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Abstract—In this paper, we consider the problem of low-
complexity detection of orthogonal time frequency space (OTFS)
modulation signals using deep neural networks (DNN). We
consider a DNN architecture in which each symbol multiplexed
in the delay-Doppler grid is associated with a separate DNN.
The considered symbol-level DNN has fewer parameters to learn
compared to a full DNN that takes into account all symbols in an
OTFS frame jointly, and therefore has less complexity. Under the
assumption of static multipath channel with i.i.d. Gaussian noise,
our simulation results show that the performance of the symbol-
DNN detection is quite close to that of the full-DNN detection
as well as the maximum-likelihood (ML) detection. Further,
when the noise model deviates from the standard i.i.d. Gaussian
model (e.g., non-Gaussian noise with t-distribution), because of
its ability to learn the distribution, the symbol-DNN detection
is found to perform better than the ML detection. A similar
performance advantage is observed in multiple-input multiple-
output OTFS (MIMO-OTFS) where the noise across multiple
received antennas are correlated.

Keywords – OTFS modulation, delay-Doppler domain, deep
neural networks, signal detection, non-standard channels.

I. INTRODUCTION

Orthogonal time frequency space (OTFS) modulation [1] is
an emerging modulation technique that performs superior com-
pared to the currently prevalent orthogonal frequency division
multiplexing (OFDM) in high-Doppler environments [2], [3].
It is a two-dimensional modulation technique in which the in-
formation symbols are multiplexed in the delay-Doppler (DD)
domain instead of the time-frequency domain [4]- [6]. OTFS
can be implemented on top of popular multicarrier modulation
schemes (such as OFDM) by adding extra pre-processing and
post-processing blocks [7]. Further to the superior performance
of OTFS compared to OFDM in high-mobility scenarios (e.g.,
500 km/h in 4 GHz band [2]), it has been shown that OTFS
outperforms OFDM in static multipath channels as well [8].
The reason behind this better performance has been identified
to be the structural equivalence between OTFS and asymmetric
OFDM (A-OFDM) in [9]. This observation allows OTFS to
be considered for use in a wide range of no- to high-mobility
scenarios. Our current focus in this paper is the exploration
of the use of deep neural networks (DNN) for the detection
of OTFS signals. Motivated by the better performance of
OTFS in static multipath channels, we initially consider the
use of DNNs in OTFS signal detection in static multipath
channels. We also observe that the DNN approach can do well
in non-zero Doppler scenarios as well, due to the long channel
coherence in the delay-Doppler domain. Another key highlight
of the considered DNN approach is the low-complexity aspect,
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which is achieved through modularizing the DNN architecture
at the delay-Doppler symbol level.

DNNs have found popular use in various fields. Their use
in the physical layer design in wireless communications is
getting increased research attention [10]. Constellation design,
transceiver design, codes design using autoencoders, signal
detection and demodulation are some of the areas where
DNNs have been successfully employed [11]- [18]. Here, we
focus on the detection of OTFS signals. One approach to do
detection of multi-dimensional signals is to use a single fully
connected DNN where the number of input neurons is decided
by the size of the received/observed vector and the number of
output neurons is decided by the size of the multi-dimensional
signal set. Hence, each neuron in the output layer corresponds
to one transmit signal vector from the signal set, enabling
joint detection of the multi-dimensional symbol vector. While
this approach is architecturally simple and straightforward, it
requires a large number of parameters to be learned. This is
because the number of output neurons grows exponentially in
the size of transmit symbol vector, requiring a proportionately
large number of neurons in the hidden layers. An alternate
approach is to devise multiple DNNs, one for each symbol in
the transmit symbol vector. This approach has the benefit of
low complexity because the number of DNNs grows linearly
with the size of the transmit symbol vector and the number of
output neurons in each DNN also grows linearly in the size
of the symbol alphabet [16]. We consider the latter approach
in this paper for OTFS detection where the transmit vector
consists of symbols multiplexed in the delay-Doppler domain.

Our results show that, under the assumption of static mul-
tipath channel with i.i.d. Gaussian noise, the performance of
the ‘symbol-DNN’ detection is close to that of the ‘full-DNN’
detection as well as the maximum-likelihood (ML) detection.
Owing to the long channel coherence in the DD domain,
the DNN approach is also found to work well in non-zero
Doppler cases as well. Additional benefits of using DNN for
OTFS detection show up when the noise model deviates from
the standard i.i.d. Gaussian model. We consider deviations
from the Gaussian as well as independence assumptions.
For deviation from the Gaussian assumption, we consider t-
distribution (which is close to Gaussian distribution) for noise.
For deviation from the independence assumption, we consider
spatially correlated noise across receive antennas in a MIMO-
OTFS system. In both the cases of deviations, because of the
ability of the DNN to learn the underlying noise distribution,
the symbol-DNN detection outperforms ML detection, which
is optimum only for the standard i.i.d. Gaussian noise model.
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Fig. 1. OTFS modulation scheme.

The rest of the paper is organized as follows. The considered
OTFS system model is presented in Sec. II. The symbol-DNN
for OTFS signal detection is presented in Sec. III. Simulation
results and discussions are presented in Sec. IV. Conclusions
are presented in Sec. V.

II. OTFS SYSTEM MODEL

In this section, we present the OTFS system model and the
vectorized formulation of the input-output relation. Figure 1
shows the OTFS modulation scheme.

The OTFS transmitter uses an N×M delay-Doppler grid for
multiplexing information symbols. There are NM information
symbols, each from a modulation alphabet A, denoted by
x[k, l], k = 0, · · · , N − 1, l = 0, · · · ,M − 1. These NM
symbols are transmitted in a duration of NT , occupying a
bandwidth of M∆f , where ∆f = 1/T . The symbols in the
two-dimensional N×M delay-Doppler grid are transformed to
the time-frequency (TF) plane using inverse symplectic finite
Fourier transform (ISFFT), as

X[n,m] =
1

MN

N−1∑
k=0

M−1∑
l=0

x[k, l]ej2π( nk
N −

ml
M ). (1)

Heisenberg transform is then applied such that the TF signal
is converted into a time domain signal x(t) for transmission
through the wireless channel, as

x(t) =

N−1∑
n=0

M−1∑
m=0

X[n,m]gtx(t− nT )ej2πm∆f(t−nT ), (2)

where gtx(t) is the transmit pulse shape. With τ and ν
denoting the delay and the Doppler variables, respectively, the
received time domain signal y(t) at the receiver is given by

y(t) =

∫
ν

∫
τ

h(τ, ν)x(t− τ)ej2πν(t−τ)dτdν, (3)

where h(τ, ν) is the delay-Doppler domain baseband response
of the channel.

The received signal y(t) is transformed using Wigner trans-
form into a TF signal, as

Y [n,m] = Agrx,y(t, f)|t=nT,f=m∆f , (4)

Agrx,y(t, f) =

∫
g∗rx(t′ − t)y(t)e−j2πf(t′−t)dt′,

where grx(t) is the receive pulse shape. If grx(t) and gtx(t)
satisfy the condition of biorthogonality [2], the following
equation gives the input-output relation in the TF domain:

Y [n,m] = H[n,m]X[n,m] + V [n,m], (5)

where V [n,m] is the additive white Gaussian noise after
Wigner transformation and H[n,m] is given by

H[n,m] =

∫
τ

∫
ν

h(τ, ν)ej2πνnT e−j2π(ν+m∆f)τdνdτ. (6)

The TF signal Y [n,m] in (5) is mapped to the delay-Doppler
domain signal y[k, l] by applying symplectic finite Fourier
transform (SFFT), as

y[k, l] =

N−1∑
n=0

M−1∑
m=0

Y [n,m]e−j2π( nk
N −

ml
M ). (7)

The input-output relation can be written in the form [2]

y[k, l] =
1

MN

N−1∑
l′=0

M−1∑
k′=0

x[k′, l′]hw(
k − k′
NT

,
l − l′
M∆f

) + v[k, l],

(8)
where hw(ν, τ) is the circular convolution of the chan-
nel response with a windowing function w(ν, τ) and
hw(k−k

′

NT ,
l−l′
M∆f ) = hw(ν, τ)|

ν= k−k′
NT ,τ= l−l′

M∆f

.
Now, consider a DD channel with P paths which can be

represented as

h(τ, ν) =

P∑
i=1

hiδ(τ − τi)δ(ν − νi), (9)

where hi, τi, and νi are the channel gain, delay, and Doppler
shift corresponding to the ith path, respectively. We assume
τi ,

αi

M∆f and νi , βi

NT where αi, βi are integers. Assuming
that the receive and the transmit window functions Wrx[n,m]
and Wtx[n,m] are rectangle, the input-output relation for the
channel in (9) is as follows [5]:

y[k, l] =

P∑
i=1

h′ix[(k − βi)N , (l − αi)M ] + v[k, l]. (10)

In (10), we have h′is as h′i = hie
−j2πνiτi . Here, his are

i.i.d. CN (0, 1/P ) distributed. The input-output relationship
can thus be represented in a vectorized form as [5]

y = Hx + v, (11)

where x,y,v ∈ CMN×1 and H ∈ CMN×MN . The x[k, l]
element in the delay-Doppler grid is the (k + Nl)th element
in x, k = 0, · · · , N − 1, l = 0, · · · ,M − 1, and x[k, l] ∈ A.
This vectorized representation is used as the system model for
detection. Assuming that the channel matrix H is known at the
receiver, the decision rule for maximum likelihood detection
of OTFS signal is given by

x̂ = arg min
x∈AMN

‖y −Hx‖2. (12)



It is noted that (12) is the optimal detection rule only when
the noise distribution is i.i.d. Gaussian, and it will result in
sub-optimal detection when the noise model deviates from the
standard i.i.d. Gaussian model.

III. SYMBOL-DNN FOR OTFS DETECTION

OTFS signal detection involves the detection of the MN
symbols multiplexed in the DD grid, i.e., we need to estimate
the MN × 1 transmitted vector x given the knowledge of
received vector y and the DD channel matrix H. In this
section, we present the DD symbol-DNN for OTFS detection.

The DD symbol-DNN architecture for OTFS detection is
shown in Fig. 2. It consists of MN DD symbol-DNNs, each
corresponding to an individual information symbol in the DD
grid. There are 2MN input neurons in all these symbol-DNNs
through which the real and the imaginary parts of the received
vector y are given as input to the network. The number of
output neurons in each of the DNNs is equal to |A|, the size
of the modulation alphabet, such that each output neuron gives
the corresponding probability of each symbol in the alphabet
being transmitted. Softmax activation is used in the output
layer such that all the probabilities of the symbols in the
alphabet are dependent and sum to one. The symbol mapper
chooses the symbol corresponding to the highest probability
as the transmitted symbol.

A. Training and testing

The channel models considered are i) static multipath chan-
nel with zero Doppler and ii) multipath channel with non-zero
Doppler. In the non-zero Doppler case also, the DD channel
variations are slow because rapid channel variations in the
time domain become slow variations when viewed in the DD
domain. This is a key advantage of the DD signaling in OTFS
which allows effective training of the DNNs. The DNNs can
be trained by a set of training examples xT known both at
the transmitter and the receiver. The training examples are
pseudo-randomly generated by the transmitter and are sent to
the receiver through the channel. The received signal vector
y generated according to the system model in (11) and the
transmitted signal vector xT are available to the receiver.
The real and imaginary parts of y are given as input to the
symbol-DNNs. The number of training examples to be used
for training is chosen by trial. Initially, we start with a small
number of examples and increment it until the performance of
the trained DNN is good. Once trained, the DNNs can be used
for signal detection (testing phase). During the testing phase,
the transmitter randomly generates information bits, modulates
them using OTFS and transmits them through the channel. The
receiver detects each symbol in the DD frame by using the
already trained symbol-DNNs. Each symbol-DNN learns the
mapping from the received vector to the corresponding symbol
in the transmitted vector. As the channel is static/slowly
varying, the DNNs as a whole are performing the task of a
channel equalizer and hence the channel need not be explicitly
known at the receiver during training. Training and testing are
carried out using Tensorflow and Keras framework.
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Fig. 2. Delay-Doppler symbol-DNN architecture.

IV. SIMULATION RESULTS

In this section, we present the simulated bit error rate (BER)
performance of the symbol-DNN based OTFS detection. We
also compare its performance with those of full-DNN detec-
tion, ML detection, and MMSE detection. We also present a
complexity comparison among these detectors.

A. BER in static multipath channel with i.i.d. Gaussian noise

Figure 3 shows the BER performance of OTFS using
symbol-DNN detection, full-DNN detection, and ML detection
in a system with M = N = 4 and BPSK. A carrier frequency
(fc) of 4 GHz and a subcarrier spacing (∆f ) of 3.75 KHz are
considered. A static (zero Doppler) multipath channel with
P = 2 paths with uniform power profile on the delay axis
is considered. The noise is assumed to be i.i.d. Gaussian.
For M = N = 2 and BPSK, there are MN = 4 BPSK
information symbols in a frame. The symbol-DNN architecture
has four DNNs, one for each BPSK symbol in the transmit
symbol vector. The parameters used in the symbol-DNN as
well as the full-DNN are listed in Table I. The architectures
used for symbol-DNN and full-DNN are as follows:
i) Symbol-DNN: input → 8 → ReLU → 4 → ReLU → 2 →
Softmax.
ii) Full-DNN: input → 8 → ReLU → 12 → ReLU → 16 →
Softmax.
The numbers mentioned above are the number of neurons in
a given layer and are followed by the activation function used
in that layer. For Full-DNN detector, onehot encoding is used.

From Fig. 3, it can be seen that the BER performance
of OTFS using both the symbol-DNN as well as the full-
DNN detection are almost the same as the performance of
ML detection. This demonstrates the good detection perfor-
mance achieved by the DNN approach. Although all the three
detectors achieve very close performance, their complexities
are different. Table II shows the complexities of the three
detectors in number of real operations. It can be seen that ML
detection has the highest complexity because of the exhaustive
enumeration of all possible OTFS transmit vectors. Among
the DNNs, symbol-DNN has a lower complexity compared to
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Fig. 3. BER performance of OTFS with M = N = 2 using symbol-DNN,
full-DNN and ML detection in static multipath channel with P = 2.

Parameters Symbol-DNN Full-DNN

No. of input neurons 2MN = 8 2MN = 8

No. of output neurons |A| = 2 2MN = 16
No. of hidden layers 1 1

Hidden layer activation ReLU ReLU
Output layer activation Softmax Softmax

Optimization Adam Adam
Loss function Binary Categorical

crossentropy crossentropy
Training SNR 10 dB 10 dB

No. of training examples 30,000 30,000
No. of epochs 50 50

TABLE I
PARAMETERS OF DNN DETECTORS IN FIG. 3.

full-DNN. This is because the number of parameters to train
in full-DNN is larger than in symbol-DNN, as can be observed
in Table II.

Detector ML det. Symbol-DNN det. Full-DNN det.

Complexity 1088 304 564
Trainable parameters - 184 316

TABLE II
COMPLEXITY (IN NO. OF REAL OPERATIONS) OF DETECTORS IN FIG. 3.
We next consider the performance of a larger OTFS system

with a larger DD grid. Towards this, we consider a system
with M = N = 16 (i.e., MN = 256 symbols per frame),
BPSK, fc = 4 GHz, ∆f = 15 KHz, and P = 8. Here, we
consider symbol-DNN detection and minimum mean square
error (MMSE) detection due to their low complexities. ML
detection for this system must do exhaustive search over
2256 signal vectors, which becomes computationally infea-
sible. Full-DNN detection for this large system will have
2MN = 2256 output neurons, and hence the size of the
full-DNN will be large with many trainable parameters. The
symbol-DNN architecture used for detection in this system is
as follows.
Symbol-DNN: input → 512 → ReLU → 256 → ReLU → 2
→ Softmax.
There are MN = 256 such symbol-DNNs that constitute
the detector. Each symbol-DNN is trained using the param-
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Fig. 4. BER performance of OTFS with M = N = 16 using symbol-DNN
and MMSE detection in static multipath channel with P = 8.

Parameters Symbol-DNN

No. of input neurons 2MN = 512
No. of output neurons |A| = 2
No. of hidden layers 1

Hidden layer activation ReLU
Output layer activation Softmax

Optimization Adam
Loss function Binary crossentropy
Training SNR 8 dB

No. of training examples 80,000
No. of epochs 20

TABLE III
PARAMETERS OF SYMBOL-DNN DETECTOR IN FIG. 4.

eters in Table III. Figure 4 shows the BER performance
using symbol-DNN detection and MMSE detection. It can be
seen that symbol-DNN detection achieves significantly better
performance compared to MMSE detection. For example,
symbol-DNN performs better by about 4 dB at 10−3 BER.
Table IV shows the complexities of the two detectors in
number of real operations. It is observed that the symbol-
DNN detector performs better than the MMSE detection and
is computationally efficient.

Detector Complexity Trainable parameters

MMSE det 83951616 -
Symbol DNN det 67305472 33751552

TABLE IV
COMPLEXITY (IN NO. OF REAL OPERATIONS) OF DETECTORS IN FIG. 4.

B. BER in static multipath channel with non-Gaussian noise

Here, we consider the scenario in which the multipath
channel is static with zero Doppler but the noise is non-
Gaussian. As an example, we consider the case when the
noise follows t-distribution with parameter µ. This distribution
gets closer to Gaussian for larger values of µ. Figure 6 shows
the performance of symbol-DNN and ML detectors when the
noise is t-distributed with parameter µ = 5. The performance
of ML detection with i.i.d. Gaussian noise is also plotted for
comparison. The system parameters considered are: fc = 4
GHz, ∆f = 3.75 kHz, M = N = 2, P = 2, and BPSK. The
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0 5 10 15 20

SNR in dB

10
-4

10
-3

10
-2

10
-1

10
0

B
E

R

M=N=16, P=8, BPSK

f
c
=4GHz, f=15 KHz

MMSE det - Gaussian

MMSE det - t-dist  = 5

Symbol-DNN det - t-dist  = 5

Fig. 6. BER performance of OTFS with M = N = 16 in static channel with
P = 8 using symbol-DNN and MMSE detectors under t-distributed noise.

DNN architecture used for Fig. 3 and the parameters from
Table II are used for Fig. 5. From Fig. 5, it can be seen
that deviation from the Gaussian noise results in performance
degradation of ML detector. This is because the ML decision
rule in (12) is optimum only when noise is i.i.d. Gaussian and
it is suboptimum for non-Gaussian noise. On the other hand,
the symbol-DNN performs significantly better in non-Gaussian
noise scenario. This is because of the inherent ability of the
DNN to learn the underlying noise distribution. A similar
performance behavior is observed in a larger OTFS system
with M = N = 16, P = 8, and BPSK in Fig. 6. The DNN
architecture used for Fig. 4 and the parameters from Table
III are used for Fig. 6. It can be seen that the symbol-DNN
detector performs very well while the performance of MMSE
detector gets degraded in case of t-distributed noise.

C. BER in non-zero Doppler channel

Here, we consider the BER performance in non-zero
Doppler channels, where the channel variations are slow in the
DD domain. Figure 7 shows the BER performance of symbol-
DNN and MMSE detectors under non-zero Doppler condi-
tions. The system parameters considered are: M = N = 16,
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Fig. 7. BER performance of OTFS with M = N = 16 in non-zero Doppler
channel with P = 8 under Gaussian and t-distributed noise.

Path, i 1 2 3 4 5 6 7 8

τi (µs) 0 4.16 8.32 12.48 16.64 20.8 24.96 29.12
νi (Hz) 0 0 938.5 938.5 938.5 1875 1875 1875

TABLE V
DELAY-DOPPLER PROFILE FOR FIG. 8.

P = 8, BPSK, fc = 4 GHz, ∆f = 15 KHz, and νmax = 1.875
KHz. The DD profile considered is given in the Table V. The
DNN architecture of Fig. 4 and the parameters of Table III are
considered for Fig. 7. The performance of symbol-DNN and
MMSE detectors are compared for the cases of Gaussian noise
and t-distributed noise. It can be observed that the symbol-
DNN detector performs better than the MMSE detector in both
the cases, where the performance advantage of symbol-DNN
is more in the case of t-distributed noise.

D. BER in correlated noise in MIMO-OTFS

Here, we consider the BER performance of MIMO-OTFS
in non-zero Doppler channel, where there is noise correlation
across multiple receive antennas due insufficient spacing be-
tween them at the receiver. We consider a correlation model
[19], where the noise correlation matrix is given by

Nc =


1 ρ ρ2 · · · ρnr−1

ρ 1 ρ · · · ρnr−2

. . .
ρnr−1 ρnr−2 · · · 1

 , (13)

and ρ is the correlation coefficient such that 0 ≤ ρ ≤ 1. The
correlated noise across the receive antennas is nc = Ncn,
where n is i.i.d. Gaussian noise. Figure 8 shows the BER
performance of symbol-DNN and ML detectors when the
noise is correlated across receive antennas with correlation
coefficient ρ = 0.4. The performance of ML detector with
i.i.d. Gaussian noise and modified ML detector for the case of
correlated noise are also plotted for comparison. The decision
rule for the modified ML detector is given by

x̂ = arg min
x∈AMN

(y −Hx)HΣ−1(y −Hx), (14)
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where Σ is the estimated noise covariance matrix [20].
The system parameters considered are: number of transmit
antennas nt = 4, number of receive antennas nr = 4,
M = N = 2, P = 4, BPSK, fc = 4 GHz, ∆f = 3.75
KHz, and νmax = 1.875 KHz. The symbol-DNN architecture
used for detection is as follows.
Symbol-DNN: input → 32 → ReLU → 8 → ReLU → 16 →
ReLU → 2 → Softmax.
The DNN is trained for 100 epochs with 80000 training
examples at a training SNR = 4 dB.

It can be observed from Fig. 8 that the symbol-DNN
detector performs better than the conventional ML detector
in (12) because i) the ML detection in (12) is suboptimum
for correlated noise and ii) the DNN learns the underlying
noise model including the noise correlation associated with
the receive antennas. The modified ML detector in (14) gives
the best performance as it is optimum for the correlated noise
case. However, it has high computational complexity. On the
other hand, the proposed symbol-DNN detector scales well for
larger systems in the case of correlated noise.

V. CONCLUSION

We investigated a low-complexity symbol-DNN architecture
for OTFS signal detection and demonstrated its efficiency
in terms of both error performance and complexity. The
considered DNN based detector could effectively learn the
underlying noise models in practical scenarios where the
noise deviates from the standard i.i.d. Gaussian model and
outperform conventional ML and MMSE detectors. The DNN
based detection approach for OTFS has good potential with
promising directions for future work, which include convo-
lutional neural networks that may require less number of
trainable parameters.
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