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Abstract—Load modulated arrays (LMAs) is getting recent
research attention as an attractive multiantenna transmission
architecture in wireless communications. LMAs use a single
power amplifier to drive the entire transmit antenna array and
implement the multidimensional signaling constellation in the
analog domain. In this paper, we consider LMAs in a multiuser
setting on the uplink. In this setting, multiple user terminals, each
using an LMA (e.g., with 2 or 4 antenna elements), communicate
with a base station (BS) with multiple (tens to hundreds) receive
antennas. For this system, we consider the problem of low-
complexity signal detection at the BS receiver. Specifically, we
propose a Markov Chain Monte Carlo (MCMC) sampling based
detection algorithm. We evaluate the bit error rate performance
of the algorithm via numerical simulations. Simulation results
show that the proposed detection achieves very good performance
while scaling well in complexity.

Index Terms—Load modulation, multidimensional hyper-
sphere, LM array, multiuser multiantenna systems, Markov chain
Monte Carlo sampling.

I. INTRODUCTION

Continued research and development efforts in multiple-input
multiple-output (MIMO) systems will ensure that they are the
norm in future wireless networks. The traditional approach
in multiantenna transmission has been to typically employ
a separate radio frequency (RF) chain for each antenna and
use conventional modulation and precoding techniques like
QAM and OFDM for transmission. This results in their cost,
complexity, and size to increase with the number of antennas.
In addition, owing to linearity requirements of the transmit
signals, power amplifiers in each of the RF chains suffer from
a poor power efficiency. Load modulated arrays (LMA) [1],[2]
is emerging as a promising MIMO array architecture that
alleviates the aforementioned issues.

Conventional MIMO transmitters employ voltage modula-
tion for transmission, i.e., the input voltage to the power ampli-
fier (PA) in each transmit RF chain is modulated according to
the transmit signal in that chain. On the other hand, load mod-
ulation (LM) creates an antenna current by varying the antenna
load impedance in accordance with the transmit information
signal, while the PA input is maintained at a constant level
[2]. In a load modulated MIMO transmitter, a single central
power amplifier (CPA) drives the entire transmit antenna array
[3]. The CPA is fed by a source with a fixed voltage level
and frequency. Information bits directly modulate the antenna
load impedances, which has the effect of implementing the
signal set in the analog domain. This analog implementation
of the signal set eliminates the need for DACs, mixers, and
upconverters that constitute the transmit RF chains.
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In the next generation of wireless systems, where com-
munication terminals are desired to be spectrally efficient,
power efficient, compact, and cost effective, LMAs present
an appealing transmission architecture. While there have been
studies on the implementation and RF aspects of LMAs in
[4],[5], problems of low-complexity detection and precoding
in LMAs are yet to be investigated carefully. In view of this,
in this paper, we consider LMAs in multiuser communications
on the uplink and investigate LM signal detection at the
BS receiver. The use of LMAs on the multiuser uplink has
been recently shown to offer excellent bit error rate (BER)
performance advantage compared to multiuser MIMO with
conventional modulation and spatial modulation [6]. Here, we
propose a low-complexity signal detection algorithm using
Markov Chain Monte Carlo (MCMC) sampling technique for
multiuser uplink systems that use LMAs at the user terminals.
MCMC techniques have found application in many areas of
science and engineering to efficiently solve problems that
are governed by complicated probabilistic laws [7]. In digital
communication applications, MCMC methods have been used
to design receivers in CDMA and large MIMO systems [8],[9].
Our scheme uses MCMC sampling to perform randomized
simulations of multiuser LMA systems in order to arrive at
a solution. Numerical results show that the proposed scheme
retains the performance advantage of multiuser LMAs, while
requiring relatively less computations compared to the graph
based detection in [6].

The rest of the paper is organized as follows. A brief
introduction to LMAs is presented in Sec. II. LMAs on the
multiuser uplink is presented in Sec. III, wherein we introduce
the system model, present the proposed detection algorithm for
large-scale multiuser LMA systems and numerical simulation
results. Conclusions are presented in Sec. IV.

II. LOAD MODULATED ARRAYS

Figure 1 shows an LM array with nt transmit antennas.
The load impedance in the lth antenna, denoted by Zl(t),
is chosen to be proportional to the lth transmit signal sl(t),
l = 1, 2, · · · , nt. The effective admittance seen by the power
source is the sum of the admittances of all antenna loads, i.e.,

Y (t) =

nt∑
l=1

1

Zl(t)
. (1)

The single power source becomes equivalent to nt parallel
power sources, each with an average admittance Y (t)/nt.
Since Y (t) varies with the information signals, there may be
a mismatch between circuit impedance and effective antenna
impedance, which can cause power to be reflected back to the
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Fig. 1. Load modulated array.

CPA. So a circulator is used to redirect any reflected power
to a resistor R.

For large arrays (large nt), because of the law of large
numbers, the average admittance Y (t)/nt does not vary much
even if the individual admittances may vary significantly. This,
in turn, results in only a small power being reflected back to
the CPA in large arrays. Since a single CPA drives the entire
antenna array, its efficiency is determined by the sum power of
the transmit signal over all the antenna elements. A measure
that characterizes this efficiency is the peak to average sum
power ratio (PASPR), which is the peak to average power
ratio (PAPR) aggregated over all the antenna elements [3].
With large arrays, operating the CPA at a power equal to the
mean power of the transmit signals results in a PASPR that
asymptotically tends to one. For small arrays (small nt as in
user terminals), however, the PASPR can be more than one. To
obtain a PASPR close to one in small arrays, it is desired that
the sum power radiated by the antennas be made constant.
This is achieved by choosing the LM signal vectors on the
surface of an nt-dimensional hypersphere. Let SLM,nt

denote
the nM -ary LM signal set on the surface of an nt-dimensional
hypersphere, where nM , |SLM,nt |. Let

SH(nt, P ) = {s ∈ Cnt | ∥s∥2 = P} (2)

denote the nt-dimensional complex-valued hypersphere of
radius

√
P . Then,

SLM,nt = {s1, s2, · · · , snM
} ⊂ SH(nt, P ). (3)

An nt×1 signal vector s from SLM,nt
chosen based on log2 nM

information bits gets transmitted in a channel use by the nt

load modulators.
LM signal detection: Assuming nr antennas at the receiver,

the received signal vector y can be written as

y = Hs+ n, (4)

where H denotes the nr × nt matrix of channel gains such
that the gain from the jth transmit antenna to the ith receive
antenna hij ∼ CN (0, 1) and n is the nr×1 noise vector with
n ∼ CN (0, σ2I). The maximum likelihood (ML) detection
rule is then given by

ŝ = argmin
s∈SLM,nt

∥y −Hs∥2. (5)
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Fig. 2. Multiuser LMAs on the uplink.

III. LMAS ON THE MULTIUSER UPLINK

In this section, we consider LMAs on the multiuser uplink
and present a MCMC sampling based low-complexity algo-
rithm for the detection of multiuser LM signals at the BS.

A. System model

Consider a multiuser system with K uplink users com-
municating with a BS having N receive antennas (Fig. 2).
Users employ LM for their transmission. Each user has nt

transmit antennas and their associated load modulators. The
transmit vector sk ∈ SLM,nt

for the kth user is chosen based on
log2 nM bits. Let s , [sT1 s

T
2 · · · sTk · · · sTK ]T denote the vector

comprising of transmit vectors from all the users, where (·)T
denotes transpose operation. Note that s ∈ SKLM,nt

.
Let H ∈ CN×Knt denote the channel gain matrix, where

Hi,(k−1)nt+j denotes the complex channel gain from the jth
transmit antenna of the kth user to the ith BS receive antenna.
The channel gains are assumed to be independent Gaussian
with zero mean and variance σ2

k, such that
∑Knt

k=1 σ
2
k = Knt.

σ2
k models the imbalance in the received power from the

kth antenna, k ∈ {1, · · · ,Knt}, due to path loss etc., and
σ2
k = 1 corresponds to the case of perfect power control.

Assuming perfect synchronization, the received signal at the
ith BS antenna is given by

yi =

K∑
k=1

hi,[k]sk + ni, (6)

where hi,[k] is a 1× nt vector obtained from the ith row and
(k−1)nt+1 to knt columns of H, and ni is the noise modeled
as a complex Gaussian random variable with zero mean and
variance σ2. The received signal at the BS antennas can be
written in vector form as

y = Hs+ n, (7)

where y = [y1, y2, · · · , yN ]T and n = [n1, n2, · · · , nN ]T . For
this system model, the ML detection rule is given by

ŝ = argmin
s∈SKLM,nt

∥y −Hs∥2. (8)



Since |SKLM,nt
| = |SLM,nt

|K , the exact computation of (8) re-
quires exponential complexity in K. In the rest of this section,
we refer to the nt-sized vector sk ∈ SLM,nt , k = 1, · · · ,K,
in a K-user vector s = [sT1 s

T
2 · · · sTk · · · sTK ]T ∈ SKLM,nt

as the kth coordinate of s. The K-user signal set SKLM,nt

is the coordinate space of which sk is the kth coordinate.
This interpretation would facilitate our discussion of detection
schemes for multiuser LM signals.

B. Proposed MCMC sampling based detection
The ML detection problem in (8) can be solved by using

MCMC simulations [7]. A conventional MCMC method is
Gibbs sampling from the joint distribution of random variables
of interest. In the context of detection of multiuser LM signals,
the joint probability distribution of interest is

p(s1, . . . , sK |y,H) ∝ exp
(
− ∥y −Hs∥2

σ2

)
. (9)

1) Conventional Gibbs sampling: In conventional Gibbs
sampling approach, the algorithm starts with an initial solution
vector, which is denoted by s(t=0). The initial vector can be a
random vector or an output vector from one of low-complexity
linear detectors such as zero-forcing (ZF) and minimum mean
square error (MMSE) detectors. Let t denote the iteration
index and k denote the coordinate index, k = 1, 2, · · · ,K.
Each iteration consists of K coordinate updates. In each
iteration, K updates are carried out by sampling from the
distributions as follows:

s
(t+1)
1 ∼p

(
s1|s(t)2 , s

(t)
3 , . . . s

(t)
K ,y,H

)
s
(t+1)
2 ∼p

(
s2|s(t+1)

1 , s
(t)
3 , . . . s

(t)
K ,y,H

)
s
(t+1)
3 ∼p

(
s3|s(t+1)

1 , s
(t+1)
2 , s

(t)
4 , . . . s

(t)
K ,y,H

)
...

s
(t+1)
K ∼p

(
sK |s(t+1)

1 , s
(t+1)
2 , s

(t+1)
3 , . . . s

(t)
K−1,y,H

)
. (10)

The updated vector at the end of each iteration is fed back to
the next iteration. The algorithm is run for a certain number
of iterations. The output vector is chosen to be that vector that
has the least ML cost in all the iterations.

An issue with the conventional Gibbs sampling approach is
the stalling problem, which results in degraded BER perfor-
mance at high SNRs. It has been shown that because of the
stalling problem, the BER can in fact increase for increasing
SNRs [8],[9]. The is because the algorithm gets trapped in
some poor local solutions for a long time (i.e., for many
iterations).

2) Proposed sampling from mixed distribution: The stalling
problem in conventional Gibbs sampling necessitates better
sampling strategies that avoid local traps. Here, we explore
sampling from a mixed distribution. That is, in each coor-
dinate update, instead of updating the s

(t)
k s as in the update

rule in (10) with probability 1, we update them as in (10)
with probability 1 − q and use a different update rule with
probability q. The different update rule is as follows. Generate
nM probability values from the uniform distribution as

p(s
(t)
k = v) ∼ U [0, 1], ∀v ∈ SLM,nt , (11)

Algorithm 1: MCMC sampling based detection algorithm

Input: H, y, s(0), max-iter
Output: ŝ

1 t = 0; ŝ = s(0);
2 κ = g(s(0)); g(·) : ML cost function; Lc(·) : Stalling limit

count, f(α) = exp
(
− ∥y−Hs∥2

α2σ2

)
3 while t < max-iter do
4 for k = 1 to K do
5 define r.v. Λ ∼ U [0, 1]
6 generate pmf

p
(
s
(t+1)
k = v

)
∼ Pr(Λ > q)f(α1) + Pr(Λ < q)f(α2),

∀v ∈ SLM,nt

7 sample s
(t+1)
k from this pmf

8 end
9 χ = g(s(t+1));

10 if (χ ≤ κ) then
11 ŝ = s(t+1); κ = χ
12 end
13 t = t+ 1;
14 κ

(t)
o = κ;

15 if (κ(t)
o == κ

(t−1)
o ) then

16 calculate Lc(ŝ) ;
17 if (Lc < t) then
18 if (κ(t)

o == κ
(t−Lc)
o ) then

19 goto step 28
20 end
21 end
22 end
23 end
24 Output ŝ

such that
∑

v∈SLM,nt
p(s

(t)
k = v) = 1, and then sample s

(t)
k

from this generated probability mass function. The general
procedure for sampling from a mixed distribution is as follows:

• s , [s
(t+1)T

1 s
(t+1)T

2 · · · s(t+1)T

k−1 vT s
(t+1)T

k+1 · · · s(t+1)T

K ]T ;
v ∈ SLM,nt .

• f(α) , exp
(
− ∥y−Hs∥2

α2σ2

)
.

• p(s
(t+1)
k = v) ∝ (1− q)f(α1) + qf(α2).

Different choices for the values of (α1, α2) are possible. For
the specific update rule discussed above, α1 = 1 and α2 =
∞. With this, the mixed distribution for sampling becomes
a weighted combination of the true distribution and uniform
distribution with weights 1− q and q, respectively.

A listing of the proposed detection algorithm is given in
Algorithm 1. The ML cost function g(·) which indicates the
closeness of the estimated solution to the ML solution is given
by

g(ŝ) =
∥y −Hŝ∥2 −Nσ2

√
Nσ2

. (12)

The stalling limit count Lf (·) determines how long the al-
gorithm is allowed to iterate without changing the ML cost,
if stalling occurs. It depends on the quality of the stalled
solution in terms of the ML cost in (12). If the stalled
solution is far away from the ML solution (g(ŝ) is large), the
algorithm is allowed to continue looking for better solutions
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for more iterations. However, if the stalled solution is close
to the ML solution, the algorithm spends less time with
the stalled ML cost [9]. Based on the above discussion, the
following rule is adopted to compute the stalling limit count:
Lc(ŝ) = ⌈max(tmin, k1e

g(ŝ))⌉, with k1 being chosen suitably
proportional to nM .

C. Performance results and discussions

In this subsection, we present the BER performance of the
proposed detection algorithm and also present performance
comparison between multiuser LM system and other single-RF
chain multiuser systems using conventional modulation (CM)
and spatial modulation (SM).

In Fig. 3, we show the performance of conventional Gibbs
sampling detector and the proposed detector that uses mixed
distribution for sampling. The system parameters considered
are: K = 16, nt = 2, N = 32, nM = 4, random initial
vector, mixing ratio q = 1

K = 1
16 , and 256 iterations. MMSE

detection performance is also shown for comparison. It can be
seen that MMSE detection performance is rather poor. Also,
we observe that the BER of conventional Gibbs sampling
detector increases for SNRs more than 9 dB. This behavior
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is due to the stalling problem discussed before. The proposed
detector is found to alleviate the stalling problem and achieve
increasingly better BER for increasing SNRs. This shows the
effectiveness of the sampling from the mixed distribution with
a uniform distribution embedded in it.

In Fig. 4, we show the variation in the BER performance of
the proposed detection algorithm as a function of the mixing
ratio q. The following system parameters are considered: (K =
8, N = 16), (K = 16, N = 32), nt = 2, nM = 4 (2 bpcu
per user), and SNR = 7.5 dB. Note that q = 0 corresponds to
the case of conventional sampling from the true distribution
and q = 1 corresponds to the case of sampling from a pure
uniform distribution. For both these values of q, it is seen that
the performance poor and the best performance is achieved at
an optimum mixing ratio. The plots show that this optimum
q is 1

K , which is the inverse of the number of coordinates in
the signal vector to be detected. Henceforth, we will use this
optimum q = 1

K in our simulations.
In Fig. 5, we present a performance comparison between

MU-LM, MU-CM, and MU-SM in large systems (K = 16,
N = 128). All the systems are configured for 6 bpcu per
user. The following systems are considered: MU-LM with
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(nt = 2, nM = 64) and (nt = 4, nM = 64), MU-SM
with (nt = 2, 32-QAM) and (nt = 4, 16-QAM), and MU-
CM with (nt = 1, 64-QAM). For MU-CM, ML detection
using sphere decoding is used. For MU-LM and MU-SM, the
proposed detection algorithm is used. The parameters used in
the proposed algorithm are: tmin = 20, k1 = 10 log2 nM , max-
iter = 16K, q = 1

K , and random initial vector. We observe that
MU-LM achieves significantly better performance compared
to MU-SM and MU-CM. For example, with nt = 4, MU-
LM performs better by about 5 dB and 10 dB compared to
MU-SM and MU-CM, respectively. This superior performance
achieved by MU-LM with low RF hardware complexity at
the user terminals makes it attractive for large-scale multiuser
MIMO systems.

In fig. 6, we compare the BER performance of the proposed
detection algorithm obtained above with that of the message
passing detection (MPD) in [6] for a system with K =
16, nt = 4, N = 128 and 6 bpcu per user. It is seen that that
the two perform the same. To justify the effectiveness of the
proposed scheme, we compare the computational complexities
of the two algorithms next.

Fig. 7(a) shows the computational complexity of the pro-

posed scheme in terms of the number of real operations
required for systems with nt = 4, N = 64 and 6 bpcu per
user. Also shown for comparison is the complexity of MPD
algorithm. We see that the complexity of both the schemes
grows quadratically in the number of users K. However, even
with a lesser number of computations, it can be seen from
Fig. 7(b) that the proposed scheme achieves the same BER
performance as that achieved by MPD.

Finally, in Fig. 8, we present the effect of varying the
number of BS antennas N on the BER performance of MU-
LM, MU-SM, and MU-CM systems with K = 16 and
6 bpcu per user. The SNRs required in these systems to
achieve a target BER of 10−3 are plotted as a function of
N . The following systems are considered: i) MU-LM with
(nt = 4, nM = 64), ii) MU-SM with (nt = 4, 16-QAM), and
iii) MU-CM with (nt = 1, 64-QAM). It can be observed that
as the number of antennas at the BS increases, the required
SNR to achieve the target BER decreases because of the
increased receive diversity. The degradation observed for small
values of N is because the systems become under-determined
when Knt > N , and hence the required SNRs shoot up. For
Knt ≤ N , MU-LM outperforms MU-SM by 3 to 4 dB and
MU-CM by about 9 dB.

IV. CONCLUSIONS

We studied LMAs (an emerging and promising multiantenna
transmitter architecture offering reduced RF complexity, size,
and cost) in multiuser communication on the uplink. For this
system, we presented a Monte Carlo sampling based detection
algorithm at the BS receiver. The proposed algorithm scaled
well in complexity as well as achieved good BER perfor-
mance. Our results indicate that LMAs hold lot of promise and
present interesting research and development possibilities that
can lead to the adoption of LMAs in future wireless systems.
LMAs on multiuser downlink and design of efficient channel
estimation schemes can be investigated as future work.
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