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OTFS: A New Modulation Scheme for High‑Mobility 
Use Cases

1 Introduction
Next-generation wireless networks (including 
5G networks) are expected to see the emergence 
of several new use cases and business models 
driven by the emerging needs of users and system 
operators. This will be enabled by the maturity of 
current technologies and emergence of new tech-
nologies. The variety of applications and the cor-
responding performance requirements in these 
scenarios will be vastly different. Several use case 
families such as broadband access everywhere 
(e.g., pervasive video), extreme real-time com-
munications (e.g., tactile internet with sub-mil-
lisecond latency), ultra-reliable communications 
(e.g., e-health services), massive internet of things 
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(e.g., 500 km/h in bullet trains and 1000 km/h in airplanes). Mobility‑on‑
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be supported. The currently used waveforms fail to perform well in high‑
mobility scenarios where the Doppler shifts witnessed are quite high 
(e.g., several kHz of Doppler). Orthogonal time–frequency space (OTFS) 
is a recently proposed radio access technology waveform suited very 
well for high‑mobility environments. It is a two‑dimensional modulation 
scheme in which information symbols are multiplexed in the delay–Dop‑
pler domain. We present an overview of delay–Doppler representation 
of wireless channels and introduce OTFS modulation along with OTFS 
basis functions. We illustrate the slow variability and sparse nature of the 
delay–Doppler channel using an urban multi‑lane scenario. Focusing on 
MIMO‑OTFS systems, we present signal detection and channel estima‑
tion schemes and their performance. MIMO‑OTFS is shown to achieve 
significantly better performance compared to MIMO‑OFDM in high‑Dop‑
pler environments operating in 4 GHz and 28 GHz frequency bands.
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(e.g., sensor networks, smart wearables), and high 
mobility (e.g., high-speed trains, airplanes) are 
being envisaged1. In particular, the high-mobility 
use case family is technologically challenging. 
Mobility requirements are expressed in terms of 
relative speed between the user and the network 
edge at which consistent user experience must be 
ensured. For example, in-vehicle mobile broad-
band service requires a mobility support of up to 
500 km/h for bullet trains and 1000 km/h for air-
planes. Wireless channels in such high-mobility 
scenarios are doubly selective, where multipath 
effects result in inter-symbol interference (due to 
frequency selectivity) and Doppler shifts (due to 
time selectivity). High Doppler shifts make the 
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channel highly time selective2. The currently used 
waveforms fail to perform well in high-mobility 
scenarios where the Doppler shifts encoun-
tered are high (e.g., several kHz of Doppler). For 
example, orthogonal frequency division multi-
plexing (OFDM)-based systems, while resilient 
to inter-symbol interference (ISI) 3, suffer from 
performance degradation due to inter-carrier 
interference (ICI) caused by high Doppler shifts 4. 
Pulse shaping is one approach to jointly mitigate 
ISI and ICI in OFDM systems 5–7. This approach 
uses time–frequency domain and optimal pulse 
shapes for the waveform design. However, pulse 
shaping is not very effective in handling time-
selectivity in high-mobility channels. Another 
approach in the literature makes use of canonical 
decomposition of the received signal into delay 
and Doppler shifted versions of a basis signal, 
and proposes a delay–Doppler RAKE receiver 
that offers joint multipath-Doppler diversity 8. 
Also, time-selective signaling schemes with over-
lapping symbols can provide better performance 
despite ISI, if properly designed. Such schemes 
that spread the information over time have been 
studied in the context of CDMA 9, 10. The above 
approaches differ from OTFS modulation in 
that OTFS is designed in delay–Doppler domain 
rather than in time–frequency domain. OTFS 
uses delay–Doppler domain for channel repre-
sentation as well as multiplexing of information 
symbols. This difference between OTFS and the 
approach in 8 has been pointed out in 13.

Orthogonal time–frequency space (OTFS) 
modulation, proposed by Hadani et al. in 
WCNC’2017 11, is a multiplexing scheme suited 
well for doubly-selective channels. This two-
dimensional (2D) modulation scheme uses an 
approach where multiplexing of information 
symbols happens in the delay–Doppler domain 
11–14. This is different from conventional modu-
lation approaches (e.g., OFDM), where multi-
plexing is done in the time–frequency domain. 
OTFS basis functions (waveforms) have strong 
resilience to delay–Doppler shifts imparted by 
the channel 12. OTFS has been shown to achieve 
significant performance gains compared to 
OFDM in high-Doppler channels with vehicular 
speeds of 500 km/h in 4 GHz band and 40 km/h 
in 28 GHz band 11, 15, 16. In the delay–Doppler 
domain (signaling domain for OTFS), the basis 
functions for OTFS are 2D localized pulses. The 
information symbols are multiplexed using 
these 2D pulses (basis functions). The idea is to 
use a transformation that relates the informa-
tion symbols and the wireless channel in the 
delay–Doppler domain. Also, when viewed in 

the delay–Doppler domain, the doubly selec-
tive channel is sparse and slowly varying. OTFS 
modulation can be implemented using the 
existing multicarrier modulation schemes (such 
as OFDM) using additional pre- and post-pro-
cessing 2D transforms.

Several recent works on OTFS have emerged 
in the literature recognizing the suitability of 
OTFS waveform for next-generation wireless 
systems including mmWave communication sys-
tems 15–36. These works have focused on vector-
ized input–output relation in OTFS, schemes 
for equalization/detection and channel estima-
tion, diversity order achieved by OTFS, peak-to-
average power ratio (PAPR) characteristics, pulse 
shaping, effect of oscillator phase noise, exploi-
tation of the effective channel structure for low-
complexity linear detection, space-time coded 
OTFS, multiple access using OTFS, and relation 
between OTFS and generalized frequency divi-
sion multiplexing (GFDM). In this paper, we 
present an overview of delay–Doppler represen-
tation of wireless channels and introduce OTFS 
modulation along with OTFS basis functions. We 
illustrate the slow variability and sparse nature of 
the delay–Doppler channel using an urban multi-
lane scenario. Focusing on MIMO-OTFS systems 
26, we present signal detection and channel esti-
mation schemes and their performance. MIMO-
OTFS is shown to achieve significantly better 
performance compared to MIMO-OFDM in 
high-Doppler environments operating in 4 GHz 
and 28 GHz frequency bands. For example, in a 
2× 2 MIMO-OTFS system, a bit error rate (BER) 
of 10−5 is achieved at a signal-to-noise ratio 
(SNR) of 14 dB for a Doppler of 1850 Hz (500 
km/h speed at 4 GHz), whereas the performance 
of MIMO-OFDM in the same system floors at a 
BER of 0.02. A similar performance advantage of 
MIMO-OTFS over MIMO-OFDM is witnessed in 
mmWave frequency band (e.g., 28 GHz) as well.

The rest of the paper is organized as follows. 
The delay–Doppler domain, its characteristics, 
and its connection to OTFS modulation are pre-
sented in Sect. 2. The OTFS modulation is pre-
sented in Sect. 3. The MIMO-OTFS system model 
and a vectorized formulation for its input–output 
relation are presented in Sect. 4. MIMO-OTFS 
signal detection using message passing algorithm 
and the BER performance are presented in Sect. 5. 
The delay–Doppler channel estimation scheme 
and the resulting performance are presented in 
Sect. 6. Conclusions are presented in Sect. 7.
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2  The Delay–Doppler Domain and OTFS 
Modulation

In this section, we discuss the delay–Doppler rep-
resentation of wireless channels and its connec-
tion to OTFS modulation. We first illustrate the 
sparsity and slow variability of the delay–Doppler 
representation of wireless channels and then dis-
cuss its connections to OTFS modulation.

2.1  Delay–Doppler Representation 
of Wireless Channels

Different representations can be used for mode-
ling the impulse response of a linear time-varying 
multipath channel depending upon the param-
eters (independent variables) chosen. Denoting 
time, frequency, delay, and Doppler variables with 
t, f, ν , and τ , respectively, the impulse response of a 
time-varying channel can be expressed as a func-
tion of time–frequency H(t, f), time–delay h(t, τ ) , 
and delay–Doppler h(τ , ν) . In the time–frequency 
(i.e., H(t, f)) and time–delay (i.e., h(t, τ ) ) repre-
sentations of the channel, channel coefficients 
vary with time at a rate ( ∝ 1/coherence time ) 
which depends on the mobility and the operat-
ing frequency. This causes the channel to change 
rapidly, rendering channel estimation difficult. 
A more compact and equivalent representa-
tion of the channel is the delay–Doppler domain 
impulse response h(τ , ν) 11, 14. The channel coef-
ficients (taps) in this representation correspond 
to a group of reflectors with a specific delay value 
depending on reflectors’ relative distance and 
Doppler value depending on reflectors’ relative 
velocity with the transmitter and receiver. The 

velocity and the distance remain roughly constant 
for at least a few milliseconds. Hence, the chan-
nel in the delay–Doppler domain appears time 
invariant for a longer observation duration as 
compared to that in the time–frequency repre-
sentation 14. Besides time invariance, the delay–
Doppler representation of the channel impulse 
response results in a sparse representation of the 
time-varying channel, thus requiring only fewer 
channel parameters to be estimated. The slow 
variability and sparse nature of the delay–Dop-
pler channel can be visualized in Figs. 1 and 2.

Figure 1 shows an example of a scenario 
encountered in urban multi-lanes. In the fig-
ure, the transmitter mounted on top of the bus 
bay transmits a signal which is intended to be 
received by one of the moving cars (blue car in 
the figure). The transmitted signal gets reflected 
by multiple mobile reflectors (other cars) and 
reaches the receiver. For the sake of illustration, 
we have considered four paths corresponding to 
four reflectors. The paths corresponding to differ-
ent reflectors are indicated with different colors. 
The impulse response of the wireless channel in 
this scenario is illustrated in both delay–Doppler 
domain as well as time–frequency domain in the 
same figure at time t = t0 and t = t0 +� . From 
the figure, it can be seen that the channel repre-
sentation in the delay–Doppler domain is very 
sparse compared to that in time–frequency rep-
resentation. Also, since the channel coefficients in 
the delay–Doppler representation correspond to 
a group of reflectors with a particular delay and 
Doppler shift, we see four non-zero channel coef-
ficients corresponding to the four reflectors in 

Figure 1: Example of a wireless channel in an urban multi‑lane scenario illustrating the sparsity and slow 
variability of the channel in the delay–Doppler representation.
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the figure. This illustrates that the delay–Doppler 
representation of the channel impulse response is 
sparse and captures the geometry of the wireless 
environment. Figure 1 also illustrates the channel 
at time t = t0 +� , in which one of the reflectors 
(green car which is circled) has decelerated. Due 
to the deceleration (decrease in the speed) of one 
of the reflectors, the coefficient corresponding to 
this reflector now falls in a different bin on the 
Doppler axis (yellow bar) in the delay–Doppler 
grid, whereas other coefficients remain in their 
bins at time t0 . However, the time–frequency rep-
resentation of the channel shows significant vari-
ation at times t0 and t0 +� . This illustrates the 
slow variability of the channel in the delay–Dop-
pler representation compared to time–frequency 
representation.

Figure 2 shows the squared magnitude of the 
impulse response of Jakes channel model with 
maximum Doppler of 300 Hz 2 with 25 delay taps 
and uniform power delay profile; (a) in time–fre-
quency domain, (b) in time–delay domain which 
is related by Fourier transform with the time–
frequency domain along the delay axis, and (c) 
in delay–Doppler domain which is related to the 
time–frequency domain by a transform called 
2D symplectic Fourier transform 14. As observed 
from Fig. 2, the impulse response is spread in the 
time–frequency and time–delay representations, 
whereas it is peaky (localized) in a few delay–
Doppler bins in the delay–Doppler representa-
tion, i.e., the delay–Doppler impulse response is 
more sparse. The received signal y(t) in the delay–
Doppler representation is the sum of reflected 
copies of the transmitted signal x(t), which are 
time delayed ( τ ) and frequency shifted(ν ) by the 

reflectors. Thus, the channel-symbol coupling/
interaction in this domain is given by the follow-
ing double integral:

2.2  OTFS: Modulation in the Delay–
Doppler Domain

Fundamentally, a signal can be represented either 
as a superposition of delta functions (called the 
temporal/time representation) or as a superpo-
sition of complex exponential functions (called 
the frequency representation). These two rep-
resentations are one-dimensional (1D) and are 
interchangeable through Fourier transform. 
Apart from the time and frequency domain rep-
resentations, a signal can also be represented as 
a quasi-periodic function of delay and Doppler 
12. The delay–Doppler signal representation is 
a two-dimensional (2D) representation which 
can be converted to the time and frequency rep-
resentations through the Zak transforms Zt and 
Zf  , respectively. The signals in the delay–Doppler 
domain can be viewed as functions φ(τ , ν) on a 
2D delay–Doppler plane whose points are param-
eterized by τ and ν . This representation is a quasi-
periodic representation and has an associated 
delay period τr and a Doppler period νr , such that 
τrνr = 1 . The delay–Doppler representation is 
related to time and frequency representations by 
Zak transforms Zt and Zf  , respectively, given by 12

(1)

y(t) =

∫

ν

∫

τ

h(τ , ν)x(t − τ )ej2πν(t−τ)dτdν.

Figure 2: Squared magnitude of the impulse response of a 300 Hz Jakes Doppler channel model with 25 
uniform power delay profile taps in a time–frequency domain, b time–delay domain, and c Doppler–delay 
domain.



319

OTFS: A New Modulation Scheme for High-Mobility Use Cases

J. Indian Inst. Sci. | VOL 100:2 | 315–336 April 2020 | journal.iisc.ernet.in 1 3

Quasi-periodic signals are periodic up to a mul-
tiplicative phase, i.e., φ(τ + nτr , ν +mνr) =

e
j2π(nντr−mτνr )φ(τ , ν). It is noted that the quasi-

periodicity property is necessary to recover 
the 2D function φ(τ , ν) uniquely from its 1D 
projection Zt(φ) or Zf (φ) . Without it, a one-
dimensional signal will admit infinitely many 
delay–Doppler representations 12. The delay–
Doppler signal representation is not unique 
because τr and νr can take any value such that 
τrνr = 1 . When the limit τr tends to infinity and 
νr tends to zero, the delay–Doppler representation 
becomes the time representation. Similarly, when 
the limit νr tends to infinity and τr tends to zero, 
the delay–Doppler representation becomes the 
frequency representation of the signal.

A fundamental feature of OTFS modulation 
that distinguishes it from other time–frequency 
(TF) modulation schemes is the use of delay–
Doppler domain for multiplexing the modula-
tion symbols. The symbols in the delay–Doppler 
domain can be converted into temporal domain 
for transmission using the Zak transform Zt . The 
transformation that uses a single Zak transform 
to convert a signal in delay–Doppler domain to a 
signal in time domain can also be carried out in 
two steps. That is, the signal is first transformed 
to time–frequency domain using a 2D inverse 
symplectic finite Fourier transform, and then 
the resulting time–frequency signal is converted 
to a temporal representation using a Heisenberg 
transform. The two-step implementation used 
to transform the symbols in the delay–Dop-
pler domain to time domain signal facilitates 
the implementation of OTFS modulation using 
simple pre- and post-processing steps over any 

(2)Zt(φ) =

∫ νr

0
ej2π tνφ(t, ν)dν,

(3)Zf (φ) =

∫ τr

0
e−j2πτ f φ(τ , f )dτ .

multicarrier modulation scheme such as OFDM. 
The series of transformations involved in OTFS 
modulation and demodulation transforms a rap-
idly time-varying multipath channel into a slowly 
varying delay–Doppler domain channel, which is 
also sparse. The sparsity in the effective channel 
in OTFS modulation can be exploited to estimate 
only a few channel parameters compared to that 
in the time–frequency domain. Also, since the 
channel in the delay–Doppler domain is slowly 
varying, the channel can be estimated less fre-
quently, which can reduce the overhead on chan-
nel estimation in a rapidly time-varying channel. 
A detailed description of the OTFS modulation 
scheme architected using pre- and post-process-
ing operations over a multicarrier modulation is 
presented in Sect. 3.2.

3  OTFS Modulation
OTFS modulation can be implemented using pre- 
and post-processing to existing OFDM-based 
multicarrier modulation schemes. This is done 
using as a series of 2D transformations at both 
the transmitter and receiver. Figure 3 shows the 
block diagram of the OTFS modulation scheme. 
The inner box in the diagram shows the familiar 
multicarrier modulation in the time–frequency 
domain,1 and the outer box with a pre-processor 
and a post-processor block implements the OTFS 
modulation in the delay–Doppler domain. The 
information symbols x[k, l] (e.g., QAM symbols) 
residing in the delay–Doppler domain are first 
transformed to the familiar time–frequency (TF) 
domain signal X[n, m] using the 2D inverse sym-
plectic finite Fourier transform (ISFFT) and a 2D 
windowing is applied. The Heisenberg transform 

Figure 3: OTFS modulation scheme.

1 Multicarrier modulation systems such as OFDM or filtered 
OFDM can constitute the inner core of OTFS modulation. 
For example, recently, it has been shown in 25 that OTFS can 
be implemented using a GFDM framework and that OTFS 
achieves better performance compared to GFDM.
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is then applied to the TF signal X[n, m] to trans-
form to the temporal domain signal x(t) for trans-
mission. The received signal y(t) at the receiver is 
transformed back to a TF signal Y[n, m] through 
inverse Heisenberg transform (also called Wigner 
transform). Y[n, m] thus obtained is transformed 
to the delay–Doppler domain signal y[k, l] using 
a 2D receive windowing and the symplectic finite 
Fourier transform (SFFT), for demodulation.

In the following subsections, we describe the 
signal models in TF modulation and OTFS mod-
ulation. Let T denote the TF modulation symbol 
time and �f  denote the subcarrier spacing. Let 
x[k, l], k = 0, . . . ,N − 1 , l = 0, . . . ,M − 1 denote 
the information symbols transmitted in a given 
packet burst. Let Wtx[n,m] and Wrx[n,m] denote 
the transmit and receive windows, respectively.

3.1  Time–Frequency Modulation
•   Let ϕtx(t) and ϕrx(t) denote the transmit and 

receive pulses, respectively. We assume ϕtx(t) , 
ϕrx(t) to be ideal pulses satisfying the bi-
orthogonality property with respect to trans-
lations by integer multiples of time T and fre-
quency �f  , i.e., 

•  

 The bi-orthogonality property of the pulse 
shapes eliminates the cross-symbol interfer-
ence at the receiver. Although ideal pulses 
are not practically realizable, they can be 
approximated by the pulses whose support is 
highly concentrated in time and frequency 18, 
given the constraint imposed by the uncer-
tainty principle.2 The signal in the TF domain 
X[n, m], n = 0, . . . ,N − 1 , m = 0, . . . ,M − 1 
is transmitted in a given packet burst.

•   TF modulation/Heisenberg transform The sig-
nal in the time–frequency domain X[n, m] is 
transformed to the time domain signal x(t) 
using the Heisenberg transform given by 

•  

•   TF demodulation/Wigner transform At the 
receiver, the time domain signal is trans-

(4)

∫
e−j2πm�f (t−nT )ϕ∗

rx(t − nT )ϕtx(t)dt = δ(m)δ(n).

(5)

x(t) =

N−1∑

n=0

M−1∑

m=0

X[n,m]ϕtx(t − nT )ej2πm�f (t−nT ).

formed back to the TF domain using Wigner 
transform given by 

•  

where Aϕrx ,y(τ , ν) is the cross ambiguity 
function 

and y(t) is related to x(t) by (1). The relation 
between Y[n, m] and X[n, m] for TF modulation 
can be derived as 11

where V[n, m] is the additive white Gaussian 
noise and H[n, m] is given by

3.2  OTFS Modulation
•   When OTFS modulation is implemented as 

pre- and post-processing to TF modulation, 
the delay-period τr and Doppler period νr are 
chosen as 

•  

•   Let Xp[n,m] be the periodized version of 
X[n, m] with period (N, M). The SFFT of 
Xp[n,m] is given by 

•  

 and the ISFFT is Xp[n,m] = SFFT−1(xp[k, l]) , 
given by 

•   Information symbols xp[k , l] , 
k = 0, . . . ,N − 1 , l = 0, . . . ,M − 1 , are trans-
mitted in a given packet burst.

•   OTFS transform/pre-processing The informa-
tion symbols in the delay–Doppler domain 
are mapped to TF domain symbols X[n, m] as 

•  

 where Wtx[n,m] is the square summable 
transmit windowing function.

(6)Y [n,m] = Aϕrx ,y(τ , ν)|τ=nT ,ν=m�f ,

(7)

Aϕrx ,y(τ , ν) =

∫
ϕ∗
rx(t − τ )y(t)e−j2πν(t−τ)dt,

(8)Y [n,m] = H[n,m]X[n,m] + V [n,m],

(9)

H [n,m] =

∫

τ

∫

ν

h(τ , ν)ej2πνnT e−j2π(ν+m�f )τdνdτ .

(τr , νr) =

(
1

�f
,
1

T

)
.

(10)

xp[k , l] =

N−1∑

n=0

M−1∑

m=0

Xp[n,m]e−j2π( nkN −ml
M ),

(11)

Xp[n,m] =
1

MN

N−1∑

k=0

M−1∑

l=0

xp[k , l]e
j2π( nkN −ml

M ).

(12)
X[n,m] = Wtx[n,m]SFFT−1(xp[k, l]),2 Design and performance of OTFS systems using practical 

pulse shapes have been discussed in 24. It has been shown in 
24 that the OTFS modulation with practical pulse shapes like 
rectangular pulse and prolate spheroidal waveform shows bet-
ter error performance compared to the conventional OFDM.
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•   X[n, m] thus obtained is in the TF domain and 
it is TF modulated as described in the previous 
subsection, and Y[n, m] is obtained by (6).

•   OTFS demodulation/post-processing A receive 
window Wrx[n,m] is applied to Y[n, m] and 
periodized to obtain Yp[n,m] which has the 
period (N, M), as 

•  

 The symplectic finite Fourier transform is 
then applied to Yp[n,m] to convert it from 
TF domain back to delay–Doppler domain 
yp[k , l] , as 

 The output sequence of demodulated sym-
bols is obtained as y[k , l] = yp[k , l] for 
k = 0, 1, . . . ,N − 1 and l = 0, 1, . . . ,M − 1.

The input–output relation in OTFS modulation 
can be derived as 11

where v[k, l] is the additive white Gaussian noise 
and

where hw(ν′, τ ′) is the circular convolution of 
the channel response with a windowing function 
w(τ , ν) , given by

where w(τ , ν) is given by

Note that the window w(τ , ν) in (17) is a 2D Dir-
ichlet kernel introduced due to the finite trans-
mission bandwidth and finite transmission time 
interval of the signal. Any function convolved 
with a Dirichlet kernel (as in 17) is a Fourier series 
(2D in this case) approximation to the function 
itself. The error in approximation depends on the 

(13)

YW [n,m] =Wrx[n,m]Y [n,m],

Yp[n,m] =

∞∑

k ,l=−∞

YW [n− kN ,m− lM].

(14)yp[k , l] = SFFT(Yp[n,m]).

(15)

y[k , l] =
1

MN

M−1∑

m=0

N−1∑

n=0

x[n,m]

hw

(
k − n

NT
,
l −m

M�f

)
+ v[k , l],

(16)

hw

(
k − n

NT
,
l −m

M�f

)
= hw(ν

′, τ ′)|
ν′= k−n

NT ,τ ′= l−m
M�f

,

(17)

hw(ν
′, τ ′) =

∫

ν

∫

τ

h(τ , ν)w(ν′ − ν, τ ′ − τ )dτdν,

(18)

w(τ , ν) =

M−1∑

m=0

N−1∑

n=0

Wtx[n,m]

Wrx[n,m]e−j2π(νnT−τm�f )
.

support of the window function. Thus, the trans-
mit and the receive window functions used allow 
the finite 2D summation approximation of the 
input–output relation in OTFS modulation.

3.2.1  OTFS Basis Functions
The OTFS basis functions in the delay–Dop-
pler domain, time–frequency domain, and time 
domain for different delay (l) and Doppler (k) 
indices are shown in Figs. 4, 5 and 6. For this illus-
tration of basis functions, we have chosen a frame 
size of M = 32 , N = 32 , and a subcarrier spacing 
of �f = 15 kHz. We see that, in the TF domain, 
the basis function spans the entire time–frequency 
plane. This resembles spread spectrum. The time 
domain waveform is a train of pulses modulated 
by a tone 12. Locally, the waveform resembles TDM 
pulse (localized pulse in time domain), and glob-
ally, the shape of the train resembles a tone or 
FDM pulse (localized pulse in frequency domain).

Figure 7 shows the OTFS basis functions (car-
rier waveforms) in the time domain for Doppler 
and delay indices (k , l) = (0, 0) , (k , l) = (0, 15) , 
and (k , l) = (2, 0) . We see that, as the Doppler 
index (k) changes, the frequency of the pulse 
train changes (as in FDM). Similarly, we also note 
that, as the delay index (l) changes, the position 
of the pulses gets shifted in time (as in TDM). 
This illustrates that the OTFS waveform is a gen-
eralization of TDM and FDM.

3.3  Vectorized Formulation of the Input–
Output Relation

Consider a channel with P signal propaga-
tion paths (taps). Let the ith path be associated 
with a delay value τi , a Doppler value νi , and a 
fade coefficient hi . The delay–Doppler channel 
impulse response can be written as

Assume that the transmit and receive windows 
used in modulation, Wtx[n,m] and Wrx[n,m] , are 
rectangular. Define τi =

αi
M�f  and νi =

βi
NT  , where 

αi and βi are integers denoting the indices of the 
delay tap (with delay τi ) and Doppler tap (with 
Doppler value νi ). In practice, although the delay 
and Doppler values are not exactly integer multi-
ples of the taps, they can be well approximated by a 
few delay–Doppler taps in the discrete domain 40. 
With the above assumptions, the input–output 
relation for the channel in (19) can be derived as 18

(19)h(τ , ν) =

P∑

i=1

hiδ(τ − τi)δ(ν − νi).
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where

(20)

y[k , l] =

P∑

i=1

h′ix[(k − βi)N , (l − αi)M] + v[k , l],

It is assumed that the his are i.i.d and are distrib-
uted as CN (0, 1/P) , assuming uniform scattering 
profile. Denoting the N ×M channel matrix in 
the delay–Doppler grid by Ĥ , the (k, l)th entry of 
Ĥ , denoted by ĥ(k , l) , is defined as

(21)h′i = hie
−j2πνiτi .

ĥ(k , l) =

{
h′i if k = βi & l = αi for some i ∈ {1, 2, . . . ,P}
0 otherwise.
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Figure 4: OTFS basis functions in delay–Doppler domain, time–frequency domain, and time domain for 
Doppler index k = 0 and delay index l = 0.
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Doppler index k = 2 and delay index l = 0.
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Now, the input–output relation in (20) can be 
vectorized as 18

where xk+Nl = x[k , l] , 
yk+Nl = y[k , l] , vk+Nl = v[k , l] , 
k = 0, . . . ,N − 1, l = 0, . . . ,M − 1 , and 
H ∈ C

MN×MN , whose jth row ( j = k + Nl , 
j = 0, 1, . . . ,MN − 1 ), denoted by H[j] , is given 
by

(22)y = Hx + v,

Note that, due to the modulo operations in 
(20), each row of H in (23) has only P non-zero 
elements.

(23)

H[j] = [ĥ((k − 0)N , (l − 0)M)

ĥ((k − 1)N , (l − 0)M)

. . . ĥ((k − N − 1)N , (l −M − 1)M)].
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Figure 6: OTFS basis functions in delay–Doppler domain, time–frequency domain, and time domain for 
Doppler index k = 2 and delay index l = 2.
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4  MIMO‑OTFS Modulation
Consider a MIMO-OTFS system 26 with nt trans-
mit antennas and nr receive antennas, nt ≥ nr as 
shown in Fig. 8. Information symbols are OTFS 
modulated and sent from each of the nt transmit 
antennas independently. Let the transmit window 
Wtx[n,m] and receive window Wrx[n,m] used in 
OTFS pre- and post-processing be rectangular. 
The channel between pth transmit and qth receive 
antennae is assumed to have P taps as in (19). 
Therefore, the equivalent delay–Doppler channel 
model is given by

p = 1, 2, . . . , nt , q = 1, 2, . . . , nr . Thus, vector-
ized formulation in Sect. 3.3 for SISO-OTFS can 
be extended to MIMO-OTFS systems.

4.1  Vectorized Formulation of the Input–
Output Relation for MIMO‑OTFS

Let the channel matrix between the pth transmit 
antenna and qth receive antenna be denoted by 
Hqp . Let xp be the vector transmitted from the 
pth transmit antenna and yq be the received vec-
tor at the qth receive antenna in an OTFS frame. 
Both are of size NM × 1 . Then we derive a lin-
ear vectorized input–output model for MIMO-
OTFS, as described below:

Define

(24)hqp(τ , ν) =

P∑

i=1

hqpiδ(τ − τi)δ(ν − νi),

(25)

y1 = H11x1 +H12x2 + · · · +H1ntxnt + v1,

y2 = H21x1 +H22x2 + · · · +H2ntxnt + v2,

...
...

ynr = Hnr1x1 +Hnr2x2 + · · · +Hnrntxnt + vnr .

Then (25) can be written as

where xMIMO ∈ C
ntNM×1, yMIMO, vMIMO ∈ C

nrNM×1 , 
HMIMO ∈ C

nrNM×ntNM . Thus due to modulo 
operations, each row of the matrix HMIMO in this 
representation, has only ntP non-zero elements 
and each column has only nrP non-zero elements.

5  Signal Detection for MIMO‑OTFS
We now present an iterative message passing algo-
rithm for MIMO-OTFS signal detection and pre-
sent results for MIMO-OTFS and MIMO-OFDM 
performance comparison in highly time-selective 
multipath fading channels.

5.1  Signal Detection Algorithm 
for MIMO‑OTFS

Denote the set consisting of non-zero positions in 
the bth row and ath column of HMIMO by ζb and 
ζa , respectively. Thus, (26) enables us to model 
the system as a sparse factor graph having ntNM 
variable nodes (elements of xMIMO ) and nrNM 
observation nodes (elements of yMIMO ). Each 
observation node yb in the graph is connected 
to the set of variable nodes {xc, c ∈ ζb} , and each 
variable node xa in the graph is connected to 
the set of observation nodes {yc, c ∈ ζa} . Thus, 

HMIMO =





H11 H12 . . . H1nt

H21 H22 . . . H2nt

.

.

.
.
.
.

. . .
.
.
.

Hnr1 Hnr2 . . . Hnrnt



 ,

xMIMO = [x1
T
, x2

T
, · · · , xnt

T
]
T
,

yMIMO = [y1
T
, y2

T
, · · · , ynr

T
]
T
,

vMIMO = [v1
T
, v2

T
, · · · , vnr

T
]
T
.

(26)yMIMO = HMIMOxMIMO + vMIMO,

Figure 8: MIMO‑OTFS modulation scheme.
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|ζb| = ntP and |ζa| = nrP . For the detection of 
xMIMO in (26), the maximum a posteriori (MAP) 
decision rule is

where A is the modulation alphabet (e.g., QAM) 
used. The exponential complexity of (27) makes 
it infeasible in practice and can’t be used. Instead, 
we can use a reduced complexity symbol by sym-
bol MAP rule for 0 ≤ a ≤ ntNM − 1 for detec-
tion as given below:

The elements of xMIMO has uniform probabil-
ity of occurrence and the elements of yMIMO 
are assumed to be nearly independent for a 
given xa . This assumption is true because of 
the sparsity of HMIMO . Iterative message pass-
ing based algorithm can be used to solve this 
problem as described below. The message that 
is passed from the variable node xa , for each 
a = {0, 1, . . . , ntNM − 1} , to the observation 
node yb for b ∈ ζa , is the probability mass func-
tion (pmf) denoted by pab = {pab(aj)|aj ∈ A} 
of the symbols in the constellation A . Denote 
the element in the ath row and bth column of 
HMIMO by Hab . The message passing algorithm 
is described below. 

1. Inputs yMIMO , HMIMO , Niter : max. number 
of iterations.

2. Initialization Iteration index t = 0 , pmf 
p
(0)
ab = 1/|A| ∀ a ∈ {0, 1, . . . , ntNM − 1} and 

b ∈ ζa.
3. Messages from yb to xa The mean (µ(t)

ba ) and 
variance ((σ (t)

ba )
2) of the interference term Iba 

are passed as messages from yb to xa . Iba can 
be approximated as a Gaussian random vari-
able and is given by 

 The mean and variance of Iba are given by 

(27)

x̂MIMO = argmax
xMIMO∈A

ntNM

Pr (xMIMO|yMIMO,HMIMO),

(28)

x̂a = argmax
aj∈A

Pr (xa = aj|yMIMO,HMIMO)

= argmax
aj∈A

1

|A|
Pr (yMIMO|xa = aj ,HMIMO)

≈ argmax
aj∈A

∏

c∈ζa

Pr (yc|xa = aj ,HMIMO).

(29)Iba =
∑

c∈ζb ,c �=a

xcHb,c + vb.

4. Messages from xa to yb Messages passed from 
variable nodes xa to observation nodes yb 
is the pmf vector p(t+1)

ab  with the elements 
given by 

 where � ∈ (0, 1] is the damping factor for 
improving convergence rate, and 

 where 

5. Stopping criterion Repeat steps 3 & 4 till 
max
a,b,aj

|p
(t+1)
ab (aj)− p

(t)
ab (aj)| < ǫ (where ǫ is a 

small value) or the maximum number of 
iterations, Niter , is reached.

6. Output Output the detected symbol as 

 where 

5.2  Vectorized Formulation of the Input–
Output Relation for MIMO‑OFDM

Performance comparison of MIMO-OTFS 
and MIMO-OFDM can be done by first for-
mulating an input–output vector relation for 
MIMO-OFDM similar to MIMO-OTFS. In this 
section, we develop this formulation in time–fre-
quency domain, which is the signaling domain 
for MIMO-OFDM. Vectorized formulation of 

µ
(t)
ba

= E[Iba] =
�

c∈ζb,c �=a

|A|�

j=1

p
(t)
cb

(aj)ajHb,c ,

(σ
(t)
ba

)2 = Var[Iba] =
�

c ∈ ζb
c �= a




|A|�

j=1

p
(t)
cb

(aj)|aj |
2|Hb,c|

2

−

������

|A|�

j=1

p
(t)
cb

(aj)ajHb,c

������

2


+ σ 2
.

(30)
p
(t+1)
ab = � p

(t)
ab (aj)+ (1−�) p

(t−1)
ab (aj),

(31)

p
(t)
ab ∝

∏

c∈ζa,c �=b

Pr(yc|xa = aj ,HMIMO),

Pr(yc|xa = aj ,HMIMO)

∝ exp

(
−|yc − µ

(t)
ca −Hc,aaj|

2

σ
2(t)
c,a

)
.

(32)

x̂a = argmax
aj∈A

pa(aj), a ∈ 0, 1, 2, . . . , ntNM − 1,

(33)

pa(aj) =
∏

c∈ζa

Pr(yc|xa = aj ,HMIMO).
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MIMO-OFDM can be easily obtained by extend-
ing the results of SISO-OFDM as shown below. 
Consider N consecutive blocks (each of size M) 
to be one OFDM frame, i.e., the transmit vector 
xOFDM ∈ C

NM×1 (This is for a fair comparison 
with OTFS in terms of spectral efficiency). This 
means, iterative message passing algorithm is 
jointly applied to the NM × 1 frame. Consider 
the channel in (19). The time–delay representa-
tion h(τ , t) and the delay–Doppler representation 
h(τ , ν) are related by a Fourier transform along 
the time axis, and is given by

Sample the time axis at t = nTs = n
M�f  . The 

sampled time–delay representation h(τ , n) is 
given by

In each OFDM block, let CP = P − 1 be the cyclic 
prefix (CP) length used and also let L = M + CP . 
Thus, the size of one OFDM frame after CP inser-
tion to each block is NL. Let TCP = [CT

CP IM]
T

 
denote the L×M CP insertion matrix per block, 
where CCP consists of the last CP rows of the 
identity matrix IM . Also, let RCP = [0M×CP IM] 
be the M × L matrix which does the cyclic pre-
fix removal for each block 41. Denote the DFT and 

(34)h(τ , t) =

P∑

i=1

hie
j2πνitδ(τ − τi).

(35)h(τ , n) =

P∑

i=1

hie
j2πνin

M�f δ(τ − τi).

IDFT matrices of size M by WM×M and WH
M×M , 

respectively. The following notations are used:

•   Bcpin = (IN ⊗ TCP) : cyclic prefix insertion 
matrix for N consecutive OFDM blocks.

•   Bcpre = (IN ⊗ RCP) : cyclic prefix removal 
matrix for N consecutive OFDM blocks.

•   D = (IN ⊗W) : DFT matrix for N consecu-
tive OFDM blocks.

•   DH = (IN ⊗WH ) : IDFT matrix for N con-
secutive OFDM blocks.

•   The time–delay domain channel for a given 
OFDM frame can be written as a matrix Htd 
of size NL× NL , using (35).

Thus, the linear input–output vector model for 
SISO-OFDM is given by

where xOFDM, yOFDM, v ∈ C
NM×1 , 

HOFDM ∈ C
NM×NM.

5.2.1  MIMO‑OFDM
In this subsection, we extend the SISO-OFDM 
results derived above to MIMO-OFDM. Denote 
the equivalent channel matrix between pth trans-
mit antenna and qth receive antenna by HOFDMqp . 
Let xOFDMp of size NM × 1 be the transmit vector 
from the pth transmit antenna and yOFDMq of size 
NM × 1 be the received vector at the qth receive 
antenna in a given OFDM frame. Define

and

(36)

yOFDM = DBcpreHtdBcpinD
H

︸ ︷︷ ︸
HOFDM

xOFDM + v

= HOFDMxOFDM + v,

HMIMO−OFDM =





HOFDM11 HOFDM12 . . . HOFDM1nt

HOFDM21 HOFDM22 . . . HOFDM2nt

...
...

. . .
...

HOFDMnr1
HOFDMnr2

. . . HOFDMnrnt




,

xMIMO−OFDM = [xOFDM1
T , xOFDM2

T , · · · , xOFDMnt

T ]
T
,

yMIMO−OFDM = [yOFDM1
T , yOFDM2

T , · · · , yOFDMnr

T ]
T
.
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Thus, the linear vectorized input–output model 
for MIMO-OFDM is given by

where xMIMO−OFDM ∈ C
ntNM×1, yMIMO−OFDM,

vMIMO ∈ C
nrNM×1  , 

HMIMO−OFDM ∈ C
nrNM×ntNM.

(37)
yMIMO−OFDM = HMIMO−OFDMxMIMO−OFDM

+ vMIMO,

5.3  Performance Results and Discussion
In this subsection, the BER performance com-
parison of MIMO-OTFS and MIMO-OFDM in 
high-mobility channel scenarios, is presented. 
The channel knowledge at the receiver is assumed 
to be perfect. Iterative message passing-based 
detection is used for both MIMO-OTFS and 
MIMO-OFDM. The algorithm is run for 30 itera-
tions with an ǫ value 0.01. The channel model in 
(24) is used with the number of taps P = 5 . For 
all the paths the fade coefficients hi are assumed 
to be distributed as CN (0, 1) , i.e., Rayleigh fad-
ing. The channel fade coefficients are simu-
lated as per (21) with the delay–Doppler profile 
{(τi, νi), i = 1, . . . ,P} shown in Table 1. Table 2 
gives all other simulation parameters which were 
used in the simulations. The carrier frequency 
and subcarrier spacing used are 4 GHz and 15 
kHz, respectively, the frame size parameters used 
are M = N = 32 , and the modulation used is 
BPSK.

Figure 9 shows the BER performance of OTFS 
in SISO ( 1× 1 ) and SIMO ( 1× 2 and 1× 3 ) set-
tings, Fig. 10 shows the performance in 2× 2 
and 2× 3 MIMO settings, and Fig. 11 shows the 
performance in SISO and 2× 2 , 3× 3 MIMO 
settings. The maximum considered Doppler of 
1880 Hz corresponds to a speed of 507.6 km/h 
at 4 GHz carrier frequency. This means that, the 
channel is highly time-selective. But, from the 
results we see that MIMO-OTFS BER perfor-
mance is good, even in such scenarios. For exam-
ple, we see in Fig. 9 that, at an SNR of about 8 
dB, the 1× 2 system achieves a BER of about 
10−4 and the 1× 3 system achieves a BER of 

Table 1: Delay–Doppler profile for the channel 
model with P = 5 at 4 GHz carrier frequency.

Path index (i) 1 2 3 4 5

Delay ( τi ) ( µs) 2.08 4.164 6.246 8.328 10.41

Doppler ( νi ) (Hz) 0 470 940 1410 1880

Speed (km/h) 0 126.9 253.8 380.7 507.6

Table 2: System parameters for 4 GHz system.

Parameter Value

Carrier frequency (GHz) 4

Frame size (M, N) (32, 32)

Subcarrier spacing (kHz) 15

Modulation scheme BPSK

MIMO configuration 1× 1 , 1× 2 , 
1× 3 , 2× 3 , 
2× 2 , 3× 3

No. of taps, P 5

Maximum speed (km/h) 507.6
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100

Figure 9: BER performance of OTFS in SISO ( 1× 1 ) and SIMO ( 1× 2 and 1× 3 ) settings.
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3× 10−6 . Observing that the 1× 1 SISO system 
achieves a BER of about 0.01 at this SNR, we see 
that OTFS achieves improved BER performance 
for increased number of receive antennas even in 
high Doppler scenarios. This can also be observed 
in Fig. 10, where a BER of 3× 10−5 is achieved at 
an SNR of about 12 dB in a 2× 2 MIMO system, 
whereas the same BER is achieved at an SNR of 
about 8.8 dB in a 2× 3 MIMO system. Figure. 11 
shows the expected improved performance for 
increasing nt = nr . Thus, with the use of the 
low-complexity message passing detection, we 
see that MIMO-OTFS brings in the advantages 
of linear increase in throughput with number 

of transmit–receive antennas and the resilience 
of OTFS modulation to delay–Doppler shifts in 
doubly selective channels.

Figure 12 shows the BER performance of 2× 2 
MIMO-OTFS with (1) message passing detection, 
(2) minimum mean square error (MMSE) detec-
tion, and (3) zero forcing (ZF) detection. The sys-
tem and channel parameters used are as given in 
Tables 1 and 2. From Fig. 12, it can be observed 
that the performance of MIMO-OTFS with mes-
sage passing detection is superior compared to 
those of MMSE and ZF detectors. For example, 
at an SNR of 12 dB, message passing detection 
achieves a BER of 3× 10−5 , whereas MMSE and 
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Figure 10: BER performance of MIMO‑OTFS in 2× 2 and 2× 3 MIMO systems.
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Figure 11: BER performance of MIMO‑OTFS in 2× 2 and 3× 3 MIMO systems.
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ZF detectors achieve a BER of 0.003 and 0.05, 
respectively.

MIMO-OTFS vs MIMO-OFDM Figure 13 
shows a comparison of BER performance 
between MIMO-OTFS and MIMO-OFDM in a 
2× 2 MIMO system with the message passing-
based detection. For the case of maximum Dop-
pler of 1880 Hz, MIMO-OFDM performance 
degrades due to inter carrier interference (ICI) 

in the time–frequency domain. In fact, the BER 
floors at a value of about 2× 10−2 , whereas 
MIMO-OTFS achieves a BER of 10−5 at an SNR 
value close to 14 dB. This illustrates the robust 
performance of MIMO-OTFS where the sign-
aling is in the delay–Doppler domain and the 
performance superiority of MIMO-OTFS over 
MIMO-OFDM under doubly selective channels.
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Figure 12: BER performance of 2× 2 MIMO‑OTFS system with (1) message passing detection, (2) mini‑
mum mean square error (MMSE) detection, and (3) zero forcing (ZF) detection.
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Figure 13: BER performance comparison between MIMO‑OTFS and MIMO‑OFDM in 2× 2 MIMO system.
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5.4  Performance of MIMO‑OTFS 
with Rectangular Pulse

In this subsection, we consider OTFS modulation 
with rectangular transmit and receive pulses 16, 24. 
Figure 14 shows a BER performance comparison 
between MIMO-OFDM and MIMO-OTFS with 
rectangular pulse shape in a 2× 2 system. Both 
the systems use message passing detector for signal 
detection. The maximum Doppler considered in 
1880 kHz, which corresponds to a speed of 507.6 
km/h at a carrier frequency of 4 GHz. The delay–
Doppler profile used for the simulation is given in 
Table 1. Other parameters used for the simulations 
are given in Table 2. From the figure, we observe 
that MIMO-OTFS shows better BER performance 
compared to MIMO-OFDM even with the use of 
rectangular pulse. For example, at an SNR of 12 
dB, MIMO-OTFS achieves a BER of 3× 10−5 , 
whereas MIMO-OFDM floors at 2× 10−2 . This 
SNR gain shown by OTFS modulation is because 
of the outer pre- and post-processing operations 
involving the 2D ISFFT and SFFT that spread the 
information across the entire time–frequency 
plane, which enables OTFS to extract higher diver-
sity performance in the finite SNR regime.

5.5  Application of MIMO‑OTFS 
to mmWave Communications

In this subsection, we consider mmWave MIMO 
communications in a point-to-point setting and 

compare the BER performance of MIMO-OTFS 
and MIMO-OFDM operating in this setting. 
We consider a carrier frequency of 28 GHz. The 
transmitter consists of a uniform linear array 
(ULA) with nt transmit antennas with an inter-
antenna spacing of dt . Likewise, the receiver 
consists of a ULA with nr receive antennas with 
an inter-antenna spacing of dr . As before, the 
channel model in (24) with P taps is considered. 
The propagation in typical mmWave frequency 
application scenarios is dominated by a line-of-
sight (LOS) component 37. Because of this, the 
magnitude of the first tap in the channel model is 
considered to follow a Rician distribution and the 
magnitudes of the remaining taps are considered 
to follow Rayleigh distribution. Therefore, the 
fading channel gain in the first tap between the 
pth transmit antenna and qth receive antenna can 
be written in the form 37

where hLOS
qp1

 and hNLOS
qp1

 denote the LOS and non-
LOS channel gains, respectively, in the first tap 
between the pth transmit antenna and qth receive 
antenna, and K is the Rician factor, defined as 
the ratio of the powers in the LOS and non-LOS 
components. The LOS gain hLOS

qp1
 is given by 38

(38)

hqp1 =

√
K

K + 1
hLOS
qp1

+

√
1

K + 1
hNLOS
qp1

,
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Figure 14: BER performance comparison between 2× 2 MIMO‑OTFS with rectangular pulse and 2× 2 
MIMO‑OFDM.
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where dqp denotes the LOS path length between 
the pth transmit and qth receive antenna, and � is 
the carrier wavelength.

Figure 15 illustrates the LOS path between 
the pth transmit antenna and the qth receive 
antenna when there is relative motion between 
the transmitter and the receiver. Note that the 
change in LOS path lengths due to the rela-
tive motion between the transmitter and the 
receiver in one OTFS frame duration is very 
small for low/medium mobility. This can be 
illustrated with an example, where we consider 
nt = nr = 2 , dt = dr = 5 cm, and D = 90 m . 

(39)hLOS
qp1

= e−j 2π
�
dqp ,

With M = N = 128 , T = 12.8 µs , the duration 
of one OTFS frame is NT = 1.63ms . Consider-
ing the relative velocity between the transmitter 
and the receiver to be v = 47 km/h, the change 
in the distance between the transmitter and the 
receiver in one OTFS frame can be calculated as 
�D = vNT = 0.021 m . For illustration, consider 
the distance between the fourth transmit antenna 
and the second receive antenna (i.e., p = 2 , 
q = 4 ). Let d24 and d′24 denote the LOS path 
lengths between the fourth transmit and second 
receive antenna at the beginning and at the end 
of an OTFS frame, respectively. Now, d24 and d′24 
can be calculated to be 90.00005 m and 90.02 m, 
respectively. Since the difference between d24 and 
d′24 is very small, dqp in (39) can be assumed to be 
constant over one OTFS frame.

We also assume hNLOS
qp1

 to be i.i.d and dis-
tributed as CN (0, 1) . Also, the fading gains in 
the other taps with no LOS component (i.e., 
Rice factor K in those taps is zero), hNLOS

qpi
 , 

i = 2, . . . ,P , are assumed to be i.i.d and distrib-
uted as CN (0, 1) . The performance is evaluated 
for SISO and 2× 2 MIMO systems. Table 3 gives 
the delay–Doppler profile used. Table 4 gives all 
other parameter values used in simulations. The 
carrier frequency and subcarrier spacing used are 
28 GHz and 78.125 kHz, respectively, the frame 
size parameters used are M = N = 128 , the 
inter-antenna distances at the transmitter and the 
receiver are taken as dt = dr = 6.9 cm, and the 

Figure 15: hLOSqp1
 in mmWave communication.
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Figure 16: BER performance comparison between MIMO‑OTFS and MIMO‑OFDM in 2× 2 MIMO system 
at 28 GHz.
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modulation used is BPSK. A Rician factor of 9 
dB as reported in 37 from 28 GHz band measure-
ments is used.

In Fig. 16, we present a BER performance 
comparison between OTFS and OFDM in SISO 
and 2× 2 MIMO systems at 28 GHz. Itera-
tive message passing is used for both MIMO-
OTFS and MIMO-OFDM detection. From 
Fig. 16, it can be observed that SISO-OFDM sys-
tem achieves a BER of 10−2 at an SNR of 9 dB, 
whereas SISO-OTFS achieves a BER of 6× 10−5 
for the same SNR. It is also evident from the fig-
ure that MIMO-OTFS performs significantly bet-
ter compared to MIMO-OFDM at 28 GHz. For 
example, it can be seen that 2× 2 MIMO-OTFS 
system outperforms 2× 2 MIMO-OFDM sys-
tem by about 8 dB at a BER of 2× 10−4 . This 
illustrates the robustness of MIMO-OTFS over 
MIMO-OFDM in high Doppler scenarios that 
arise due to the use of high carrier frequencies in 
the mmWave band.

6  Channel Estimation in delay–Doppler 
Domain

In this section, the assumption of availability of 
perfect channel state information at the receiver 
(CSIR) is relaxed. We present a simple scheme 
to estimate the channel in the delay–Doppler 
domain 26. In this scheme of channel estimation, 
impulse function in the delay–Doppler domain is 
used as the pilot. The pilot corresponding to each 
antenna is placed in the delay–Doppler grid such 
they can be received without interference at the 
receive antennas. Figure 17 illustrates the pilots, 
channel response, and received signal in a 2× 1 
MIMO system. The delay–Doppler profile and 
system parameters used for the figure is given in 
Tables 1 and 2. The pilots placed in the delay–
Doppler grid have some space reserved around 
it, to account for the delay and Doppler spread of 
the channel. Each transmit and receive antenna 
pair sees a different channel with finite and non-
overlapping support, determined by the delay 
and Doppler spread of the channel 14. Hence, the 
channel for all the transmit–receive antenna pairs 

can be simultaneously estimated using single 
MIMO-OTFS frame as described below.

The relation between the transmitted symbols 
from pth transmit antenna and the received sym-
bols from the qth receive antenna can be written 
using (15) as

Now, if the transmitted pilot from the pth 
antenna is given by

the received signal at the qth antenna will be

Now, 1
MN hwqp

(
k
NT ,

l
M�f

)
 can be estimated from 

(42), since np and mp are known at the receiver a 
priori. From this, the equivalent channel matrix 
Ĥqp can be obtained using the vectorized formu-
lation of Sect. 3.3.

Observe that due to the convolutive nature of 
the input–output relation, the impulse at 
(n,m) = (np,mp) is spread by the channel only 
up to the maximum delay and Doppler spread of 
the channel. Thus, if the pilots are spaced suffi-
ciently far apart, in the delay–Doppler domain, 
they can be received without interference. Hence, 
the channel responses corresponding to all the 
transmit–receive antenna pairs can be estimated 
simultaneously using single MIMO-OTFS frame. 
Figure 17 illustrates this for a 2× 1 MIMO-OTFS 
system with (M,N ) = (32, 32) at 4 dB SNR. The 

(40)

yq[k , l] =

M−1∑

m=0

N−1∑

n=0

xp[n,m]
1

MN

hwqp

(
k − n

NT
,
l −m

M�f

)
+ vq[k , l].

(41)
xp[n,m] = 1 if (n,m) = (np,mp)

= 0 ∀ (n,m) �= (np,mp),

(42)

yq[k , l] =
1

MN
hwqp

(
k − np

NT
,
l −mp

M�f

)
+ vq[k , l].

Table 3: delay–Doppler profile for the channel 
model with P = 5 at 28 GHz carrier frequency.

Path index (i) 1 2 3 4 5

Delay ( τi ) ( µs) 0.3 1 1.7 2.4 3.1

Doppler ( νi ) (Hz) 0 −1220 −610 610 1220

Speed (km/h) 0 47 23.5 23.5 47

Table 4: System parameters for 28 GHz system.

Parameter Value

Carrier frequency (GHz) 28

Frame size (M, N) (128,128)

Subcarrier spacing (kHz) 78.125

Modulation scheme BPSK

MIMO configuration 2× 2

K factor (dB) 9

No. of taps (P) 5

Maximum speed (km/h) 47
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pilot corresponding to the first transmit antenna 
is placed at (n1,m1) = (0, 0) and the pilot corre-
sponding to the second transmit antenna is 
placed at (n2,m2) = (16, 16) in the delay–Dop-
pler domain. Also, note that the impulse 

responses at the receive antenna hw11

(
k−n1
NT , l−m1

M�f

)
 

and hw12

(
k−n2
NT , l−m2

M�f

)
 , corresponding to the 

pilots transmitted from the first and the second 
transmit antennas, respectively, are non-overlap-
ping at the receiver. Thus, they can be simultane-
ously estimated using a single pilot frame as 
described above.

The input–output relation in OTFS is con-
volutive in nature (2D convolution of symbols 
and the channel response in delay–Doppler 
domain), whereas the input–output relation in 
any time–frequency modulation is multiplicative. 
This convolutive relation, along with the sparsity 
and time-invariance of delay–Doppler impulse 
response, greatly simplifies the channel estima-
tion estimation. In Fig. 17, the pilot correspond-
ing to the transmit antenna 1 gets convolved 
with the channel response of transmit antenna 1. 
Similarly, the pilot corresponding to the transmit 
antenna 2 convolves with the channel response 
of transmit antenna 2. At the receiver, the pilots 
are spread by the channel only to the extent of 
the support of each channel in the delay–Doppler 
domain. Since the channel in the delay–Doppler 
representation is sparse, the pilots can be received 
without interference. In contrast, in time–fre-
quency domain, the received pilots overlap and 
span the entire time–frequency plane, making the 

channel estimation complex in doubly dispersive 
MIMO channels.

6.1  Performance Results and Discussion
In this subsection, the mean square error (MSE) 
of the estimated channel and the BER perfor-
mance of MIMO-OTFS with the estimated chan-
nel are presented. The channel estimation scheme 
described in the previous subsection is used to 
estimate ĤMIMO , which is used for the detection 
of the transmitted symbols using message passing 
algorithm. The simulations use Tables 1 and 2 for 
the delay–Doppler profile and the system param-
eters, respectively.

Figure 18 shows the normalized MSE 
( �HMIMO − ĤMIMO�F/(MN )2 ) of the estimated 
channel, as a function of the average SNR of the 
pilot frame, for a 2× 2 MIMO-OTFS system. 
The system parameters used are as in Tables 1 
and 2. From the figure, it can be observed that 
the normalized MSE decreases with the increase 
in the SNR of the pilot frame, as expected. Next, 
Fig. 19 shows the BER performance of the 2× 2 
MIMO-OTFS system with the estimated channel. 
From the figure, it is observed that the achieved 
BER performance with the estimated channel is 
very close to the performance with perfect CSIR. 
For example, at an SNR of 12.5 dB, the achieved 
BER with the perfect knowledge of the channel 
is 2× 10−5 , whereas the same BER is achieved 
at an SNR of 13 dB, with the estimated channel. 
At the considered Doppler frequency as high as 
1880 Hz, channel estimation in the TF domain is 
very difficult and results in inaccurate estimation 
because of the rapid variations of the channel in 

Figure 17: Illustration of pilots and channel response in delay–Doppler domain in a 2× 1 system.
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time–frequency domain, whereas, the channel in 
the delay–Doppler representation is slowly vary-
ing and is time-invariant over a larger observa-
tion time. This, along with the 2D convolutive 
interaction of the symbols with the channel in 
the delay–Doppler domain, enables the proposed 
channel estimation for MIMO-OTFS to be simple 
and efficient.

7  Conclusions
We considered OTFS modulation, a 2D modu-
lation scheme, where signaling is done in the 
delay–Doppler domain and can be imple-
mented using existing multicarrier schemes 
using additional pre- and post-processing 2D 
transforms. It was shown to be a suitable mod-
ulation scheme for high-mobility use cases 
where the high Doppler shifts are encountered. 
While conventional modulation schemes such 
as OFDM fail to perform well in such high-
mobility scenarios due to Doppler-induced ICI, 
OTFS achieved significantly better performance. 
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Figure 18: Mean square error of the estimated channel as a function of pilot SNR in a 2× 2 MIMO system.
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Figure 19: BER performance of MIMO‑OTFS using the estimated channel in a 2× 2 MIMO system.
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Considering a MIMO-OTFS system, we pre-
sented signal detection and channel estimation 
schemes and their performance. MIMO-OTFS 
was shown to achieve significantly better per-
formance compared to MIMO-OFDM in high-
Doppler environments operating in 4 GHz and 
28 GHz frequency bands. The sparse and slow 
time-variant nature of wireless channels in the 
delay–Doppler domain enabled simple and effi-
cient channel estimation. The performance and 
implementation attributes of OTFS make it a 
promising modulation scheme for high-mobil-
ity use cases.
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