I )
)
−ℜ(H(i)

I )
∥∥∥2

F

+
∥∥∥fCNN

(
Θ;ℑ(Ĥ(i)

I )
)
−ℑ(H(i)

I )
∥∥∥2

F

)
Pair

(
Ĥ(i)

I ,H(i)
I

)
: ith realization of training data set

fCNN(.): CNN function
Θ: Trainable network parameters

Used PyTorch ML libraries and Nvidia RTX 3090 GPU
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Zak-OTFS system parameters

Parameter Values

Channel type Vehicular-A
Relative power (dB) 0.0, -1.0, -9.0, -10.0, 15.0, -20.0
Relative delay (µs) 0, 0.31, 0.71, 1.09, 1.73, 2.51
Bandwidth (B) 480 kHz

Time duration (T ) 3.2 ms
Maximum Doppler spread (νmax) 815 Hz
Maximum delay spread (τmax) 2.51 µs

Delay period (τp) 66.6 µs
Doppler period (νp) 15 kHz
No. of delay bins (M) 32
No. of Doppler bins (N) 48

Symbol detection MMSE detection
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CNN enhanced NMSE and BER performance

NMSE vs Pilot SNR:

Improved NMSE performance across pilot SNR values for both Gaussian ans
sinc filters, despite being trained at single pilot SNR of 15 dB
Gaussian: high DD localization → Lower NMSE than sinc

BER vs Data SNR (BPSK):

Improved BER performance for both Gaussian (close to perfect CSI) and sinc
filters
Sinc: nulls at information grid points → Lower BER than Gaussian
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CNN enhanced BER performance

BER vs Pilot SNR (BPSK):

Outperforms conventional model-free method for both Gaussian ans sinc filters
For both filters, achieves BER performance close to the perfect CSI at low
pilot SNRs

Improved BER performance with 8-QAM for both Gaussian (close to perfect CSI)
and sinc filters across data SNRs
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Zak-OTFS with superimposed spread-pilot

Data and spread-pilot are superimposed on the same frame7

Advantages: No throughput loss due to pilot. Better PAPR

Spreading filter8 w [k , l ] applied to the point pilot to obtain spread pilot

xs,dd[k, l ] = w [k, l ]⊛σd xp,dd[k, l ]

Data and pilot multiplexed together for transmission

xdd[k, l ] =
√

Ed xd,dd[k, l ] +
√

Ep xs,dd[k, l ]
7
M. Ubadah, S. K. Mohammed, R. Hadani, S. Kons, A. Chockalingam, and R. Calderbank, Zak-OTFS for integration of sensing and communication,

online arxiv.org/abs/2404.04182, 5 Apr 2024.

8
Chirp filter w [k, l ] = 1

MN
e
j2π

q(k2+l2)
MN , q: slope-parameter
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Channel estimation (superimposed spread pilot)

Basic idea

Exploit the nature of the self ambiguity9 of the spread pilot xs,dd[k, l ]
for channel estimation

Self ambiguity Axs,xs [k, l ] of the spread pilot is supported on a
twisted lattice Λq (w.r.t. the period lattice Λp)

Axs,xs [k, l ]:

M, N → odd primes

q → relative prime to M
and N

e.g., M = 31,N = 37, q = 3

The cross-ambiguity Ay,xs [k, l ] between ydd[k, l ] and xs,dd[k, l ] has the
effective channel supported on the self-ambiguity lattice Λq

9The cross-ambiguity function between two discrete DD domain signals a[k, l ] and b[k, l ] is given by

Aa,b [k, l ] =
∑M−1

k′=0

∑N−1

l′=0
a[k′, l′]b∗[k′ − k, l′ − l ]e−j2π

l(k′−k)
MN
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Channel estimation (superimposed spread pilot)

Procedure

Compute Ay,xs [k, l ] (cross ambiguity between the received signal and the
spread pilot signal)

Cross-ambiguity output has the effective channel supported on the
self-ambiguity lattice Λq

Simply read off the cross-ambiguity output in the support set S
Use the read-off samples as ĥeff [k, l ] values to construct the Ĥeff matrix

Issue

Cross-ambiguity output has data interference, DD aliases, and noise

This compromises estimation quality

Solution approach to address the issue

Treat the cross-ambiguity read-off as a corrupted ‘DD image’

Use learning techniques to enhance this ‘image’
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Channel estimation (superimposed spread pilot)

Ay,xs [k, l ] =
√

Ep heff [k, l ]︸ ︷︷ ︸
Effective channel

+
√

Ep

∑
(ki ,li )∈Λq ,(ki ,li ) ̸=(0,0)

e jθi heff [k − ki , l − li ]e
j2π

(l−li )ki
MN

︸ ︷︷ ︸
DD aliasing

+
√

Ed heff [k, l ] ∗σd Axd,xs [k, l ]︸ ︷︷ ︸
Data interference

+ An,xs [k, l ]︸ ︷︷ ︸
Receiver noise

Effective channel estimated reading off within support set S

ĥeff [k, l ] =

{
Ay,xs [k, l ]/

√
Ep, for (k, l) ∈ S

0, otherwise
(2)
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Channel estimation (superimposed spread-pilot)

Cross ambiguity output Ay ,xs [k , l ] for different filters
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CNN framework

CNN architecture: Four layer hierarchical network

First layer: 64 filters with 27× 27 kernel, ReLU activation
Second layer: 32 filters with 9× 9 kernel, ReLU activation
Third layer: 32 filters with 5× 5 kernel, ReLU activation
Fourth layer: Single 15× 15 filter, linear activation

HI : True effective channel image (i.e., ground truth)

ĤI : Training image constructed from cross-ambiguity

ĤI,CNN : Output of the CNN network

Enhanced channel estimate

ĥeff,CNN[k, l ]=


ĤI,CNN [k − kmin, l − lmin] ,

kmin ≤ k ≤ kmax, lmin ≤ l ≤ lmax

0, otherwise
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CNN parameters

Parameters Values

Training data SNR (in dB) 15
Training PDR (in dB) 0, 5, 20, 25, 30, 35
Training data size 600000 (100000 per PDR value)

Batch size 64
Number of epochs 50

Learning rate 0.0005
Total trainable CNN parameters 245473

Stride 1
Padding same (input size preserved)

Training methodology: Optimize loss function to minimize NMSE

L(Θ)=
1

Ns

Ns−1∑
i=0


∥∥∥fCNN

(
Θ;ℜ(Ĥ

(i)
I )

)
− ℜ(H

(i)
I )

∥∥∥2

F∥∥∥ℜ(H
(i)
I )

∥∥∥2

F

+

∥∥∥fCNN

(
Θ;ℑ(Ĥ

(i)
I )

)
− ℑ(H

(i)
I )

∥∥∥2

F∥∥∥ℑ(H
(i)
I )

∥∥∥2

F


fCNN(.): CNN function
Θ: Trainable network parameters
||.||F: Frobenius norm

ADAM optimizer with dynamically adjusted learning rate used
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NMSE performance

Almost an order in magnitude
improvement in NMSE with
the CNN-aided estimation
method

NMSE performance better
across all data SNRs, despite
being trained only at 15 dB
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BER performance

U-shaped BER vs PDR curve

low PDR → low pilot SNR → higher NMSE → higher BER

high PDR → high pilot SNR → high interference to data → higher BER

CNN trained at various νmax values, at 5 dB PDR and 15 dB data SNR
→ good performance for different Dopplers
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Summary

Zak-OTFS is a promising waveform for communication and radar sensing

Learning techniques can be exploited for improved transceiver design

Lot of scope of further research

Thank you
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