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Abstract—Orthogonal time frequency space (OTFS) modula-
tion is a 2-dimensional modulation technique designed in delay-
Doppler domain, specially suited for doubly-dispersive fading
channels. OTFS modulation uses additional transform operations
at the transmitter and receiver on top of conventional multicar-
rier modulation operations, and is shown to achieve superior
performance compared to OFDM in high-Doppler channels. It
has been shown in the recent literature that the asymptotic
diversity order of OTFS modulation is one. Also, OTFS with
phase rotation using transcendental numbers has been shown to
achieve full diversity in the delay-Doppler domain. In this paper,
for the first time in the literature, we propose and investigate the
use of space-time coding (STC) in OTFS modulation in a MIMO
setting. We use the structure of Alamouti code, generalized to
matrices, to achieve full transmit diversity in OTFS. We also
show that the use of STC-OTFS along with phase rotation can
achieve full diversity in both spatial and delay-Doppler domains.
Also, STC-OTFS is found to achieve good diversity performance
even with small frame sizes in the finite SNR regime making it
suited for low-latency applications.

Keywords – OTFS modulation, delay-Doppler domain, space-

time coding, STC-OTFS, full diversity.

I. INTRODUCTION

Wireless communication systems in the fifth generation and

beyond are envisaged to operate in high-Doppler environments

such as V2X communications, high speed trains, and mmWave

communications, where the systems should be capable of

providing high reliability and throughput in rapidly changing

channel environments. The channel fading in such scenarios is

often doubly dispersive in nature with high Dopplers. Orthog-

onal time frequency space (OTFS) modulation is a promising

physical layer multiplexing technique that can achieve superior

error performances compared to conventional multicarrier sys-

tems (such as OFDM) in such high-Doppler channels [1]-[7].

A key feature that differentiates OTFS modulation from other

conventional modulation schemes is that information sym-

bols in OTFS are multiplexed in the delay-Doppler domain,

whereas they are multiplexed in the time-frequency domain in

conventional modulation schemes. An advantage of signaling

in the delay-Doppler domain is that a channel rapidly varying

in time manifests as an almost invariant channel when viewed

in the delay-Doppler domain. This relatively constant channel

gain experienced by all the symbols in an OTFS transmission

frame can greatly simplify the design of equalizer and reduce

the overhead on the channel estimation in rapidly time-varying

channels.

OTFS modulation was first proposed in [1] and was shown

to achieve significantly better error performances compared to

OFDM for vehicle speeds ranging from 30 kmph to 500 kmph

in 4 GHz band [1]-[3]. OTFS is also shown to perform well in

28 GHz mmWave frequency band where Dopplers can be quite

high even for low/moderate vehicle speeds because of the high

carrier frequencies involved [4]. OTFS modulation architected

over the conventional OFDM has been considered in [5].

The performance of OTFS with low-complexity detection

algorithms has been investigated in [6],[7]. Low-complexity

signal detection and channel estimation aspects in multiple-

input multiple-output OTFS (MIMO-OTFS) systems have

been explored in [8]. While [8] considered OTFS with multiple

transmit antennas, it did not consider OTFS with space-time

coding. A formal analysis of the asymptotic diversity order of

OTFS is presented in [9], where it has been shown that the

asymptotic diversity order of OTFS (as SNR → ∞) is one.

Further, potential for higher diversity orders in the finite SNR

regime for large OTFS frame sizes has been pointed out in [9].

Also, [9] presents a phase rotation scheme for OTFS that uses

transcendental numbers and extracts the full diversity offered

by the delay-Doppler channel.

In this paper, for the first time in the emerging OTFS

literature, we explore the possibility of extracting full diversity

in both spatial as well as delay-Doppler domains in OTFS

using space-time coding (STC). Specifically, since OTFS is

a 2D modulation, we extend the well-known Alamouti code

structure to a matrix form in OTFS and propose a STC-OTFS

scheme. We show that the proposed STC-OTFS system can

achieve full spatial diversity. Next, we propose the use STC-

OTFS along with a phase rotation scheme and show that

the proposed STC-OTFS with phase rotation can achieve full

spatial and delay-Doppler diversity. This scheme is simple and

attractive for low-latency systems which use small frame sizes

for low decoding delays.

The rest of the paper is organized as follows. The OTFS

modulation in SISO and MIMO settings is presented in Sec.

II. The proposed STC-OTFS scheme, diversity analysis, and

phase rotation scheme are presented in Sec. III. Simulation

results and discussions are presented in Sec. IV. Conclusions

are presented in Sec. V.

II. OTFS MODULATION

The basic premise in OTFS modulation is the use of delay-

Doppler domain for multiplexing the modulation symbols. The

block diagram for OTFS modulation scheme is shown in Fig.

1. The inner box in the block diagram can be any multicarrier

time-frequency (TF) modulation and the outer box with pre-

and post-processor constitutes the OTFS modulator.
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Fig. 1: OTFS modulation scheme.

A. Time-frequency modulation

• The TF plane is sampled at intervals T and ∆f , respec-

tively, to obtain a 2D grid Λ, which is defined as

Λ = {(nT,m∆f), n = 0, · · · , N−1,m = 0, · · · ,M−1}.
(1)

• The signal in TF domain X[n,m], n = 0, · · · , N − 1,

m = 0, · · · ,M − 1 in a given packet burst has duration

NT and occupies a bandwidth of M∆f .

• Transmit and receive pulses gtx(t) and grx(t), respec-

tively, which are assumed to be bi-orthogonal are used.

The TF signal X[n,m] is transformed to the time domain

signal x(t) through Heisenberg transform, given by

x(t) =

N−1∑

n=0

M−1∑

m=0

X[n,m]gtx(t− nT )ej2πm∆f(t−nT ).

(2)

• At the receiver, the received signal is matched filtered

with the pulse grx(t), yielding the cross-ambiguity func-

tion Agrx,y(τ, ν). Sampling this function on the lattice Λ
yields the matched filter output, given by

Y [n,m] = Agrx,y(τ, ν)|τ=nT,ν=m∆f . (3)

• If the complex baseband channel impulse response

h(τ, ν) has finite support bounded by (τmax, νmax), the

relation between Y [n,m] and X[n,m] for TF modulation

is given by [3]

Y [n,m] = H[n,m]X[n,m] + V [n,m], (4)

where V [n,m] is additive white Gaussian noise and

H[n,m] is given by

H[n,m] =

∫

τ

∫

ν

h(τ, ν)ej2πνnT e−j2π(ν+m∆f)τdνdτ.

(5)

B. OTFS modulation

• The information symbols in the delay-Doppler domain

x[k, l] are mapped to TF domain symbols X[n,m] as

X[n,m] =
1

MN

N−1∑

k=0

M−1∑

l=0

x[k, l]ej2π(
nk

N
−ml

M ). (6)

• X[n,m] is then TF modulated as described in the previ-

ous subsection for transmission through the channel. The

received signal y(t) is transformed into Y [n,m] using

Wigner filter as described by (3).

• Y [n,m] is then converted from TF domain to delay-

Doppler domain to obtain y[k, l] as

y[k, l] =
1

MN

N−1∑

k=0

M−1∑

l=0

Y [n,m]e−j2π(nk

N
−ml

M ). (7)

C. Input-output relation in OTFS

Consider a baseband delay-Doppler channel h(τ, ν) with P
taps or P clusters of reflectors, each associated with a delay

τi, a Doppler νi and a fade coefficient hi. Using (2) through

(7), the input-output relation for the P path channel (assuming

rectangular transmit and receive window functions) is given by

[6]

y[k, l] =

P∑

i=1

h′
ix[((k − βi))N , ((l − αi))M )] + v[k, l], (8)

where h′
is are given by

h′
i = hie

−j2πνiτi , (9)

αi and βi are assumed to be integers and they denote the

indices of the delay tap and Doppler frequency tap correspond-

ing to τi and νi, respectively (τi ,
αi

M∆f
and νi ,

βi

NT
), and

v[k, l] denotes the additive white Gaussian noise. The input-

output relation in (8) can be vectorized as [6]

y = Hx+ v, (10)

where H ∈ C
MN×MN , xk+Nl = x[k, l], yk+Nl = y[k, l],

and vk+Nl = v[k, l], k = 0, · · · , N − 1, l = 0, · · · ,M −
1. It is assumed that the his are i.i.d and are distributed as

CN (0, 1/P ), assuming uniform scattering profile.

D. MIMO-OTFS

For a MIMO-OTFS system with nt transmit and nr receive

antennas, the linear vector channel in (10) can be extended

and the input output relation can be written as [8]

yMIMO = HMIMOxMIMO + vMIMO, (11)

where

HMIMO =








H11 H12 . . . H1nt

H21 H22 . . . H2nt

...
...

. . .
...

Hnr1 Hnr2 . . . Hnrnt







, (12)
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Fig. 2: STC-OTFS scheme.

Hij denotes the MN × MN equivalent channel matrix

between the jth transmit antenna and ith receive antenna,

xMIMO = [x1
T ,x2

T , · · · ,xnt

T ]
T

∈ C
ntNM×1 is the MIMO-

OTFS transmit vector, yMIMO = [y1
T ,y2

T , · · · ,ynt

T ]
T

∈
C

ntNM×1 is the MIMO-OTFS received vector, and vMIMO is

the noise vector.

III. SPACE-TIME CODED OTFS

In this section, we present the STC-OTFS scheme. The

block diagram of the STC-OTFS is shown in Fig. 2. We first

introduce an alternate input-output relation for OTFS which

is crucial for the construction of space-time code for OTFS.

This representation also simplifies the diversity analysis of the

space-time code.

A. An alternate input-output relation for OTFS

Consider the vectorized formulation of the input-output

relation in OTFS given by (10). Due to the modulo operations

in (8), there are only P non-zero elements in each row and

column of the equivalent channel matrix H in (10). Also, it

can be seen from (8) that each transmitted symbol experiences

the same channel gain. Therefore, H has only P (which can

be maximum up to MN ) unique non-zero entries in it. With

this, the vectorized input-output model in (10) can be written

in an alternate form as

yT = h′X+ vT , (13)

where yT is 1×MN received vector, h′ is 1×MN vector

with its m = (k+Nl)th entry given by h′
m = h[l, k]e−j2π l

M

k

N

and contains P non-zero elements, vT is the 1 ×MN noise

vector, and X is an MN × MN matrix whose ith column

(i = k + Nl, i = 0, 1, · · · ,MN − 1), denoted by X[i], is

given by

X[i] =










x(k−0)N+N(l−0)M

x(k−1)N+N(l−0)M
...

x(k−(N−2))N+N(l−(M−1))M

x(k−(N−1))N+N(l−(M−1))M










. (14)

The matrix X is an MN ×MN matrix with x as its first row

and the remaining rows being the permutations of x. Also,

X is a block circulant matrix with M circulant blocks, each

of size N ×N . The extension of the alternate representation

in (13) to MIMO-OTFS is straightforward and is crucial for

space-time coding in OTFS. In the effective MIMO-OTFS

channel matrix in (12), assuming each Hij has only P unique

entries (P tap channel), HMIMO has Pntnr unique entries.

Further, each row of HMIMO has only ntP non-zero elements

and each column has only nrP non-zero elements. Following

(13), the MIMO-OTFS system model in (11) can be written

in an alternate form as








yT
1

yT
2
...

yT
nr







=








h′
11 h′

12 · · · h′
1nt

h′
21 h′

22 · · · h′
2nt

...

h′
nr1 h′

nr2 · · · h′
nrnt















X1

X2

...

Xnt







+








vT
1

vT
2
...

vT
nr







, (15)

where yT
i ∈ C

1×MN , i ∈ {1, 2, · · · , nr} is the received

vector at the ith receive antenna, Xj ∈ C
MN×MN , j ∈

{1, 2, · · · , nt} is the symbol matrix corresponding to jth

transmit antenna, and h′
ij is the 1×MN channel vector from

jth transmit antenna to ith receive antenna, as defined in (13).

B. Encoding and decoding

Consider OTFS signaling over a nt × nr MIMO channel.

We assume quasi-static delay-Doppler channel over T ′ frame

duration, i.e., NTT ′ channel uses. A STC-OTFS codeword

matrix can be defined as a block matrix X̃ of size ntMN ×
T ′MN , in which each block X̃kt denotes MN ×MN OTFS

transmit matrix from the kth antenna in the tth frame use. If

the space-time code matrix X̃ contains Q independent OTFS

symbol matrices which are transmitted over T ′ frame uses,

then the rate of the code is Q/T ′ symbols per channel use. We

consider a 2×1 system, and construct a space-time code using

the Alamouti code structure [10], generalized to matrices. This

results in a rate-1 Alamouti STC-OTFS codeword matrix of

size 2MN × 2MN given by

X̃ =





X1 −XH
2

X2 XH
1



 , (16)

where X1 and X2 are the symbol matrices as described in

(13) and (14). That is, in the STC- OTFS scheme, the OTFS

transmit vectors corresponding to X1 and X2 are transmitted

from the first and the second antennas, respectively, during

the first frame duration. During the second frame duration, the

vectors corresponding to −XH
2 and XH

1 are transmitted from

the first and second antennas, respectively. Now, it is important

to look at the OTFS transmit vectors that are transmitted

during the two frame duration. The OTFS transmit vector

corresponding to the block Xk, k ∈ {1, 2} in (16), denoted

by xk, is nothing but the first row of Xk. The transmitted

vector corresponding to XH
k , k ∈ {1, 2}, is the conjugate of

the first column of Xk. The vector corresponding to the first

column of Xk can be obtained from xk as x̂k = Pxk, where

P is MN ×MN permutation matrix given by

P = P′
M ⊗P′

N . (17)

where P′
M ∈ R

M×M and P′
N ∈ R

N×N are left circulant

matrices given by



P′
M =










1 0 · · · 0 0
0 0 · · · 0 1
0 0 · · · 1 0
...

0 1 · · · 0 0










M×M

P′
N =










1 0 · · · 0 0
0 0 · · · 0 1
0 0 · · · 1 0
...

0 1 · · · 0 0










N×N

.

(18)

In general, x̂ = Px is of the form

x̂ = [x0 xN−1 · · ·x1 x(M−1)N xMN−1 · · ·

x((M−1)N)+1 · · ·xN x2N−1 · · ·xN+1]
T . (19)

It is interesting to note that the transmitted OTFS vectors in

the second frame duration are not just the conjugated vectors,

but are conjugated and permuted vectors of those transmitted

in the first frame duration. Now, using (16) and the alternate

representation of the MIMO-OTFS system in (15), the input-

output equation of STC-OTFS can be written as

[
yT
1 yT

2

]
=

[
h′
1 h′

2

]





X1 −XH
2

X2 XH
1



+
[
vT
1 vT

2

]
, (20)

where y1, y2 denote the MN × 1 received vectors at the first

and the second frame duration, respectively, h′
1, h′

2 denote the

channel from the first and second antennas, respectively, and

v1, v2 are MN × 1 independent noise vectors.

To gain insight into the decoding complexity of this scheme,

we consider MIMO-OTFS system model in (11). Denoting

the channel matrices from the first and the second transmit

antennas with H1 and H2, respectively, the received vectors

in the first and second frame duration are

y1 = H1x1 +H2x2 + v1 (21)

y2 = −H1(x̂2)
∗ +H2(x̂1)

∗ + v2. (22)

At the receiver, permutation (P) and conjugation are applied

on y2. With this, we can write

[
y1

(ŷ2)
∗

]

︸ ︷︷ ︸

, ȳ

=





H1 H2

−HH
2 HH

1





︸ ︷︷ ︸

, H̄

[
x1

x2

]

+

[
v1

(v̂2)
∗

]

, (23)

where ŷ2=Py2 and v̂2 = Pv2. Denoting H̄ =

[

H1 H2

−H
H
2 H

H
1

]

as the effective channel matrix, we observe that the two block

columns of H̄ are orthogonal. Therefore, the decoding problem

for x1 and x2 can be decomposed into two separate orthogonal

problems, thereby keeping the decoding complexity same as

that of SISO-OTFS.

C. Diversity analysis

In this subsection, the asymptotic diversity of STC-OTFS

scheme is analyzed. Let X̃i and X̃j be two distinct STC-OTFS

codeword matrices and ∆̃ij , X̃i − X̃j be the difference

matrix. The asymptotic diversity order of 2× 1 STC-OTFS is

defined as

ρSTC-OTFS = min{ min
i,j i6=j

rank(∆̃ij), 2P}. (24)

We define the difference matrix corresponding to the kth
independent OTFS symbol matrix as ∆k,ij = Xk,i − Xk,j .

Note that rank(∆̃ij) = rank(∆̃ij

H
∆̃ij). Hence, we use

∆̃H
ij ∆̃ij for analysis, which can be simplified as

∆̃
H
ij∆̃ij=





∆1,ij −∆
H
2,ij

∆2,ij ∆
H
1,ij





H 



∆1,ij −∆
H
2,ij

∆2,ij ∆
H
1,ij



 (25)

=





∆
H
1,ij∆1,ij +∆

H
2,ij∆2,ij 0MN×MN

0MN×MN ∆
H
1,ij∆1,ij +∆

H
2,ij∆2,ij





,

Observe that ∆̃H
ij ∆̃ij is block diagonal due to the commutative

property of block circulant matrix with circulant blocks [11],

and hence

rank(∆̃H
ij ∆̃ij) = 2× rank(∆H

1,ij∆1,ij +∆H
2,ij∆2,ij). (26)

It has been shown in [9] that the asymptotic diversity order of

SISO-OTFS is one. Hence, the minimum rank of ∆k,ij is one

∀ k. Now, consider the case when ∆1,ij = 0MN×MN and

∆2,ij = (a1 − a2)1MN×MN , where a1, a2 ∈ S, where S is

modulation alphabet (e.g., PSK/QAM), in which case the rank

of ∆H
1,ij∆1,ij +∆H

2,ij∆2,ij is one. Therefore, the minimum

rank of ∆H
1,ij∆1,ij + ∆H

2,ij∆2,ij is one. Hence, from (24),

as P ≥ 1, the asymptotic diversity order of 2 × 1 STC-

OTFS is two. Therefore, STC-OTFS can achieve an asymptotic

diversity order of two. Extension of the system model in (20)

to 2 × nr MIMO case, yields a diversity order of 2nr with

maximum likelihood (ML) detection while for the same case,

MIMO-OTFS attains only nr diversity.

Although STC-OTFS can extract full spatial diversity as

discussed above, it fails to extract the delay-Doppler diversity

offered by each link of the MIMO channel asymptotically. In

[9], it has been shown that although the asymptotic diversity

of SISO-OTFS modulation is one, it exhibits higher order

diversity in the finite SNR regime, for increased OTFS frame

sizes. This is true in the case of STC-OTFS system as well.

However, for low-latency applications which use small frame

sizes, we propose the use of STC-OTFS with phase rotation

to further extract the full delay-Doppler diversity. In the next

subsection, we show that, using the phase rotation scheme

along with the proposed STC-OTFS, full spatial and delay-

Doppler diversity can be achieved.

D. Phase rotation in STC-OTFS

In this subsection, we consider STC-OTFS with phase

rotation. We use Theorem 1 in [9], which is restated as follows.

Theorem 1. Let

Φ = diag {φ0, φ1, · · · , φMN−1} (27)

be the phase rotation matrix and x′ = Φx be the phase

rotated OTFS transmit vector. SISO-OTFS with the above

phase rotation achieves the full diversity when φi = ejai ,

i = 0, 1, · · · ,MN − 1, are transcendental numbers with

ai 6= 0, real, distinct and algebraic.



In STC-OTFS, we multiply the OTFS transmit vector from

each of nt transmit antennas during every frame duration by

a diagonal phase rotation matrix Φ of the form (27). Let

the difference matrix of phase rotated STC-OTFS codeword

matrix be denoted with ∆̃
φ
ij . The asymptotic diversity of 2×1

phase rotated STC-OTFS can be defined similar to (24) as

ρSTC-OTFS = min{ min
i,j i6=j

rank(∆̃φ
ij), 2P}. (28)

We denote the difference matrix corresponding to the kth

phase rotated OTFS symbol matrix with ∆
φ
k,ij . Now, as

a consequence of Theorem 1, ∆
φ
k,ij has a full rank of

MN for all k. As described in the previous subsection, the

minimum rank of ∆̃
φ
ij is same as that of (∆̃φ

ij)
H∆̃

φ
ij =

2× rank((∆φ
1,ij)

H∆
φ
1,ij +(∆φ

2,ij)
H∆

φ
2,ij). Now, for any two

distinct codewords (∆̃
φ
ij 6= 0), either ∆

φ
1,ij 6= 0 or ∆

φ
2,ij 6= 0

or both are non-zero matrices. If ∆
φ
k,ij 6= 0, from Theorem

1, it will be full rank. Thus, at least one of (∆φ
1,ij)

H∆
φ
1,ijor

(∆φ
2,ij)

H∆
φ
2,ij, or both are positive definite matrices. There-

fore, their sum (∆φ
1,ij)

H∆
φ
1,ij+(∆φ

2,ij)
H∆

φ
2,ij is also positive

definite, and hence ∆̃
φ
ij has full rank of 2MN for any input

symbols. Since P ≤ MN , the asymptotic diversity order of

2×1 phase rotated STC-OTFS is 2P . Extension of this scheme

to 2 × nr MIMO case yields a diversity order of 2Pnr with

ML detection.

IV. SIMULATION RESULTS

In this section, we present the BER performance of STC-

OTFS and STC-OTFS with phase rotation.

Performance of STC-OTFS system: Figure 3 shows the BER

performance of i) SISO-OTFS, ii) 2× 1 STC-OTFS, and iii)
2 × 2 STC-OTFS systems. All the systems use M = N =
2, P = 2, BPSK modulation, and ML detection. A carrier

frequency of 4 GHz and a subcarrier spacing of 3.75 kHz are

considered. The parameters considered for the simulations are

given in Table I. The channel model considered for simulations

is described in Sec.II-C and the delay and Doppler values used

are as per Table I. From Fig. 3, it is observed that the simulated

BER for 2× 1 and 2× 2 STC-OTFS systems show diversity

orders of two and four, respectively, verifying the analytical

diversity order derived in Sec. III.

Figure 4 shows the BER performance of i) SISO-OTFS,

ii) 2 × 1 STC-OTFS, and iii) 2 × 2 STC-OTFS systems

for an M = 4, N = 2 and P = 2. All the systems

use BPSK modulation and ML detection. Other parameters

considered for the simulations are given in Table I. From Fig.

4, it can observed that the simulated BER performance for

all the systems with M = 4 and N = 2 outperforms the

systems with M = N = 2 in Fig. 3. This illustrates that the

STC-OTFS systems with increased frame size can potentially

achieve better diversity orders before attaining its asymptotic

diversity of 2nr.

Performance of STC-OTFS with phase rotation: Figure

5 shows the BER performance of STC-OTFS with phase

rotation in a 2 × 1 MIMO system with i) P = 2 and ii)

Parameter Value

Carrier frequency (GHz) 4

Subcarrier spacing (kHz) 3.75

Frame sizes M = N = 2, M = 4, N = 2

MIMO configurations 1× 1, 2× 1, 2× 2

Delay-Doppler profile
for P = 2 (τi (µs), νi (kHz)) (0,0), (133.3,1.875)

Delay-Doppler profile
for P = 4 (τi (µs), νi (kHz)) (0,0), (0,1.875), (133.3,0), (133.3,1.875)

Maximum speed (km/h) 506.2

Modulation scheme BPSK

TABLE I: Simulation parameters.
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Fig. 3: BER performance of i) 1 × 1 OTFS, ii) 2 × 1 STC-

OTFS, and iii) 2× 2 STC-OTFS for M = N = 2.

P = 4. For comparison, we also plot the BER performance

of STC-OTFS without phase rotation. All the systems use

M = N = 2 and BPSK modulation. Other parameters are

given in Table I. For the simulations, the phase rotation matrix,

Φ = diag{1, ej
1

MN · · · ej
MN−1

MN } is used. From Fig. 4, we

observe that the STC-OTFS with phase rotation achieves better

diversity order compared to STC-OTFS. Specifically, 2 × 1
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Fig. 4: BER performance of i) 1 × 1 OTFS, ii) 2 × 1 STC-

OTFS, and iii) 2× 2 STC-OTFS for M = 4, N = 2.
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Fig. 5: BER performance of 2×1 STC-OTFS with and without

phase rotation for i) P = 2 and ii) P = 4.

phase rotated STC-OTFS system achieves a diversity order

of 2P , whereas STC-OTFS achieves a diversity of two. This

demonstrates that the phase rotated STC-OTFS can achieve

full spatial and delay-Doppler diversity in doubly dispersive

MIMO channels.

V. CONCLUSIONS

In this work, we proposed the use of space-time coding

in OTFS modulation. We formulated the construction of a

space-time code based on Alamouti code structure in a matrix

form for OTFS. We analytically proved that the full spatial

transmit diversity order of two is achieved in a 2 × 1 STC-

OTFS system. We also showed that the proposed space-time

code along with the phase rotation can achieve the full spatial

and delay-Doppler diversity of 2P in a 2 × 1 STC-OTFS

system. The STC-OTFS scheme with phase rotation in a 2×nr

system can yield a diversity order of 2Pnr. Simulation results

on the BER performance validated the analytically predicted

diversity orders. We further note that STC-OTFS systems are

of practical interest as STC-OTFS can achieve good diversity

performance even in small frame sizes in the finite SNR regime

making it suited for low-latency applications.
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