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Abstract—In this paper, we analyze the performance of a
two-hop three-node full-duplex (FD) relay network, where the
source and relay nodes transmit using media-based modulation
(MBM). MBM is a promising new modulation scheme that
conveys information bits by digitally controlling the parasitic
elements (called as radio frequency mirrors) placed near the
transmit antenna. The relay uses decode-and-forward relaying
protocol. We refer to this system as FD relaying with MBM (FDR-
MBM) system. First, we derive an upper bound on the end-to-
end average bit error probability of FDR-MBM with maximum-
likelihood (ML) detection at the relay and destination nodes.
This bound is shown to be increasingly tight with increasing
signal-to-noise ratio. Our numerical results show that, for the
same spectral efficiency, FDR-MBM can perform better than
FD relaying with conventional modulation schemes such as
QAM/PSK. Next, we derive the diversity order achieved by
the FDR-MBM system. Also, the analytically predicted diversity
order is validated through simulations.

Keywords – Full-duplex, relay networks, media-based mod-
ulation, performance analysis.

I. INTRODUCTION

Full-duplex (FD) communication has gained a lot of
research interest due to its capability of achieving higher
spectral efficiency compared to half-duplex (HD) communi-
cation [1],[2]. In FD, a communication node transmits and
receives simultaneously over the same frequency band as
opposed to that in HD, where a node can transmit and receive
either at different times over the same frequency band or at
the same time over different frequency bands. However, the
performance of FD systems is limited by the self-interference
(SI) caused by the signal leakage from a node’s transmitter
to its own receiver. Several cancellation techniques have been
proposed in the literature to mitigate the SI. These techniques
are classified mainly into passive and active cancellation tech-
niques [3]. However, in practice, these cancellation techniques
cannot mitigate the SI completely. Several studies on FD have
explicitly considered the effect of imperfect SI cancellation,
where residual SI is modeled as either Rician or Rayleigh
random variable whose variance depends on the average
transmitted power [4],[5]. The performance of the FD systems
with multiple transmit and receive antennas at communication
nodes have been reported in [5].

Relaying is an attractive technique that can improve the
network coverage, quality-of-service (QoS), and throughput
in wireless networks. Amplify-and-forward (AF) and decode-
and-forward (DF) protocols are commonly studied relaying
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protocols [6]. The FD operation of nodes in relay networks
has been shown to provide higher network spectral efficiency
compared to HD relaying [7]-[11]. Most studies on FD relay
systems reported in the literature employ either conventional
modulation schemes such as QAM/PSK [8] or spatial modu-
lation [11]. In this paper, we consider FD relaying with a new
modulation scheme, known as the media-based modulation
(MBM), which is a promising modulation scheme in rich
scattering environments [12],[13].

The concept of MBM can be briefly explained as follows. In
MBM, digitally controllable parasitic elements (e.g., varactors,
switched capacitors) are placed near the transmit antenna as ra-
dio frequency (RF) mirrors. Each RF mirror can be either ON
or OFF. A mirror allows the incident RF signal to pass through
transparently when it is ON and reflects back the incident RF
signal when it is OFF, i.e., RF mirror act as a controlled signal
scatterer in the propagation environment close to the transmit
antenna. The ON/OFF status of the mirrors is called as ‘mirror
activation pattern (MAP)’. If there are mrf mirrors, then
2mrf MAPs are possible. Since the ON/OFF mirrors change
from one MAP to the other, the propagation environment near
the transmit antenna becomes different for different MAPs.
This results in different fade realizations for different MAPs.
The collection of 2mrf such fades corresponding to different
MAPs form the MBM channel alphabet. This MBM alphabet
is used to convey mrf information bits. The transmit antenna
transmits a symbol from a conventional modulation alphabet
(e.g., QAM) to convey additional information bits.

MBM has been shown to perform significantly better than
conventional modulation schemes [12],[13]. The performance
of MBM in a point-to-point FD communication setting has
been studied in [14]. In this paper, for the first time in the
literature, we analyze the performance of a two-hop full-
duplex relay (FDR) network with MBM (referred to as FDR-
MBM). We consider generalized spatial modulation MBM
(GSM-MBM) [13] for transmission at the source and relay
nodes, and DF protocol for relaying. We refer to two-hop FD
relaying with conventional modulation as FDR-CM system.
Our contributions in this paper can be summarized as follows.

• First, we derive an upper bound on the end-to-end av-
erage bit error probability (BEP) of FDR-MBM with
maximum-likelihood (ML) detection at the relay and
destination nodes. This bound is shown to be tight for
moderate to high signal-to-noise ratios (SNRs). Our sim-
ulation results show that, for the same spectral efficiency,
FDR-MBM can perform better than FDR-CM.



Fig. 1. Full-duplex relaying with MBM.

• Next, we derive the diversity order achieved by the FDR-
MBM system which is given by min{nr min{λ, 1}, nd},
where λ is a constant that captures the quality of SI can-
cellation, nr and nd are the number of receive antennas at
the relay and the destination, respectively. This diversity
order is also validated through simulations.

II. SYSTEM MODEL

Consider a two-hop relay network consisting of a HD source
node S, a FD relay node R, and a HD destination node D as
shown in Fig. 1. The relay and destination nodes are equipped
with nr and nd receive antennas, respectively. The source
and relay nodes are equipped with ntu MBM-TUs, and nrf

RF chains, 1 ≤ nrf ≤ ntu. We assume that the source and
destination can communicate only through the relay, i.e., there
is no direct link between the source and destination. The relay
uses DF protocol. The transmitter at the source and relay use
GSM-MBM.

A. GSM-MBM transmitter at source and relay

The GSM-MBM transmitter is shown in Fig. 2. Informa-
tion bits are conveyed using MBM-TU indexing, RF mirror
indexing, and QAM/PSK symbols, as follows. In each chan-
nel use, i) nrf out of ntu MBM-TUs are selected using
⌊log2

(
ntu

nrf

)
⌋ bits, ii) nrf M -ary QAM/PSK symbols (formed

using nrf log2 M bits) are transmitted on the selected nrf

MBM-TUs, and iii) the mrf mirrors in each of the selected
MBM-TU are controlled (made ON/OFF) by mrf bits (so
that all the nrfmrf mirrors in the selected nrf MBM-TUs
are controlled by nrfmrf bits). Therefore, the achieved rate,
in bits per channel use (bpcu), is given by

η =
⌊
log2

(
ntu

nrf

)⌋
︸ ︷︷ ︸
MBM-TU index bits

+ nrfmrf︸ ︷︷ ︸
mirror index bits

+ nrf log2 M︸ ︷︷ ︸
QAM/PSK symbol bits

bpcu. (1)

It is noted that GSM-MBM specializes to other MBM
schemes, such as SIMO-MBM when ntu = nrf = 1, spatial
modulation MBM (SM-MBM) when ntu > 1 and nrf = 1,
and MIMO-MBM when ntu > 1 and nrf = ntu.

In a given channel use, nrf out of the ntu MBM-TUs
are made ON (and on MBM-TU that is made ON, a symbol
from M -ary QAM/PSK alphabet A is sent) and the remaining

MBM-TU stands for MBM transmit unit comprising of a transmit antenna
and mrf RF mirrors placed near it.

ntu − nrf MBM-TUs are made OFF (which is equivalent
to sending 0). A realization of the ON/OFF status of the ntu

MBM-TUs (which is a ntu×1 vector consisting of 1’s and 0’s,
where 1 or 0 in a coordinate represent the ON or OFF status of
the MBM-TU corresponding to that coordinate, respectively)
is called as a ‘MBM-TU activation pattern’. A total of

(
ntu

nrf

)
MBM-TU activation patterns are possible. Out of them, only
2
⌊log2

(ntu
nrf

)
⌋

are needed for signaling. Let St denote the set
of these 2

⌊log2

(ntu
nrf

)
⌋

MBM-TU activation patterns chosen
from the set of all possible MBM-TU activation patterns. For
example, for ntu = 4, nrf = 2, a possible St is given by

St = {[1 1 0 0]T , [0 1 1 0]T , [0 0 1 1]T , [1 0 0 1]T }.
A mapping is done between the combinations of ⌊log2

(
ntu

nrf

)
⌋

bits to the MBM-TU activation patterns in St. Let sj de-
note the symbol transmitted on the jth MBM-TU. Then
sj ∈ A ∪ {0} such that ∥s∥0 = nrf and I(s) ∈ St, where
s = [s1 s2 . . . sntu

]T , ∥s∥0 denotes the number of non-zero
elements in s, and I(s) is a function that gives the MBM-
TU activation pattern for s. For example, when A is BPSK,
ntu = 4, nrf = 2, and s = [+1 0 0 − 1]T , then I(s) in this
case is given by I(s = [+1 0 0 − 1]T ) = [1 0 0 1]T . Let
Sgsm denote the set of such s vectors, i.e., Sgsm =

{
s : sj ∈

A ∪ {0}, ∥s∥0 = nrf , I(s) ∈ St
}

.
In each of the ntu MBM-TUs, an RF mirror can be made

either ON or OFF. An mrf -length vector of the ON/OFF status
of the mrf mirrors is called as a ‘mirror activation pattern
(MAP)’. Since each mirror can be either ON or OFF, a total of
Nm = 2mrf MAPs are possible. A mapping is done between
the combinations of mrf information bits and the MAPs. This
mapping is made known a priori at all the nodes for encoding
and decoding purposes, respectively. Let lj denote the index
of the MAP chosen on the jth MBM-TU. The MAP index
lj is selected as follows: i) when sj ̸= 0 (i.e., MBM-TU
is ON), lj takes an integer value in [1, Nm], based on mrf

information bits; ii) otherwise lj = 1, which does not convey
any information.
B. Transmission protocol

The relay operates in FD mode and uses DF protocol. The
information is conveyed from the source to the destination
in two phases. In the first phase, the source transmits its
information to the relay. The relay detects the data in the
presence of SI (which is transmitted to the destination by
the relay) that results from the FD operation of the relay.
In the next phase, the relay forwards the detected data to
the destination and simultaneously receives a new information
from the source. We assume that both source and relay use the
same average power denoted by E. Note that relay operates
in HD mode (only receives the data from the source) at the
first instance of the transmission, because it does not have any
data to forward to the destination.

C. Channel model
The source-to-relay (S to R), relay-to-destination (R to D),

and relay-to-relay SI (R to R-SI) channels are assumed to
experience independent fading.



Fig. 2. GSM-MBM transmitter.

S to R channel: Let hj,sr
k = [hj,sr

1,k hj,sr
2,k · · · hj,sr

nr,k
]T

denote the nr × 1-sized channel gain vector at the receiver
of the relay node corresponding to the kth MAP of the
jth MBM-TU of the source node, where hj,sr

i,k is the fade
coefficient corresponding to the kth MAP of jth MBM-
TU of the source to the ith receive antenna of the relay,
i = 1, 2, · · · , nr, j = 1, 2, · · · , ntu, and k = 1, 2, · · · , Nm.
The hj,sr

i,k s are assumed to be independent and identically
distributed (i.i.d.) and distributed as CN (0, 1). Let Hj

sr =
{hj,sr

1 ,hj,sr
2 , · · · ,hj,sr

Nm
} denote the MBM channel alphabet

from the source to the relay corresponding to the jth MBM-
TU. Let Hj

sr = [hj,sr
1 hj,sr

2 · · · hj,sr
Nm

] denote the nr × Nm

channel matrix from the jth MBM-TU of the source to the
relay. Let Hsr = [H1

sr H2
sr · · · Hntu

sr ] denote the overall
nr×Nmntu channel matrix between the source and the relay.
R to D channel: Let hj,rd

k = [hj,rd
1,k hj,rd

2,k · · · hj,rd
nd,k

]T

denote the nd × 1-sized channel gain vector at the receiver
of the destination node corresponding to the kth MAP of the
jth MBM-TU of the relay node. The hj,rd

i,k s are assumed to be
i.i.d. and distributed as CN (0, 1). Similar to those in the S to
R channel, let Hj

rd, Hj
rd, and Hrd denote the MBM channel

alphabet, nd ×Nm channel matrix, and nd ×Nmntu overall
channel matrix, respectively.

R to R-SI channel: Let hj,rr
k = [hj,rr

1,k hj,rr
2,k · · · hj,rr

nr,k
]T

denote the nr × 1-sized SI channel gain vector corresponding
to the kth MAP of the jth MBM-TU at the relay. The hj,rr

i,k s
are modeled as i.i.d. and distributed as CN

(
0, (E/σ2)−λ

)
by

assuming that the SI cancellation scheme completely removes
the line-of-sight-component [9], where σ2 denotes the average
noise power and λ is a small positive constant that captures the
quality of the SI cancellation technique [2],[9]. For example,
λ = 0 and λ = 1 refers to poor and high quality SI
cancellation techniques, respectively. Similar to those in the
S to R channel, let Hj

rr, Hj
rr, and Hrr denote the MBM SI

channel alphabet, nr×Nm SI channel matrix, and nr×Nmntu

overall SI channel matrix, respectively.

D. Received signal

Let ss,1j and ls,1j denote the transmitted symbol and index of
the selected MAP, respectively, on the jth MBM-TU of source
node in the first phase. The nr × 1 received signal vector y1

r

at relay in the first phase can be written as

y1
r =

ntu∑
j=1

ss,1j hj,sr

ls,1j︸ ︷︷ ︸
desired signal

+

ntu∑
j=1

sr,1j hj,rr

lr,1j︸ ︷︷ ︸
SI signal

+n1
r

=

ntu∑
j=1

ss,1j Hj
srels,1j

+

ntu∑
j=1

sr,1j Hj
rrelr,1j

+ n1
r

= Hsrx
s,1 +Hrrx

r,1 + n1
r, (2)

where sr,1j and lr,1j denote the transmitted symbol and index
of the selected MAP, respectively, on the jth MBM-TU of the
relay to the destination in the first phase (which causes SI), ep
is an Nm × 1 vector whose pth coordinate is 1 and all other
coordinates are zero, n1

r is the additive noise vector whose
elements are i.i.d. and distributed as CN (0, σ2), xs,1 and xr,1

are the Nmntu×1 transmit vectors belong to the GSM-MBM
signal set Sgsm-mbm, which is given by

Sgsm-mbm =
{
x = [xT

1 xT
2 · · · xT

ntu
]T : xj = sjelj ,

lj ∈ {1, · · · , Nm}; s = [s1 s2 · · · sntu ]
T ∈ Sgsm

}
. (3)

The size of the GSM-MBM signal set is |Sgsm-mbm| = 2η ,
where η is given by (1). Note that xs,1 and xr,1 are in-
dependent of each other, since xr,1 is the estimate of the
previous data transmitted by the source. The relay detects
the source signal xs,1 using the interference-oblivious ML
detector, whose decision rule is given by

xr,2 = argmax
x∈Sgsm-mbm

P (y1
r |Hsr,x) = argmin

x∈Sgsm-mbm
∥y1

r −Hsrx∥2. (4)

In the next phase, the relay forwards the detected data xr,2

to the destination. Then, the nd × 1 received signal vector y2
d

at the destination node in the second phase is given by

y2
d = Hrdx

r,2 + n2
d, (5)

where n2
d denotes the additive noise vector whose elements

are i.i.d. and distributed as CN (0, σ2). At the destination, the
ML decision rule is given by

xd,2 = argmin
x∈Sgsm-mbm

∥y2
d −Hrdx∥2. (6)

Note that xd,2 is the estimate of xs,1. The bits corresponding
to xd,2 are demapped as follows: i) the MBM-TU activation
pattern for sd,2 gives ⌊log2

(
ntu

nrf

)
⌋ MBM-TU index bits, ii)

the non-zero entries in sd,2 gives nrf log2 M QAM/PSK bits,
and iii) for each non-zero location j in sd,2, ld,2j gives mrf

mirror index bits; since sd,2 has nrf non-zero entries, a total
of nrfmrf mirror index bits are obtained from ld,2j s.

III. PERFORMANCE ANALYSIS

In this section, we analyze the end-to-end average BEP
performance and the diversity order achieved by the FDR-
MBM system described in Sec. II. All the transmit vectors
are assumed to be equally likely.

A. Average BEP analysis
Let b denote the η× 1 bit vector transmitted by the source

node. Let b̂ denote the estimate of b at the destination. Then,
the end-to-end average BEP can be written as



PB = P (b̂ ̸= b)

=
∑
x

∑
x̂

P (b̂ ̸= b,xs,1 = x,xd,2 = x̂)

=
1

2η

∑
x

∑
x̂

P (b̂ ̸= b|xs,1 = x,xd,2 = x̂)×

P (xd,2 = x̂|xs,1 = x)

=
1

2η

∑
x

∑
x̂

P (xd,2 = x̂|xs,1 = x)
δ(x, x̂)

η

=
1

2η

∑
x

∑
x̂

∑
x̃

P (xr,2 = x̃|xs,1 = x)×

P (xd,2 = x̂|xr,2 = x̃,xs,1 = x)
δ(x, x̂)

η

=
1

2η

∑
x

∑
x̸̂=x

∑
x̃

P (xr,2 = x̃|xs,1 = x)︸ ︷︷ ︸
,Psr(x̃|x)

×

P (xd,2 = x̂|xr,2 = x̃)︸ ︷︷ ︸
,Prd(x̂|x̃)

δ(x, x̂)

η
, (7)

where δ(x, x̂) is the number of bits in which x differs from x̂,
1 ≤ δ(x, x̂) ≤ η when x ̸= x̂, δ(x,x) = 0, the equality in (7)
follows from the fact that xd,2 and xs,1 are independent given
xr,2, Psr(x̃|x) is the probability of the source’s transmitted
vector xs,1 = x being decoded as xr,2 = x̃ at the relay, and
Prd(x̂|x̃) is the probability of the relay’s transmitted vector
xr,2 = x̃ being decoded as xd,2 = x̂ at the destination.

Derivation of Psr(x̃|x): Psr(x̃|x) can be written as
Psr(x̃|x) =

∑
x̄

Psr(x
r,2 = x̃|xs,1 = x,xr,1 = x̄)×

P (xr,1 = x̄|xs,1 = x)

=
1

2η

∑
x̄

Psr(x
r,2 = x̃|xs,1 = x,xr,1 = x̄)︸ ︷︷ ︸

,Psr(x̃|x,x̄)

, (8)

where the equality in (8) follows from the fact that xr,1 and
xs,1 are independent, and Psr(x̃|x, x̄) is the probability of
the source’s transmitted vector xs,1 = x being decoded as
xr,2 = x̃ at the relay given that relay transmitted xr,1 = x̄.
The probability Psr(x̃|x, x̄) can be written as

Psr(x̃|x, x̄) = EHsr

{
Psr(x̃|x, x̄,Hsr)

}
, (9)

where E{.} denotes the expectation operator. From (2) and
(4), the probability Psr(x̃|x, x̄,Hsr) can be written as

Psr(x̃|x, x̄,Hsr)=P

( ∩
x′ ̸=x̃

{
∥Hsr(x−x̃)+ñ1

r∥
2<

∥Hsr(x−x′)+ñ1
r∥

2

})
, (10)

where ñ1
r = Hrrx̄ + n1

r . It is easy to see that ñ1
r ∼

CN
(
0nr×1,

(
σ2 + ∥x̄∥2(E/σ2)−λ

)
Inr

)
, where 0p×1 de-

notes the all zero vector of size p × 1 and Ip denotes the
p × p identity matrix. Using the monotonicity property

(
i.e.,

P (∩kAk) ≤ P (Ak)
)
, the probability in (10) can be upper

bounded as

Psr(x̃|x, x̄,Hsr) ≤


P
(
∥Hsr(x−x̃)+ñ1

r∥
2

<∥ñ1
r∥

2

)
if x ̸= x̃

min
x′ ̸=x

P
(
∥Hsr(x−x′)+ñ1

r∥
2

>∥ñ1
r∥

2

)
if x = x̃

=


Q
(√

∥Hsr(x−x̃)∥2

2(σ2+∥x̄∥2(E/σ2)−λ)

)
if x ̸= x̃

1−max
x′ ̸=x

Q
(√

∥Hsr(x−x′)∥2

2(σ2+∥x̄∥2(E/σ2)−λ)

)
if x = x̃

, (11)

where Q(x) = 1√
2π

∫∞
x

e−
t2

2 dt. Substituting (11) in (9) and
simplifying [15], we get

Psr(x̃|x, x̄)≤


gnr

(
∥x−x̃∥2

4(σ2+∥x̄∥2(E/σ2)−λ)

)
if x ̸= x̃

1−max
x′ ̸=x

gnr

(
∥x−x′∥2

4(σ2+∥x̄∥2(E/σ2)−λ)

)
if x = x̃

=


gnr

(
∥x−x̃∥2

4(σ2+∥x̄∥2(E/σ2)−λ)

)
if x ̸= x̃

1−gnr

(
min
x′ ̸=x

∥x−x′∥2

4(σ2+∥x̄∥2(E/σ2)−λ)

)
if x = x̃

, (12)

where

gk(β) = f (β)
k
k−1∑
i=0

(
k − 1 + i

i

)
(1− f (β))

i
, (13)

f (β) = 1
2

(
1−
√

β
1+β

)
, and the equality in (12) follows from

the monotonically non-increasing nature of gk(β).

Derivation of Prd(x̂|x̃): Following similar steps from
(9)-(12), the Prd(x̂|x̃) can be upper bounded as

Prd(x̂|x̃)≤


EHrd

{
Q
(√

∥Hrd(x̂−x̃)∥2

2σ2

)}
if x̂ ̸= x̃

1−max
x′ ̸=x̃

EHrd

{
Q
(√

∥Hrd(x̃−x′)∥2

2σ2

)}
if x̂ = x̃

(14)

=


gnd

(
∥x̂−x̃∥2

4σ2

)
if x̂ ̸= x̃

1−gnd

(
min
x′ ̸=x̃

∥x̃−x′∥2

4σ2

)
if x̂ = x̃

. (15)

Substituting (8), (12), and (15) in (7) gives an upper bound
on the end-to-end average BEP. Next, we derive the diversity
order achieved by the FDR-MBM system.

B. Diversity analysis

In this subsection, we derive lower and upper bounds on
diversity order denoted by d and show that these bounds turn
out to be the same, given by min{nr(min{λ, 1}), nd}.

1) Lower bound on d: Using Craig’s formula [15], the
expectation of Q(.) function in (11) can be written as

EHsr

{
Q

(√
∥Hsr(x− x̃)∥2

2
(
σ2 + ∥x̄∥2(E/σ2)−λ

))}

= EHsr

{
1

π

∫ π/2

θ=0

exp

(
−∥Hsr(x− x̃)∥2

4
(
σ2+∥x̄∥2(E/σ2)−λ

)
sin2(θ)

)
dθ

}

=
1

π

∫ π/2

θ=0

EHsr

{
exp

(
−∥Hsr(x− x̃)∥2

4
(
σ2+∥x̄∥2(E/σ2)−λ

)
sin2(θ)

)}
dθ



=
1

π

∫ π/2

θ=0

(
1+

∥x− x̃∥2

4
(
σ2+∥x̄∥2(E/σ2)−λ

)
sin2(θ)

)−nr

dθ. (16)

Since ∥x−x̃∥2

4(σ2+∥x̄∥2(E/σ2)−λ) sin2(θ)
≫ 1 at high SNRs

(
i.e., 1 can

be neglected in (16)
)
, we can write

EHsr

{
Q

(√
∥Hsr(x− x̃)∥2

2
(
σ2 + ∥x̄∥2(E/σ2)−λ

))}

≈
( 1

σ2

)−nr min{λ,1}
cx,x̃,x̄,E,λ,nr

, (17)

where cx,x̃,x̂,E,λ,nr
is some constant and it is independent of

σ2, and min{1, λ} is due to the fact σ2 ≪ 1
(
therefore, σ2+

∥x̄∥2(E/σ2)−λ in (16) is dominated by the smallest power
)
.

Similarly, we can write

EHrd

{
Q

(√
∥Hrd(x̂− x̃)∥2

2σ2

)}
≈
( 1

σ2

)−nd

cx̂,x̃,nd
. (18)

Substituting (8), (9), (11), (14), (17), (18), Psr(x|x, x̄) ≤ 1,
and Prd(x̃|x̃) ≤ 1 in (7), and simplifying, we get

PB ≤ 1

22η

∑
x

∑
x̸̂=x

∑
x̄

{( 1

σ2

)−nd

cx̂,x,nd
+
( 1

σ2

)−nr min{λ,1}
cx,x̂,x̄,E,λ,nr

+
∑

x̸̃=x,x̂

( 1

σ2

)−(nr min{λ,1}+nd)

cx,x̃,x̄,E,λ,nrcx̂,x̃,nd

}
δ(x, x̂)

η
, (19)

which shows that the diversity order of PB is lower
bounded by min{nd, nr(min{λ, 1}), nr min{λ, 1} + nd} =
min{nr min{λ, 1}, nd}, i.e.,

d ≥ min{nr(min{λ, 1}), nd}. (20)

2) Upper bound on d: The average BEP in (7) can be lower
bounded as

PB ≥ 1

η22η

∑
x

∑
x̄

∑
x̃ ̸=x

Psr(x̃|x, x̄)
{∑
x̸̂=x

Prd(x̂|x̃)
}
+R1(21)

≥ 1

η22η

∑
x

∑
x̄

∑
x̸̃=x

Psr(x̃|x, x̄)
(
1−Prd(x|x̃)

)
(22)

≥ 1

η22η+1

∑
x

∑
x̄

{∑
x̸̃=x

Psr(x̃|x, x̄)
}

(23)

=
1

η22η+1

∑
x

∑
x̄

{
Psr(x

r,2 ̸= x|x, x̄)
}

≥ 1

η22η+1

∑
x

∑
x̄

EHsr

{
P
(
∥Hsr(x−x′′)+ñ1

r∥2<∥ñ1
r∥2
)}

(24)

=
1

η22η+1

∑
x

∑
x̄

EHsr

{
Q

(√
∥Hsr(x− x′′)∥2

2
(
σ2+∥x̄∥2(E/σ2)−λ

))},(25)

where R1 denotes the remaining summation, the inequality in
(21) follows from δ(x, x̂) ≥ 1, the inequality in (22) follows
from R1 ≥ 0, the inequality in (23) follows from the fact
Prd(x|x̃) ≤ 0.5 when x ̸= x̃ (because Q(.) ≤ 0.5), x′′ is any
transmit vector other than x, and the inequality in (24) follows
from the monotonicity property of the probability. Substituting
(17) in (25), at high SNRs, we have

PB ≥ 1

η22η+1

∑
x

∑
x̄

( 1

σ2

)−nr min{λ,1}
cx,x′′,x̄,E,λ,nr

,
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Fig. 3. BER performance comparison between analytical BER upper bound
and simulated BER of the FDR-MBM system with ntu = 4, nrf =
2,mrf = 3, BPSK, nr = nd = 4, λ = 1, 0.8, 0.5, 0.3, and 10 bpcu.

which shows that the diversity order of PB is upper bounded
by nr(min{λ, 1}), i.e.,

d ≤ nr(min{λ, 1}). (26)

Similarly, the other upper bound nd (i.e., d ≤ nd) can be
obtained as follows:

PB ≥ 1

η22η

∑
x̃

∑
x̄

∑
x̂ ̸=x̃

Prd(x̂|x̃)
{∑
x̸=x̂

Psr(x̃|x, x̄)
}
+R2(27)

≥ 1

η22η

∑
x̃

∑
x̄

∑
x̂ ̸=x̃

Prd(x̂|x̃)
{
1− Psr(x̃|x̂, x̄)

}
(28)

≥ 1

η2η+1

∑
x̃

∑
x̂ ̸=x̃

Prd(x̂|x̃) (29)

≥ 1

η2η+1

∑
x̃

EHrd

{
Q

(√
∥Hrd(x′′′ − x̃)∥2

2σ2

)}
(30)

≈ 1

η2η+1

∑
x̃

( 1

σ2

)−nd

cx′′′,x̃,nd
, (31)

where x′′′ is any transmit vector other than x̃. (31) shows that
the diversity order of PB is upper bounded by nd, i.e.,

d ≤ nd. (32)

From (26) and (32), the diversity order d is upper bounded by
d ≤ min{nr(min{λ, 1}), nd}. (33)

Finally, from (20) and (33), we see that the diver-
sity order (d) achieved by the FDR-MBM system is
min{nr(min{λ, 1}), nd}.

IV. RESULTS AND DISCUSSIONS

In this section, we present the numerical results that validate
the tightness of the analytical upper bound on the average BEP
and the diversity order achieved by the FDR-MBM system.

In Fig. 3, we illustrate the tightness of the upper bound
on the end-to-end average BEP of the FDR-MBM system
with ntu = 4, nrf = 2, mrf = 3, BPSK, nr = nd = 4,
and 10 bpcu for various values of λ = 1, 0.8, 0.5, 0.3. It
can be seen that the analytical upper bound becomes tight
as SNR increases. It is also seen that, as expected, the perfor-
mance degrades as λ decreases (i.e., quality of SI cancellation
technique). For example, to achieve 10−5 BER, the average
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Fig. 5. Diversity orders achieved by FDR-MBM with ntu = 4, nrf = 2,
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SNR required is about 23 dB, 27 dB, 41 dB, and 68 dB for
λ = 1, 0.8, 0.5, and 0.3, respectively.

Figure 4 shows the BER performance comparison between
FDR-MBM and FDR-CM systems. Both the systems use
λ = 1, 0.3, nr = nd = 4, 10 bpcu, and ML detection.
The considered system parameters are as follows. FDR-MBM:
ntu = 4, nrf = 2, i) mrf = 3, BPSK, ii) mrf = 1,
8-QAM; FDR-CM: nt = nrf = 2, 32-QAM, where nt

denotes the number of transmit antennas. Note that FDR-
MBM specializes to FDR-CM when mrf = 0. It is seen that
the analytical upper bound is tight at moderate to high SNRs
for both the systems. Also, it is observed that FDR-MBM
systems achieve better performance compared to FDR-CM.
For example, to achieve 10−5 BER with λ = 1, FDR-MBM
system-2 (mrf = 1 and 8-QAM) requires about 2 dB less
SNR compared to FDR-CM. This is because, to achieve the
same spectral efficiency, FDR-MBM can use a smaller sized
alphabet (8-QAM and BPSK) compared to FDR-CM (32-
QAM). For the same reason, FDR-MBM system-1 (BPSK)
performs better than FDR-MBM system-2 (8-QAM) by about
3 dB. Further, it is seen that the FDR-MBM is more robust to
SI than FDR-CM. For example, at 10−5 BER, the performance
of FDR-CM degrades by about 60 dB when λ is reduced to
0.3 from 1, whereas the degradation in FDR-MBM system-
1 and FDR-MBM system-2 is only about 44 dB and 53 dB,

respectively.
In Fig. 5, we validate the diversity orders of FDR-MBM for

various values of λ = 1, 0.8, 0.5, 0.3. The system parameters
are ntu = 4, nrf = 2,mrf = 3, BPSK, nr = nd = 6, and
10 bpcu. The constants used in the Fig. 5 are c1 = 9000,
c2 = 11000, c3 = 70000, and c4 = 9 ∗ 105. It can be seen
that the slopes of the simulated BER plots in the high SNR
regime (which are nothing but the diversity orders) match with
the analytical diversity plots (i.e., SNR−min{nr min{λ,1},nd}).

V. CONCLUSIONS
We analyzed the performance of a two-hop three-node FD

relay network, where the source and relay nodes transmit
using MBM. We referred to this system as FDR-MBM system.
First, we derived an upper bound on the end-to-end average
BEP of FDR-MBM with ML detection at the relay and
destination nodes. This bound was shown to be increasingly
tight with increasing SNR. Our numerical results showed
that, for the same spectral efficiency, FDR-MBM achieves
better performance compared to FD relaying with conventional
modulation schemes. Next, we derived the diversity order
achieved by the FDR-MBM system. The analytically predicted
diversity order was also validated through simulations. Power
allocation and relay selection in FDR-MBM systems can be
taken up for future work.
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