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Abstract—Orthogonal time frequency space modulation
(OTFS) modulation is a 2-dimensional modulation technique
designed in delay-Doppler domain, suited for doubly dispersive
wireless channels. OTFS modulation has been shown to achieve
superior error performance compared to the conventional multi-
carrier systems. In this paper, we investigate the effect of phase
noise on the performance of OTFS modulation in mmWave
communications, where oscillator phase noise and Doppler shifts
are typically high. Towards this, we first develop a vectorized
formulation of the input-output relation for OTFS modulation
(with OFDM as the inner core) in the delay-Doppler domain,
incorporating oscillator phase noise in the effective channel.
Using a message passing based signal detection algorithm, we
show that OTFS is more robust to oscillator phase noise than
OFDM in high Doppler mmWave channels. At an SNR for 14
dB, OTFS achieves two to three order better BER performance
compared to OFDM in the presence of oscillator phase noise in
a 28 GHz system.

keywords: OTFS modulation, OFDM, delay-Doppler do-

main, oscillator phase noise, mmWave communication.

I. INTRODUCTION

The demand for high data rates and the availability of

huge amount of spectrum in mmWave frequency bands have

motivated the design of high throughput wireless systems that

operate at mmWave frequencies [1],[2]. However, there are

several challenges associated with mmWave communication

systems that need to be addressed. The high carrier frequencies

used in mmWave systems cause higher Doppler shifts even

in low/medium mobility scenarios, making them vulnerable

to mobility. Also, higher phase noise associated with high

frequency oscillators used in mmWave systems are considered

detrimental. Conventional multicarrier modulation techniques

like OFDM are primarily designed to mitigate the effect

of inter-symbol interference (ISI). The performance of these

multicarrier systems depends significantly on the orthogonality

of the subcarriers. However, Doppler shift and phase noise

effects perturb the orthogonality of subcarriers in these sys-

tems, leading to inter-carrier interference (ICI) that results in

performance degradation.

Orthogonal time frequency space (OTFS) modulation is

a recently proposed modulation scheme, designed in delay-

Doppler domain, suited for high Doppler fading channels

[3]-[12]. OTFS modulation uses a series of transformations

which convert a rapidly time-varying fading channel into an

almost invariant channel in the delay-Doppler domain such
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that all symbols in a transmission frame experience nearly

constant channel gain. This relatively constant channel gain

experienced by all the symbols in an OTFS transmission frame

can greatly simplify the design of equalizer and reduce the

overhead on the channel estimation in rapidly time-varying

channels. The transformations used by the OTFS modulation

spread the information symbols in the delay-Doppler across

the entire time-frequency plane, thereby resulting in superior

performance compared to the conventional OFDM systems.

OTFS has been shown to achieve significantly better bit error

performance compared to OFDM for vehicle speeds ranging

from 30 km/h to 500 km/h in 4 GHz band [4],[5]. OTFS

operation in mmWave frequency bands has been studied in

[6]. Low-complexity signal detectors have been proposed for

OTFS signal detection in [7],[8]. Signal detection and channel

estimation aspects of OTFS in multiple-input-multiple-output

(MIMO) setting have been considered in [9]. The diversity

achieved by OTFS has been analyzed in [10]. It has been

suggested in [4] that OTFS modulation can be implemented

by adding pre- and post- processing blocks to conventional

multicarrier modulation systems such as OFDM. Design of

OFDM based OTFS systems have been discussed in [11],[12].

This paper addresses the effect of oscillator phase noise on

the performance of mmWave OTFS systems, which has not

been reported before. Towards this, we first develop a vector-

ized formulation for OFDM based OTFS modulation, which

is modular and hence allows us to incorporate the oscillator

phase noise in the system model in a structured manner. An

RF carrier frequency of 28 GHz with oscillator phase noise

characteristics in 3GPP standards [13],[14],[15] is considered.

Employing a low-complexity message passing based signal

detection algorithm operating on the OFDM based OTFS

system model, we investigate the bit error performance in the

presence of oscillator phase noise. Our simulation results show

that OTFS is more robust to phase noise effects compared to

OFDM under various Doppler shifts.

The rest of the paper is organized as follows. The vectorized

formulation for OFDM based OTFS modulation which incor-

porates the oscillator phase noise effects is presented in Sec.

II. Message passing based signal detection for the considered

system model is presented in Sec. III. Simulation results and

discussions on the performance in the presence of phase noise

is presented in Sec. IV. Conclusions are presented in Sec. V.

II. SYSTEM MODEL

In this section, we briefly introduce the OTFS modulation,

present the vectorized input-output relation for OTFS realized



using pre- and post-processing blocks to OFDM, and incorpo-

rate the transmitter and receiver phase noise into the vectorized

formulation of the input-output relation.

A. OTFS modulation

The block diagram for OTFS modulation architected over

OFDM system is shown in Fig. 1. The inner box in the block

diagram is the familiar OFDM system and the outer box that

includes the pre- and post-processor is the OTFS scheme

that operates in the delay-Doppler domain. At the OTFS

transmitter, the information symbols (e.g., QAM symbols)

denoted by xDD[k, l] in the delay-Doppler domain are mapped

to the time-frequency (TF) symbols XTF[m,n] through the

2D inverse symplectic finite Fourier transform (ISFFT) and

windowing. This TF signal is then passed through the OFDM

modulator. The output of the OFDM modulator is transmitted

over the linear time-variant (LTV) channel. At the receiver, the

received signal is demodulated using OFDM demodulator to

obtain the TF symbols YTF[m,n]. The TF symbols YTF[m,n]
thus obtained are mapped back to the delay-Doppler domain

symbols yDD[k, l] using the symplectic finite Fourier transform

(SFFT). The series of transformations involved in OTFS

modulation transforms a time-varying multipath channel into

a slowly varying channel in the delay-Doppler domain.

B. Vectorized formulation for OFDM based OTFS

The information symbols xDD[k, l], k = 0, · · · ,M − 1, l =
0, · · · , N − 1 are treated as points on the 2D delay-Doppler

grid. The transmitter maps these symbols in the 2D delay-

Doppler domain to time-frequency (TF) domain through the

inverse symplectic Fourier transform (SFFT−1) operation as

XTF[m,n] =
1√
MN

M−1∑

k=0

N−1∑

l=0

xDD[k, l]e
−j2π(mk

M
−nl

N
). (1)

Let XDD ∈ C
M×N denote the matrix with information

symbols xDD[k, l] in delay-Doppler domain and XTF denote

the M×N matrix with entries XTF[m,n], m = 0, · · · ,M−1,

n = 0, · · · , N − 1 in the TF domain. A closer look at (1)

reveals that SFFT−1 of XDD is equivalent to computing M -

point discrete Fourier transform (DFT) along the columns of

XDD and N -point inverse discrete Fourier transform (IDFT)

along the rows of XDD. Denoting the M -point DFT matrix by

FM and N -point IDFT matrix by FH
N , (1) can be written as

XTF = FMXDDF
H
N . (2)

The matrix operation in (2) can be vectorized as

xTF = (FH
N ⊗ FM )xDD, (3)

where xTF =vec(XTF), xDD =vec(XDD), and ⊗ denotes the

Kronecker product operation. The signal vector xTF ∈ C
MN×1

is then partitioned into N blocks, each of length M , denoted

by x
(n)
TF , n = 0, · · · , N − 1. Each block x

(n)
TF of length M is

then fed to an OFDM modulator with M subcarriers. The

OFDM modulator multiplies each block with an M -point

IDFT matrix FH
M and adds cyclic prefix (CP) to each block.

If Lcp denotes the length of the CP used, then the length of

each block after cyclic prefixing will be L=M + Lcp. Let

Icp=[AT
cp IM ]

T
denote the L×M CP insertion matrix, where

Acp is the matrix with last Lcp rows of the identity matrix IM .

These operations are performed on each of the N blocks as

x̃TF = (IN ⊗ Icp)(IN ⊗ FH
M )xTF. (4)

The vector x̃TF is then transmitted through the LTV channel,

and the received signal vector at the receiver is given by

ỹTF = HTVx̃TF +w, (5)

where HTV∈CNL×NL denotes the channel matrix and w ∼
CN (0, σ2I). Assuming that the channel has P propagation

paths and denoting the channel gain, delay, and Doppler

associated with the ith path by hi, τi, and νi, respectively,

the entries of HTV are given by [8],[9]

hTV(τ, n) =
P∑

i=1

hie
j2πνin

M∆f δ(τ − τi). (6)

At the receiver, the received vector is partitioned into N blocks

of length L and CP is removed from each block. Let RCP=
[0M×Lcp IM ] denote the M × L matrix that removes the CP

from each OFDM symbol. This is followed by an M -point

DFT on each block. Cyclic prefix removal and DFT operations

on each of the N blocks can be vectorized as

yTF = (IN ⊗ FM )(IN ⊗RCP)ỹTF. (7)

Now, let YTF denote the M×N matrix with entries YTF[m,n],
m = 0, · · · ,M − 1, n = 0, · · · , N − 1 in TF domain, such

that yTF = vec(YTF). An SFFT operation is performed on

YTF that maps the points YTF[m,n] in TF domain to points

in delay-Doppler domain, denoted by yDD[k, l], given by

yDD[k, l] =

N−1∑

n=0

M−1∑

m=0

YTF[m,n]ej2π(
mk
M

−nl
N

). (8)

The SFFT of YTF is equivalent to computing N -point DFT

along the rows of YTF and M -point IDFT along the columns

of YTF. Hence, (8) can be written as

YDD = FH
MYTFFN . (9)

With yDD=vec(YDD), (9) can be vectorized as

yDD = (FN ⊗ FH
M )yTF. (10)

Using (3) to (7) in (10), the end-to-end input-output system

model of the OFDM based OTFS system is given by

yDD = (FN ⊗ FH
M )(IN ⊗ FM )(IN ⊗Rcp)HTV

(IN ⊗ Icp)(IN ⊗ FH
M )(FH

N ⊗ FM )xDD + ŵ. (11)

Note that ŵ=(FN ⊗ FH
M )(IN ⊗ FM )(IN ⊗ Rcp)w has the

same statistics as w. From (11), the effective channel matrix

in the delay-Doppler domain is given by

HDD =(FN ⊗ FH
M )(IN ⊗ FM )(IN ⊗Rcp)HTV

(IN ⊗ Icp)(IN ⊗ FH
M )(FH

N ⊗ FM ). (12)
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Fig. 1: OFDM based OTFS modulation scheme.

If A, B, C, D are square matrices, then (A⊗B)(C⊗D) =
(AC⊗BD). Using this property, (12) can be simplified as

HDD = (FN ⊗Rcp)HTV(F
H
N ⊗ Icp). (13)

The input-output relation in (11) can then be expressed as

yDD = HDDxDD + ŵ, (14)

where xDD = vec(XDD) and yDD = vec(YDD) denote the

input and output signal vectors in delay-Doppler domain,

respectively, HDD denotes the effective channel matrix in

delay-Doppler domain, and ŵ is the AWGN vector.

C. OTFS system with phase noise

In this subsection, the oscillator phase noise associated with

the transmitter and receiver is incorporated in the end-to-end

OTFS system model in (11). The oscillator output with carrier

frequency fc and phase noise process θpn(t), pn ∈ {tx, rx}, at

the transmitter (tx) and receiver (rx), can be modeled as [14]

spn(t) = ej2πfct+θpn(t). (15)

In the discrete time equivalent baseband model, the phase

noise process for the nth sample time can be written as

spn(n) = ejθpn(n). (16)

The received signal in (11), affected by transmitter and re-

ceiver phase noise, can then be written in the form

ỹDD = (FN ⊗ FH
M )(IN ⊗ FM )(IN ⊗Rcp)ΘrxHTVΘtx

(IN ⊗ Icp)(IN ⊗ FH
M )(FH

N ⊗ FM )xDD + ŵ. (17)

where Θtx and Θrx denote the phase noise matrices at the

transmitter and the receiver, respectively, and are given by

Θpn = diag{spn(0), spn(1), · · · , spn(NL− 1)}. (18)

Thus, from (13) and (17), the effective channel matrix taking

into account the transmitter and receiver phase noise matrices

Θtx and Θrx, can be written in the form

H̃DD =(FN ⊗ FH
M )(IN ⊗ FM )(IN ⊗Rcp)ΘrxHTVΘtx

(IN ⊗ Icp)(IN ⊗ FH
M )(FH

N ⊗ FM )

=(FN ⊗Rcp)ΘrxHTVΘtx(F
H
N ⊗ Icp). (19)

Consequently, as in (14), the received signal with transmitter

and receiver oscillator phase noise is given by

ỹDD = H̃DDxDD + ŵ. (20)

III. OTFS SIGNAL DETECTION USING MESSAGE PASSING

In this section, we consider OTFS signal detection with

oscillator phase. For this we develop a message passing

algorithm for the system model in (20). Dropping the sub-

scripts and tildes in (20) for notational convenience, we write

the system model (20) in as y = Hx + ŵ. This system

can be modeled as a sparsely connected factor graph with

MN variable nodes corresponding to x and MN observation

nodes corresponding to y. Let us denote the sets of indices

corresponding to the non-zero positions in the bth row and ath

column of H by ζb and ζa, respectively. Each observation node

yb is connected to the set of variable nodes {xc, c ∈ ζb}, and

each variable node xa is connected to the set of observation

nodes {yc, c ∈ ζa}. Denoting the modulation alphabet by A,

the maximum a posteriori (MAP) detection rule for estimating

the transmitted signal vector x is given by

x̂ = argmax
x∈AMN

Pr(x|y,H). (21)

The joint MAP detection as per (21) has exponential com-

plexity. Hence, we use symbol by symbol MAP rule for

0 ≤ a ≤ MN − 1 for detection as follows:

x̂a = argmax
aj∈A

Pr(xa = aj |y,H)

= argmax
aj∈A

1

|A|Pr(y|xa = aj ,H)

≈ argmax
aj∈A

∏

c∈ζa

Pr(yc|xa = aj ,H).

The transmitted symbols are assumed to be equally likely

and the components of y are nearly independent for a given

xa due to the sparsity in H. The above detection problem can

be solved using message passing. The message that is passed

from the variable node xa, for each a = {0, 1, · · · ,MN −1},

to the observation node yb for b ∈ ζa, is the pmf denoted by

pab = {pab(aj)|aj ∈ A} of the symbols in the alphabet A.

The steps involved in the message passing detection are:

1: Inputs: y, H, Nmax: maximum number of iterations.

2: Initialization: Iteration index t = 0, pmf p
(0)
ab =

1/|A| ∀ a ∈ {0, 1, · · · ,MN − 1} and b ∈ ζa.

3: Messages from yb to xa: The message passed from yb to

xa is a Gaussian pdf which can be computed from



Parameter Value

Carrier frequency (GHz) 28

Bandwidth (MHz) 10

Subcarrier spacing, ∆f (kHz) 78.125

Frame size (M,N ) (128,64)

Modulation BPSK

No. of taps, P 5

Delay profile (µs) 0.3, 1, 1.7, 2.4, 3.1

Doppler profile (Hz) 0, -400, 400, -1220, 1220

TABLE I: System parameters.

yb = xaHb,a +
∑

c∈ζb,c 6=a

xcHb,c + ŵb

︸ ︷︷ ︸

Iba

. (22)

The interference plus noise term Iba is approximated as a

Gaussian r.v with mean and variance given by

µ
(t)
ba = E[Iba] =

∑

c∈ζb,c 6=a

|A|
∑

j=1

p
(t)
cb (aj)ajHb,c,

(σ
(t)
ba )

2 =
∑

c∈ζb
c 6=a

(
|A|
∑

j=1

p
(t)
cb (aj)|aj |2|Hb,c|2 − (23)

∣
∣
∣
∣

|A|
∑

j=1

p
(t)
cb (aj)ajHb,c

∣
∣
∣
∣

2
)

+ σ2.

4: Messages from xa to yb: Messages passed from variable

nodes xa to observation nodes yb is the pmf vector p
(t+1)
ab

with the entries given by

p
(t+1)
ab = ∆ p

(t)
ab (aj) + (1−∆) p

(t−1)
ab (aj), (24)

where ∆ ∈ (0, 1] is the damping factor for improving

convergence rate, and

p
(t)
ab ∝

∏

c∈ζa,c 6=b

Pr(yc|xa = aj ,H), (25)

where

Pr(yc|xa = aj ,H) ∝ exp

(

−|yc − µ
(t)
ca −Hc,aaj |2

σ
2(t)
c,a

)

.

5: Stopping criterion: Repeat steps 3 & 4 till

max
a,b,aj

|p(t+1)
ab (aj) − p

(t)
ab (aj)| < ǫ (where ǫ is a small

value) or the max. number of iterations, Nmax, is reached.

6: Output: Output the detected symbol as

x̂a = argmax
aj∈A

pa(aj), a ∈ 0, 1, 2, · · · ,MN − 1, (26)

where

pa(aj) =
∏

c∈ζa

Pr(yc|xa = aj ,H). (27)
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Fig. 2: PSD of oscillator phase noise for various carrier

frequencies (4 GHz, 28 GHz, 60 GHz).

IV. RESULTS AND DISCUSSIONS

In this section, we present the performance of OTFS

modulation in 28 GHz (mmWave frequency band) in the

presence of phase noise and Doppler spread. We evaluated

the BER performance of OTFS in the presence of Doppler

shift and phase noise using message passing detection. For

the same system settings, we also evaluated the performance

of OFDM for comparison. The system parameters considered

for BER performance evaluation are summarized in Table I.

The oscillator phase noise at the transmitter and the receiver

is modeled as in [14]. The power spectral density (PSD) of

the phase noise is given by [14]

L(fm) =
B2

PLL
L0

B2
PLL

+ f2
m

+ Lfloor, (28)

where BPLL is the phase locked loop (PLL) -3 dB bandwidth,

fm is the frequency offset from the carrier frequency (fc), L0

is the in-band phase noise level in rad2/Hz, and Lfloor is the

noise floor. It is noted that the oscillator phase noise increases

with increased carrier frequencies [15]. This is illustrated in

Fig. 2 where the PSD for carrier frequencies of 4 GHz, 28

GHz, and 60 GHz are plotted. These PSDs are plotted using

(28) and the parameters obtained from practical oscillators

reported in [15] for a base carrier frequency (fc,base) of 30

GHz and shifting its PSD by 20 log(fc/fc,base) dBc/Hz. The

variance of the phase noise samples generated corresponding

to the PSDs in Fig. 2 as a function of BPLL (parameterized by n,

where BPLL = n∆f and ∆f is the subcarrier spacing) is shown

in Fig. 3. As we can see, the phase noise variance increases as

the PLL bandwidth relative to the subcarrier spacing increases,

and this results in increased inter-carrier interference.

We consider a channel model with P = 5 paths (taps) and

exponential power delay profile. The propagation in mmWave

frequencies is dominated by the line-of-sight component, due

to which the first tap is considered to follow a Rician fading

distribution and the subsequent paths are considered to follow

Rayleigh distribution, as in the tapped delay line model (TDL-

D) in [13]. The Doppler and delay profiles considered are
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Fig. 3: Variance of the oscillator phase noise as a function of

n where BPLL = n∆f .

given in Table I. As can be seen, a maximum Doppler shift of

1.22 kHz (which corresponds to a maximum speed of 47 km/h

at 28 GHz carrier frequency) is considered. A Rice factor of

13 dB, BPSK modulation, and a damping factor of 0.5 for the

message passing algorithm are used.

Figure 4 shows a BER performance comparison between

OTFS and OFDM for the system settings described above

with a BPLL value of 10∆f (which corresponds to a high

phase noise scenario). From this figure, we observe that the

performance of OTFS is superior compared to that of OFDM

in the presence of phase noise and Doppler shifts. For example,

at a BER of 10−3, the performance of OTFS is better than

that of OFDM by about 3 dB. Next, Fig. 5 shows the effect of

phase noise alone (i.e., zero Doppler) on the performance of

OTFS and OFDM. This figure shows the BER as a function of

BPLL = n∆f at a signal-to-noise ratio (SNR) of 14 dB. A two

order better BER performance is observed in favor of OTFS

compared to OFDM (10−5 BER in OTFS vs 10−3 BER in

OFDM) for BPLL = 10∆f . It can also be observed that while

OTFS achieves better than 10−5 BER for BPLL values from ∆f
up to 10∆f , OFDM is unable to achieve even 10−4 BER at a

BPLL of just ∆f . It is seen that there is a three order better BER

performance in favor of OTFS for BPLL = ∆f (i.e., n = 1).

These results illustrate that OTFS is more resilient to oscillator

phase noise in the mmWave band compared to OFDM.

V. CONCLUSIONS

OTFS modulation is a promising multiplexing technique in

the delay-Doppler domain, specially suited for high Doppler

fading channels. In this work, we presented an end-to-end

OFDM based OTFS system model in a vectorized form, which

can incorporate the oscillator phase noise at the transmitter and

the receiver. Using message passing based signal detection for

this system model, we showed that OTFS is more resilient to

Doppler shifts and phase noise in the mmWave band.

REFERENCES

[1] T. S. Rappaport, R. W. Heath, Jr., J. N. Murdock, and R. C. Daniels,
Millimeter Wave Wireless Communications, Prentice Hall, 2014.

0 5 10 15

SNR in dB

10
-6

10
-4

10
-2

10
0

B
it

 e
rr

o
r 

ra
te

OFDM

OTFS

Fig. 4: BER performance comparison between OTFS and

OFDM systems with phase noise and Doppler shifts.

1 2 3 4 5 6 7 8 9 10

10
-6

10
-4

10
-2

B
it

 e
rr

o
r 

ra
te

OFDM

OTFS

Fig. 5: BER performance comparison between OTFS and

OFDM as a function of BPLL = n∆f with zero Doppler.

[2] Y. Niu, Y. Li, D. Jin, L. Su, and A. V. Vasilakos, “A survey of millimeter
wave (mmWave) communications for 5G: opportunities and challenges,”
Wireless Networks, vol. 21, no. 8, pp. 2657-2676, Aug. 2015.

[3] R. Hadani, S. Rakib, S. Kons, M. Tsatsanis, A. Monk, C. Ibars, J. Delfeld,
Y. Hebron, A. J. Goldsmith, A. F. Molisch, and R. Calderbank, “Or-
thogonal time frequency space modulation,” online: arXiv:1808.00519v1
[cs.IT] 1 Aug 2018.

[4] R. Hadani, A. Monk, “OTFS: A new generation of modulation addressing
the challenges of 5G,” online: arXiv:1802.02623 [cs.IT] 7 Feb 2018.

[5] R. Hadani, S. Rakib, M. Tsatsanis, A. Monk, A. J. Goldsmith, A. F.
Molisch, and R. Calderbank, “Orthogonal time frequency space modula-
tion,” Proc. IEEE WCNC’2017, pp. 1-7, Mar. 2017.

[6] R. Hadani, S. Rakib, A. F. Molisch, C. Ibars, A. Monk, M. Tsatsanis, J.
Delfeld, A. Goldsmith, and R. Calderbank, “Orthogonal time frequency
space (OTFS) modulation for millimeter-wave communications systems,”
in Proc. IEEE MTT-S Intl. Microwave Symp., pp. 681-683, Jun. 2017.

[7] P. Raviteja, K. T. Phan, Y. Hong, and E. Viterbo, “Interference can-
cellation and iterative detection for orthogonal time frequency space
modulation,” IEEE Trans. Wireless Commun., vol. 17, no. 10, pp. 6501-
6515, Aug. 2018.

[8] K. R. Murali and A. Chockalingam, “On OTFS modulation for high-
Doppler fading channels,” Proc. ITA’2018, San Diego, Feb. 2018.

[9] M. K. Ramachandran and A. Chockalingam, “MIMO-OTFS in high-
Doppler fading channels,” Proc. IEEE GLOBECOM’2018, Dec. 2018.
Online: arXiv:1805.02209v1 [cs.IT] 6 May 2018.

[10] G. D. Surabhi, R. M. Augustine, and A. Chockalingam, “On the
diversity of OTFS modulation in doubly-dispersive channels,” Online:
arXiv:1808.07747 [sc.IT] 23 Aug 2018.

[11] L. Li, H. Wei, Y. Huang, Y. Yao, W. Ling, G. Chen, P. Li, and



Y. Cai, “A simple two-stage equalizer with simplified orthogonal time
frequency space modulation over rapidly time-varying channels,” online:
arXiv:1709.02505v1 [cs.IT] 8 Sep 2017.

[12] A. Farhang, A. R. Reyhani, L. E. Doyle, and B. Farhang-Boroujeny,
“Low complexity modem structure for OFDM-based orthogonal time
frequency space modulation,” IEEE Wireless Commun. Lett., vol. 7, no.
3, pp. 344 - 347, Jun. 2018.

[13] 3GPP TR 138.900 V14.2.0: Study on channel model for frequency

spectrum above 6 GHz, Release 14 (2017-06).
[14] L. Smaini, RF Analog Impairments Modeling for Communication Sys-

tems Simulation: Application to OFDM-Based Transceivers, Wiley, 2012.
[15] 3GPP R1-163984: Discussion on phase noise modeling, 3GPP TSG

RAN WG1 #85, May 2016.


