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Learning in Time-Frequency Domain for Fractional
Delay-Doppler Channel Estimation in OTFS

Sandesh Rao Mattu and A. Chockalingam

Abstract—In this letter, we propose a learning-based approach
for estimation of fractional delay-Doppler (DD) channel in
orthogonal time frequency space (OTFS) systems. A key novelty
in the proposed approach is that learning is done in the time-
frequency (TF) domain for DD domain channel estimation.
Learning in the TF domain is motivated by the fact that the
range of values in the TF channel matrix is favorable for training
as opposed to the large swing of values in the DD channel matrix
which is not favourable for training. A key beneficial outcome of
the proposed approach is its low complexity along with very good
performance. Specifically, it drastically reduces the complexity of
the computation of a constituent DD parameter matrix (CDDPM)
in a state-of-the-art algorithm. Simulation results show that the
proposed TF learning-based algorithm achieves almost the same
performance as that of the state-of-the-art algorithm, while being
drastically less complex making it practically appealing.

Index Terms—OTFS, machine learning, channel estimation,
delay-Doppler domain, time-frequency domain, low-complexity.

I. INTRODUCTION

Orthogonal time frequency space (OTFS), a modulation
scheme that multiplexes information symbols in the delay-
Doppler (DD) domain has been shown to be well suited
for high-Doppler channels [1],[2]. Signal detection and chan-
nel estimation are crucial OTFS receiver functions [2]. A
computationally efficient OTFS signal detector for integer
DD channels assuming perfect channel knowledge has been
proposed in [3], where it is emphasized that fractional DD
channel estimation is an important research topic. Several
traditional techniques and a few machine learning-based tech-
niques have been investigated for the purpose of DD channel
estimation [4]-[11]. Machine-learning techniques implemented
using deep neural networks (DNNs) have been widely used for
realizing various functional blocks in wireless transceivers.
These learning networks have shown robustness along with
complexity advantages [12], [13]. Several early works on DD
channel estimation for OTFS have considered integer delays
and Dopplers in the channel response. More recent works have
considered fractional delays and Dopplers, which are more
practical [7]-[10]. A key issue with the estimation of fractional
DDs is the relatively high complexity compared to that with
the estimation of integer DDs. This letter considers estimation
of fractional DDs in OTFS and proposes a novel machine
learning-based approach that achieves very good performance
at low complexity. A key novelty in the proposed approach is
that learning is carried out in the time-frequency (TF) domain
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for DD domain channel estimation. The rationale behind the
proposed learning in the TF domain is explained as follows.

In [8], the authors have considered the problem of frac-
tional DD channel estimation and proposed an algorithm,
called modified maximum-likelihood estimation (M-MLE) al-
gorithm, which was shown to perform better than the off-grid
sparse Bayesian learning (SBL) based algorithm reported in
[7]. Subsequently, the authors in [9] proposed a DD domain
inter-path interference cancellation (DDIPIC) algorithm which
was shown to perform better than the M-MLE algorithm in
[8]. However, the complexity of the DDIPIC algorithm is
high. A sizable part of this high complexity is due to the
computation of a constituent DD parameter matrix (CDDPM)
in the DDIPIC algorithm. .We propose to learn this matrix
(CDDPM) rather then explicitly computing it with a moti-
vation to reduce complexity. The way we learn this matrix
forms a key novelty in the letter. Specifically, we observed
that a direct learning of the CDDPM in the DD domain is
not effective, which is attributed to the large swing in the
values of the elements of the CDDPM (see Fig. 1a), which is
not favorable for training. On the other hand, the TF domain
matrix corresponding to the CDDPM has a more even spread
of the values of the elements in the TF matrix (see Fig. 1b),
which is more favorable for training using a simple network.
Symplectic finite Fourier transform (SFFT) is applied on the
trained TF matrix to obtain the CDDPM, which is then used
in the signal detection. Simulation results demonstrate that
the proposed TF learning approach achieves almost the same
normalized mean square error (NMSE) and bit error rate
(BER) performance as that of the DDIPIC algorithm in [9], at
a drastically reduced complexity.

II. OTFS SYSTEM MODEL

A total of MN information symbols are multiplexed in
the DD domain to generate the symbol matrix denoted by
ADD ∈ AM×N , where A signifies the modulation alphabet
from which these information symbols are drawn. These
symbols are distributed along the delay and Doppler axes
with spacings of T/M and ∆f/N , respectively, where ∆f
equals 1/T is the subcarrier spacing, B = M∆f is the
bandwidth, and M and N are the number of delay and Doppler
bins, respectively. Through the use of inverse symplectic finite
Fourier transform (ISFFT), the symbols in the DD domain are
transformed into the time-frequency (TF) domain to obtain
ATF ∈ CM×N . ATF is converted into a continuous time
domain signal a(t) using Heisenberg transform. The transmit
signal a(t) passes through a channel comprising of P paths
in the DD domain. Each path is associated with a delay τp
(with 0 < τp < T ) and a Doppler shift νp, which are assumed
to take fractional values. The received signal b(t) is converted
back to DD domain, first by transforming it to TF domain
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(a) DD domain (b) TF domain
Fig. 1. Absolute values of training data in DD and TF domains in dB scale.

using Wigner transform to obtain BTF ∈ CM×N , and then
using symplectic finite Fourier transform (SFFT) to obtain
BDD ∈ CM×N in the DD domain. The transmit and receive
pulses are assumed to be rectangular pulses with a duration
of T and amplitude 1/

√
T . The system input-output relation

can be written in the form [8], [9]

bDD =

P∑
p=1

αpEp(τp, νp)aDD +w, (1)

where w ∈ CMN×1 is the additive noise samples dis-
tributed as i.i.d. CN (0, σ2) and G =

∑P
p=1 αpEp(τp, νp) is

the channel matrix. Additionally, bDD ∈ CMN×1, aDD ∈
AMN×1 are vectorized forms of BDD and ADD, respectively,
i.e., bDD[d

′] = bDD[k
′M + l′] = BDD[l

′, k′], aDD[d] =
aDD[kM + l] = ADD[l, k], l′, l = 0, 1, · · ·M − 1, k′, k =
0, 1, · · · , N − 1, and d′, d = 0, 1, · · · ,MN − 1, and Ep is an
MN ×MN matrix whose entries are given by

Ep[d
′, d] = e−j2πτpνpee′, (2)

where e = 1
N

∑N−1
n=0 e

−j2πn
(

k′−k
N − νp

∆f

)
, e′ =

1
M

∑M−1
m=0 ej2π

m
M (l′−l−M

τp
T )fτp,νp,k,l′(m), and fτp,νp,k,l′(m)

is evaluated using (3) given at the bottom of this page.

III. TF LEARNING BASED DD CHANNEL ESTIMATION

In this section, we present the pilot frame structure, briefly
describe the channel estimation algorithm in [9] for reference,
and then present the proposed learning approach. As in [8],
an exclusive pilot frame, Ap ∈ RM×N , given by

Ap[k, l] =

{√
MNEp, if k = kp, l = lp,

0, otherwise,
(4)

is transmitted for channel estimation, where k = kp, l = lp is
the DD resource element (DDRE) in which the pilot symbol
is transmitted and Ep is the energy of the transmitted time
domain pilot symbol. The received OTFS frame corresponding
to the pilot frame is used to estimate the channel at the receiver.
The estimation algorithm obtains estimates of the three tuple
(τ̂p, ν̂p, α̂p), p = 1, 2, · · · , P ′, where P ′ is the number of
estimated paths. These estimates are used to construct the esti-
mated channel matrix, Ĝ =

∑P ′

p=1 α̂pEp(τ̂p, ν̂p) ∈ CMN×MN

(refer (1)), which is then used for the detection of data frames
that follow the pilot frame.

Channel estimation algorithm: Equation (1) can be written
in an alternate form as [9]

b =

P∑
p=1

r(τp, νp)αp +w = R(τ ,ν)α+w, (5)

where r(τp, νp) = EpaDD ∈ CMN×1, R(τ ,ν) =
[r(τ1, ν1) · · · r(τP , νP )] ∈ CMN×P , α = [α1 · · · αP ]

T ∈
CP×1, and w ∼ CN (0, σ2) ∈ CMN×1. We refer to the matrix
R(τ ,ν) as the constituent DD parameter matrix (CDDPM)
because it captures the effects of delay and Doppler of each
path in the channel on the transmitted OTFS frame. The
maximum-likelihood solution for the three tuple estimation is

(α̂, τ̂ , ν̂) = arg min
α,τ ,ν

∥b−R(τ ,ν)α∥2, (6)

which is an estimation problem in three variables. To reduce
the estimation complexity, α can be solved given (τ ,ν) as

α =
[
RH(τ ,ν)R(τ ,ν)

]−1
RH(τ ,ν)b. (7)

To estimate τ and ν, given α, (6) can be solved to obtain

[τ̂ , ν̂] = arg max
τ ,ν

[
Θ(R)

]
, (8)

where Θ(R)=bHR(τ ,ν)(RH(τ ,ν)R(τ ,ν))−1RH(τ ,ν)b.
Substituting τ = τ̂ and ν = ν̂ in (7), we obtain the estimate
of the channel coefficient α̂.

The algorithm proceeds in a path-wise fashion, i.e., the
delay and Doppler values of pth path (1 ≤ p ≤ Pmax)
are estimated before values of (p + 1)th path values are
estimated. Since the knowledge of the number of paths is
not assumed to be known, a maximum of Pmax paths are
estimated. The estimation of τp and νp for the pth path is
carried out in three steps. First, a coarse estimation (integer
estimation) is carried out to obtain τ ′p, ν

′
p. This is followed

by an iterative fine estimation step, where the fractional
estimation of the delay and Doppler is carried out to obtain
τ̂p, ν̂p. Finally, a refinement step refines the estimates obtained
till the pth path. In each of the steps, the cost function in
(8) is maximized over different search areas as described
below. The algorithm begins with initializing R(τ ,ν) =
[r(τ1, ν1) r(τ2, ν2) · · · r(τPmax

, νPmax
)] = 0MN×Pmax

.
Coarse estimation: The search area in this step is defined as
G =

{
0

M∆f ,
1

M∆f , · · · ,
L

M∆f

}
×
{
− K

NT , · · · ,
0

NT , · · · ,
K
NT

}
,

where L = ⌈τmaxM∆f⌉, K = ⌈νmaxNT ⌉, τmax and νmax

denote the maximum delay and Doppler, respectively, and
× denotes Cartesian product of two sets. For estimating the
parameters for the pth path, r(τp, νp) is computed for all
(τp, νp) in G and the coarse estimates are obtained from (8)
by maximizing the cost function over the search area.
Iterative fine estimation: Following the coarse estimation step,

fτp,νp,k,l′ (m)=

M−1−m∑
s=−m

ej2π
sl′
M

[(
1−

τp

T

)
e
jπ

(
1+

τp
T

)(
νp
∆f

−s
)

sinc
((

1−
τp

T

)(
νp

∆f
−s

))
+e−j2π k

N

( τp

T

)
e

jπτp
T

(
νp
∆f

−s
)

sinc
(( τp

T

)(
νp

∆f
−s

))]
.

(3)
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Fig. 2. Proposed TF learning network architecture for learning R(τ ,ν).

the search area is now defined around the optimal coarse
value (for s = 1) or the fine estimate obtained in the
previous iteration of the fine estimation step (for s > 1)
given by F (s) =

{
w

(s)
τ Γ + τ̂ (s)

}
⊗

{
w

(s)
ν Λ + ν̂(s)

}
, where

s is the iteration number in the fine estimation step, w(s)
τ =

1
M∆fms−1

τ
and w

(s)
ν = 1

NTns−1
ν

are the resolution along
Doppler and delay, respectively, Γ =

{
0, · · · , ⌊mτ

2 ⌋
}

for
τ̂s = 0 and Γ =

{
−⌊mτ

2 ⌋, · · · , 0, · · · , ⌊mτ

2 ⌋
}

for τ̂s > 0,
and Λ =

{
−⌊nν

2 ⌋, · · · , 0, · · · , ⌊nν

2 ⌋
}

. For s = 1, τ̂ (1) and
ν̂(1) are initialized to the coarse estimates obtained earlier.
A similar procedure as in coarse estimation step is followed
using F (s) as the search area for obtaining the first fine
estimate (τ̂ (2), ν̂(2)), following which s in incremented by
1. For s > 1, the search area is centered over the newly
obtained fine estimate with finer resolution. This is carried
out until a maximum number of iterations (smax) is reached
or the stopping criterion given by

(
|τ̂ (s+1) − τ̂ (s)| < ϵτ and

|ν̂(s+1) − ν̂(s)| < ϵν
)

is met.
Refinement step: To further improve the accuracy of the esti-
mates, the refinement of the estimated parameters are carried
out. After the tth path estimation, with 1 < t < Pmax, before
estimation of the (t+1)th path, the refinement of all the paths
till t are carried out. For refining the zth path (1 < z < t),
all the t columns in R are filled except the zth column. Next,
coarse and iterative fine estimation are carried for the zth path.
After refinement of all the paths, the algorithm proceeds to
estimate the parameters of the (t+ 1)th path.
Stopping criterion: After estimating t paths, the matrix
R(τ̂ , ν̂) is obtained and α̂ is obtained from (7). If ∥E(t) −
E(t−1)∥2 < ϵ, where E(t) = b−R(τ̂ , ν̂)α̂ then the algorithm
stops. If the criterion is not met until t = Pmax, then the
algorithm is terminated at t = Pmax.

A. Proposed TF learning based approach using DNN
In the above channel estimation algorithm, all the coarse

estimation, fine estimation, and refinement steps require mul-
tiple computations of the cost function in (8) which requires
generation of the CDDPM, R. Computing the columns of R,
r(τi, νi), for each path involves high complexity. Therefore,
to reduce the complexity and for practicality, we propose to
devise and train a network for learning the columns of R.
Specifically, we note that the CDDPM is a function of delay
and Doppler

(
i.e., each column of CDDPM has a one-to-one

relation to (τ, ν)-tuple, as r(τ, ν) = E(τ, ν)aDD

)
, and we use

TABLE I
PARAMETERS OF DNN1/DNN2

Parameter Value
Architecture Fully connected neural network

Input dimension 2
Output dimension MN = 2048

Number of layers (NL) 10
Activation function ReLU for all layers except last layer

and linear activation function for last layer
κ 1000

DNNs to learn this one-to-one relation. It turns out that the
proposed learning/training architecture is able to effectively
learn this relation accurately, offering complexity benefit in
the process. The proposed DNN architecture and training
methodology are presented below.

1) Architecture: Figure 2 shows the architecture of the
proposed approach. The input to the DNN is the matrix
T = [τ̆ ν̆] ∈ RS×2, where S is the cardinality of G (for
coarse estimation) or F (s) (for the sth iteration of the fine
estimation) and τ̆ = κτ/τmax, ν̆ = κν/νmax. The division
by τmax (νmax) is carried out to normalize the values of
delay (Doppler) between 0 and 1 (-1 and 1)1. Further, the
multiplication by κ is done to magnify small changes in delay
and Doppler values in the training data. The vectors τ and
ν are obtained from the search area G or F (s). This matrix
is passed through two networks, DNN1 and DNN2. DNN1
outputs the real part, [or1 · · · orMN

] ∈ RS×MN , while DNN2
outputs the imaginary part, [oi1 · · · oiMN

] ∈ RS×MN . The
real and imaginary parts are combined and reshaped to obtain
RTF

col ∈ RS×M×N . Each M × N matrix in RTF
col is then

converted to DD domain from TF domain2 using SFFT and
vectorized to obtain an MN -length vector. These vectors form
the rows of Rcol ∈ CS×MN . The DNN1 and DNN2 are
trained so as to provide r(τ (t),ν(t)) ∈ C1×MN as the tth
row of Rcol for tth row in the input, T(t) = [τ (t) ν(t)].

The architectures of DNN1 and DNN2 are identical and are
comprised of fully connected layers as shown in Fig. 2. The
output dimension is twice the input dimension, i.e., the ith
layer (i = 1, 2, · · · ) of DNN1 (DNN2) has input and output
dimensions 2i and 2(i+1), respectively. The number of layers,
NL, in DNN1 (DNN2) is determined by the choices of M
and N , such that the last layer has input dimension 2NL and
output dimension min(2NL+1,MN), with 2NL < MN and
2NL+1 ≥ MN . For each fully connected layer except the
last layer, a rectified linear unit (ReLU) activation function
is used, and a linear activation function is used for the last
layer to allow the output of DNN1 and DNN2 to span R. The
parameters of DNN1 (DNN2) are listed in Table I.

2) Training methodology: Training data is obtained by gen-
erating (τ, ν) tuples and corresponding r(τ, ν) vectors using
r(τ, ν) = EaDD (see (5)). The vectors rT (τ, ν) ∈ C1×MN are

1The normalization to values between 0 and 1, and -1 and 1 for delay
and Doppler, respectively, are done so that the ranges of both the inputs are
similar, which aids training. Without this normalization, delay would be in
the order of 10−6, while Doppler would be in 103.

2We note that the training is carried out in the TF domain instead of DD
domain. This is done because the ratio of the absolute values of the highest
value to the lowest value in the vector r(τ, ν) in the DD domain is huge
which is detrimental to training. In the TF domain, however, this ratio is
quite reasonable and therefore favorable for training (see Fig. 1).
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TABLE II
HYPER-PARAMETERS USED WHILE TRAINING

Hyper-parameter Value
Batch size 40000

Mini batch size 8000
Number of epochs 40000

Learning rate 0.001, divide by 2 every 4000 epochs
Number of training samples 325000

Fig. 3. NMSE performance comparison between training carried out in DD
domain and TF domain.

reshaped into matrices of size M × N and converted to TF
domain using ISFFT, following which they are converted back
to vectors to obtain rTF(τ, ν) ∈ C1×MN . To train the network,
the tuples are fed as input to the DNN1 and DNN2 to generate
the output. Training is carried out using an Adam optimizer to
minimize the L1 loss function evaluated between the output of
the DNN1 (DNN2) and ℜ{rTF(τ, ν)} (ℑ{rTF(τ, ν)}) values,
where ℜ{·} and ℑ{·}, represent the real part and imaginary
part, respectively. The other hyper parameters used while
training are presented in Table II. We note that this training has
to be carried out offline, only once. Subsequently, the network
weights are frozen. During test phase, DNN1 and DNN2 with
the trained weights are used for both coarse and fine estimation
steps in the estimation algorithm.

IV. RESULTS AND DISCUSSIONS

In this section, we present the results obtained using the pro-
posed low-complexity TF learning based channel estimation
algorithm. The following parameters are considered. M = 64,
N = 32, ∆f = 30 kHz, and fc = 5.1 GHz. Two power delay
profiles (PDPs) are considered. First, as in [8], the channel is
considered to have P = 5 paths with a line of sight (LOS)
path having a Rice factor of 15 dB. The first and second paths
have fixed delays given by 0.667µs, 0.867µs, respectively, and
for the other paths, the delays are uniformly distributed in
(0.867µs, 7µs]. For all the paths, the Dopplers are generated
using the Jake’s Doppler spectrum, i.e., νp = νmaxcos(θp),
with θp ∼ U(−π, π], where U{·} denotes uniform distribution.
As in [8], the LOS path gain is determined by a fixed absolute
squared value, according to the Rice factor. For the remaining
paths, an exponential PDP is considered. Second, the Vehicular
A (VehA) channel model with P = 6 paths defined in [14] is
considered. Further, mτ = nν = 10, ϵτ = 10−10, ϵν = 10−2,
Pmax = 15, smax = 10, and ϵ = 0.01MNσ2.

A. Training in DD domain vs TF domain
The advantage of training the network in TF domain is

demonstrated in the NMSE plots shown in Fig. 3. The DNN1

Fig. 4. NMSE performance comparison between the proposed approach and
DDIPIC [9] and M-MLE [8].

and DNN2 with the same parameters and hyper-parameters are
trained using data i) in DD domain and ii) in TF domain. In
the DD domain, the swing in the values in CDDPM is quite
high (15 dB to -25 dB, as seen in Fig. 1a). In DD domain
training, DNN1/DNN2 are trained to output the learnt CDDPM
directly in the DD domain (without the use of Reshape and
SFFT blocks in Fig. 2). Due to the presence of high and
low values in DD domain training data (i.e., CDDPM), the
weights/biases in the network need to be high (to be able
to output high values) and also low (to be able to output
low values). Learning to output both very high and very low
values leads to poor weight/bias updates, leading to poorly
learnt CDDPM. This remains so even at high pilot SNRs,
because the relative swing in the values remain the same.
This issue is alleviated in the TF domain training, thanks to
the much smaller swing in the TF training data values (0 to
5 dB, as seen in Fig. 1b). This is reflected in Fig. 3, where
the NMSE performance with DD domain training is found to
floor, whereas that with TF domain training does not.

B. NMSE as a function of pilot SNR

Figure 4 shows the NMSE performance comparison be-
tween the proposed approach, the DDIPIC algorithm in [9],
and the M-MLE algorithm in [8]. It is observed that the NMSE
performance of the proposed approach is better than the M-
MLE scheme. For example, an NMSE of 10−3 is attained at
a pilot SNR of 15 dB for M-MLE, whereas it is achieved at
about 10 dB in the proposed approach. Also, the performance
of the proposed approach is similar to that of DDIPIC.

C. BER as a function of SNR

For computing the BER, we assume that the channel re-
mains constant for two OTFS frame duration. The first frame
is the pilot frame given in (4), which is used for channel
estimation, and the second frame is an OTFS frame with
data symbols drawn from a constellation, detected using the
estimated channel. Figures 5 and 6 show the BER performance
of the proposed approach as a function of SNR using 64-QAM
and minimum mean square error (MMSE) detection for P = 5
with pilot SNR 10 dB and P = 6 with pilot SNR 15 dB,
respectively. Additionally, the performances of DDIPIC and
M-MLE algorithms are also presented. Perfect channel state
information (CSI) performance is also added as a benchmark.
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Fig. 5. BER performance comparison between the proposed approach,
DDIPIC [9], M-MLE [8], and perfect CSI.

Fig. 6. BER performance comparison between the proposed approach,
DDIPIC [9], M-MLE [8], and perfect CSI for VehA channel model.

It is observed that for both the considered channel models,
the performance of M-MLE scheme is inferior to both the
proposed approach as well as the DDIPIC scheme, owing to
the inferior NMSE performance. Also, the proposed approach
performs very close to the DDIPIC algorithm3, which is in turn
close to the perfect CSI performance. For example, in Fig. 5,
for a BER of 10−3, the proposed approach has an advantage of
about 2.5 dB, while the DDIPIC algorithm has an advantage
of less than a dB when compared with the proposed algorithm.

D. Complexity comparison
In this subsection, we compare the complexity of gener-

ating r(τ, ν), which are columns of the R matrix, using the
following approaches. The first method is the brute force com-
putation using the equivalence r(τ, ν) = EaDD. In the second
method, we compute this equivalence in TF domain to simplify
calculations, i.e., aDD is converted to aTF using ISFFT and
rTF is obtained using an analytical input-output relation which
requires much less computational complexity, followed by rTF

to r(τ, ν) conversion using SFFT. The third method is from
[10], which gives a low-complexity method for generation of
the matrix G. Here, we computed the (kpM+ lp)th column of
G using the method in [10] by substituting P = α = 1, which
gives r(τ, ν). The fourth method is the proposed TF learning

3The performance of the proposed approach is slightly inferior compared to
that of DDIPIC in Figs. 4, 5, 6. This is because the DDIPIC uses exact com-
putation of the CDDPM, whereas the proposed approach learns the CDDPM,
which is a close approximation of the exact CDDPM. This difference between
the exact and learnt CDDPM translates to a slight performance degradation.

TABLE III
RUN TIME COMPLEXITIES OF COMPUTING r(τ, ν)

Method Description Average time (in sec)
1 Brute force 60
2 TF domain processing 1
3 Method in [10] 10
4 TF learning (Prop.) 0.1

method, where the RTF
col learnt in TF domain is converted to

DD domain through SFFT to obtain r(τ, ν). We obtained the
run time complexity of computing r(τ, ν) of all the methods
on the same machine for fair comparison (see Table III). It
is seen that the naive brute force way of computing r(τ, ν)
requires 60 s of run time, while the second method requires
just about 1 s. The third method in [10] requires 10 s, which
is not as good as the second method. The run time of the
proposed method is the best amongst all (better by a factor
of at least 10), which is practically very attractive. While the
other three methods give exact values of r(τ, ν) (due to their
computation using analytical expressions in the system model),
the proposed method gives r(τ, ν) through learning. Yet, the
performance achieved by the proposed learning is quite close
to those obtained using exact analytical computations. This
shows that a judicious adoption of learning approach for the
problem at hand can yield efficient solutions. The proposed
learning approach for embedded pilot frames [4] and general
pulse shapes can be carried out as future work.
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