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Abstract—In this paper, we investigate indexing of delay-
Doppler (DD) bins in orthogonal time frequency space (OTFS)
modulation and propose indexing designs that enhance the
diversity order of OTFS. It has been shown in the literature that
the asymptotic diversity order of conventional OTFS (without
indexing) is just one. In this paper, we show that indexing in
the DD domain in OTFS can be used to enhance the asymptotic
diversity order to two. Towards this, we consider 2-dimension
indexing in OTFS, where indexing is done along both delay as
well as Doppler axes. We achieve the enhanced diversity order
of two by proposing indexing designs that provably eliminate
all the rank one difference matrices. Our simulation results also
validate this analytically proven diversity order of two in indexed
OTFS. In addition, indexing is shown to offer improved PAPR
(peak-to-average power ratio) performance of OTFS.

Keywords: OTFS modulation, delay-Doppler domain, in-
dexing, diversity, PAPR.

I. INTRODUCTION

Orthogonal time frequency space (OTFS) modulation is
a promising modulation technique proposed recently in [1].
It multiplexes information symbols over bins in the delay-
Doppler (DD) grid. The well known orthogonal frequency
division multiplexing (OFDM) technique multiplexes the in-
formation symbols over bins in the frequency axis (which is
the inverse of the delay axis), and a 1-dimensional transform
(inverse fast Fourier transform) maps the symbols to time
domain for transmission on the channel. OTFS, on the other
hand, first uses a 2-dimensional transform (inverse simplectic
finite Fourier transform) that transforms the symbols from
DD grid to time-frequency (TF) grid. A second 2-dimensional
transform (Heisenberg transform) further transforms the sym-
bols from TF domain to time domain for transmission [1]- [4].
Several studies in the literature have reported superior perfor-
mance of OTFS compared to OFDM, generalized frequency
division multiplexing (GFDM), and single-carrier FDMA (SC-
FDMA) [1]- [7], particularly in high-mobility/high-Doppler
environments, making OTFS attractive for use cases such
as V2X, high-speed train, and mmWave communications. In
addition to superior performance in high-mobility channels,
OTFS has also been shown to achieve superior performance in
static multipath channels as well, owing to the structural equiv-
alence between OTFS and asymmetric OFDM (A-OFDM) [8],
[9], suggesting the suitability of OTFS for a range of mobility
scenarios (from no-mobility to high-mobility scenarios).

Conveying information bits through indexing of transmis-
sion entities, such as transmit antennas, subcarriers, time
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slots, precoders, popularly known in the literature as index
modulation, is known to offer attractive benefits such as good
performance and hardware simplicity [10]- [12]. In index
modulation, the choice of transmission entities to be activated
in a given channel use conveys additional information bits.
Conveying bits through indexing has several advantages, e.g.,
i) the choose operation can lead to higher rates compared to
conventional modulation, and ii) to achieve a certain rate (in
bits per channel use), the size of the conventional modulation
alphabet used can be reduced and this can lead to improved bit
error performance. Performance of indexing in OTFS, obtained
through simulations, has been reported recently in [13]. But
this work does not provide a formal analytical treatment of
the diversity performance achieved by indexed OTFS. Also,
PAPR performance of indexed OTFS is not addressed. Our
work in this paper addresses these two aspects of indexed
OTFS. In this context, we note that it has been shown in the
literature that the asymptotic diversity order of conventional
OTFS (without indexing) is just one [6]. Our new contribution
in this paper shows that indexing in the DD domain in OTFS
can be used to enhance the asymptotic diversity order to
two. Towards this, we consider 2-dimension (2D) indexing
in OTFS, where indexing is done along both delay as well as
Doppler axes. We achieve the enhanced diversity order of two
by proposing indexing designs that provably eliminate all the
rank one difference matrices. Our simulation results also vali-
date this analytically proven diversity order of two in indexed
OTFS. Further, we investigate the effect of indexing on the
PAPR performance of OTFS and show that improved PAPR
performance of OTFS is achieved using Doppler indexing.

The rest of the paper is organized as follows. The system
model and 2D indexing in OTFS are presented in Sec. II.
Indexing designs for second order diversity and proof are
presented in Sec. III. Diversity and PAPR results are presented
in IV. Conclusions are presented in Sec. V.

II. 2-DIMENSION INDEXING IN OTFS

OTFS is a 2D modulation technique which uses the DD grid
to multiplex information symbols. The N ×M DD grid is a
collection of DD bins, given by

{( k
NT ,

l
M∆f ), k = 0, 1, · · · , N−1, l = 0, 1, · · · ,M−1}. (1)

where M and N are the number of delay and Doppler bins,
respectively, and 1

M∆f and 1
NT are the delay and Doppler

resolutions, respectively. Let x[k, l] denote the information
symbol from a complex modulation alphabet A in the (k, l)th
DD bin. The information symbol x[k, l] in the DD domain is
transformed to TF domain by using inverse simplectic finite



Fourier transform (ISFFT). The TF domain signal correspond-
ing to x[k, l] is given by

X[n,m] =
1

MN

N−1∑
k=0

M−1∑
l=0

x[k, l]ej2π(nkN −
ml
M ). (2)

The TF domain signal is transmitted as a packet burst which
has a duration of NT and occupies a bandwidth B = M

T =
M∆f . The TF domain signal is converted into the time
domain by using Heisenberg transform, as

x(t) =

N−1∑
n=0

M−1∑
m=0

X[n,m]gtx(t− nT )ej2πm∆f(t−nT ). (3)

Here, gtx(t) denotes the transmit pulse shape. The transmitted
signal x(t) passes through the channel and the received time
domain signal y(t) is matched filtered with a receive pulse
grx(t). This gives the cross-ambiguity function, given by
Agrx,y(τ, ν) =

∫
g∗rx(t − τ)y(t)e−j2πν(t−τ)dt. We assume

the pulses grx(t) and gtx(t) to satisfy the biorthogonality
condition. The Agrx,y(τ, ν) is sampled at τ = nT and
ν = m∆f to get the TF domain signal, as Y [n,m] =
Agrx,y(τ, ν)|τ=nT,ν=m∆f . The above TF domain signal is
converted to DD domain by using simplectic finite Fourier
transform (SFFT), as

y[k, l] =

N−1∑
n=0

M−1∑
m=0

Y [n,m]e−j2π(nkN −
ml
M ). (4)

Consider a channel with P taps from P clusters of reflectors,
each associated with a delay τi, a Doppler νi, and a complex
fade coefficient hi. This channel in DD domain can be written
as h(τ, ν) =

∑P
i=1 hiδ(τ − τi)δ(ν − νi). Letting τi ,

αi
M∆f

and νi , βi
NT , where αi and βi are integers, the input-output

relation of the P tap channel is given by

y[k, l] =

P∑
i=1

h′ix[(k − βi)N , (l − αi)M ] + v[k, l], (5)

where v[k, l] denotes AWGN and h′i = hie
−j2πνiτi . The

his are assumed to be i.i.d and distributed as CN (0, 1/P ),
assuming uniform scattering profile. The input-output equation
in (5) can be represented in vector form as [5]

y = Hx + v, (6)

where H ∈ CMN×MN and x,y,v ∈ CMN×1. The elements
of x,y and v are given by xk+Nl = x[k, l], yk+Nl = y[k, l],
and vk+Nl = v[k, l], respectively, with k = 0, · · · , N−1, l =
0, · · · ,M −1. The matrix H in (6) is a block circulant matrix
with circulant blocks of size MN×MN , with each row having
P non-zero elements.

A. 2D indexing in OTFS

In this subsection, we introduce indexing schemes which
use both delay and Doppler axis for indexing. Depending upon
how the delay and Doppler bins are selected for activation in
an N×M DD grid, three types of 2D indexing are as follows.

1) Type 1: This type of indexing involves two steps of
selection of active DD bins. First, K2 active Doppler indices
out of N available Doppler indices are selected, i.e., select K2

rows in the N ×M DD grid. This results in
(
N
K2

)
possible

combination of active Doppler indices, and
⌊
log2

(
N
K2

)⌋
in-

formation bits are used for this selection operation. Next, for
each of the Doppler indices selected in the first step, K1 active
delay indices out of M available delay indices are selected,
which is done using K2

⌊
log2

(
M
K1

)⌋
information bits. From

the above two steps, there are K1K2 active DD bins out of
MN bins in the N×M DD grid. In each of these active bins,
a symbol from a modulation alphabet A is multiplexed, i.e.,
K1K2 log2 |A| bits are multiplexed in the K1K2 active bins.
So, the achieved rate in Type 1 indexing is given by

ηtype1 =
1

MN

(⌊
log2

(
N

K2

)⌋
+K2

⌊
log2

(
M

K1

)⌋
+

K1K2 log2 |A|
)

bpcu.
(7)

It is noted that 1D indexing along the delay axis is a special
case of Type 1 indexing with K2 = N .

2) Type 2: Type 2 indexing is similar to Type 1 indexing
except the order of selection of delay and Doppler indices are
reversed. Here, K1 out of M delay indices are selected in
the first step, followed by selection of K2 out of N Doppler
indices in the second step for each of the selected delay
indices, and K1K2 modulation symbols are multiplexed on
the selected bins. The achieved rate in Type 2 indexing is

ηtype2 =
1

MN

(⌊
log2

(
M

K1

)⌋
+K1

⌊
log2

(
N

K2

)⌋
+

K1K2 log2 |A|
)

bpcu.
(8)

It can be observed that 1D indexing along the Doppler axis is
a special case of Type 2 indexing with K1 = M .

3) Type 3: Here, K1 out of M delay indices and K2 out of
N Doppler indices are selected simultaneously using a total
of
⌊
log2

(
M
K1

)⌋
+
⌊
log2

(
N
K2

)⌋
information bits. Information

symbols are multiplexed on the resulting K1K2 active bins,
leading to an achieved rate of

ηtype3 =
1

MN

(⌊
log2

(
M

K1

)⌋
+

⌊
log2

(
N

K2

)⌋
+

K1K2 log2 |A|
)

bpcu.
(9)

Figure 1 shows examples of DD grids with active (black) and
inactive (white) bins for each type of 2D indexing for M = 8,
N = 6, K1 = 5, and K2 = 4.

III. INDEXING DESIGNS FOR SECOND ORDER DIVERSITY

In this section, we analyze the asymptotic diversity order
of indexed OTFS and obtain indexing designs that achieve
second order diversity. Towards this, we consider the following
alternate form of the vectorized input-output relation in (6):

yT = h′X + vT . (10)



(a) Type 1 indexing (b) Type 2 indexing (c) Type 3 indexing

Fig. 1. 2-Dimensional indexing in N ×M DD grid for M = 8, N = 6, K1 = 5, K2 = 4. Black bins: active. White bins: inactive.

In (10), yT is the 1 ×MN received vector, h′ is a 1 × P
vector, ith element of h′ is h′i = hie

−j2πνiτi , and X is P ×
MN matrix whose (k+Nl)th column, represented by X[k+
Nl], k = 0, 1, · · · , N − 1, l = 0, 1, · · · ,M − 1, is given by

X[k +Nl] =


x(k−β1)N+N(l−α1)M

x(k−β2)N+N(l−α2)M
...

x(k−βP )N+N(l−αP )M

 . (11)

X can be viewed as a symbol matrix of size P ×MN . Let
Xi and Xj be two distinct symbol matrices. The difference
matrix ∆ij is given by ∆ij , Xi−Xj . It has been shown in
[6] that the asymptotic diversity order of conventional OTFS
is the minimum rank of the difference matrix ∆ij ,∀i, j, i 6= j.
Let ρotfs denote the asymptotic diversity order, given by

ρotfs = min
i,j i6=j

rank(∆ij). (12)

The asymptotic diversity order for conventional OTFS has
been shown to be one [6]. A lower bound on the average
BER can be obtained as

BER ≥ κ

2MN

1

4γMN
, (13)

where γ is the SNR and κ denotes the number of rank one
difference matrices. For ease of exposition, we assume BPSK
symbols. If we were to design indexing schemes that can
extract second order diversity, the task is to take a closer
look at the difference matrices that contribute to diversity one
and eliminate these occurrences. Towards this, we consider the
following two cases.

Case 1 (P = MN): When P = MN , it is clear that
the difference matrix ∆ij is a square matrix which is block
circulant with circulant blocks. Hence, it can be diagonalized
by eigen value decomposition, the eigen vectors being the
columns of FM ⊗ FN , where FM and FN are the Fourier
matrices of order M and N , respectively. The corresponding
eigen values turn out to be the MN values obtained by 2D
IDFT operation on the first row vector (of size 1×MN ) of the
difference matrix ∆ij . For those difference matrices having
rank one, there is only one non-zero eigenvalue, which implies
that 2D IDFT operation results in only one non-zero value and
the rest of MN − 1 values are zeros. For an even M and N
(which is the case in practice since they are typically chosen
to be the powers of 2), such rank one difference matrices can
be explicitly identified and κ is found to be 8. We note that the
difference matrix ∆ij is fully characterized by its first row.
The MN ×MN difference matrix can be written as

∆ij =


∆

(0)
ij ∆

(1)
ij . . . ∆

(M−1)
ij

∆
(M−1)
ij ∆

(0)
ij . . . ∆

(M−2)
ij

...
...

...
...

∆
(1)
ij ∆

(2)
ij . . . ∆

(0)
ij

 , (14)

where ∀ k

∆
(k)
ij =


δ

(k)(0)
ij δ

(k)(1)
ij . . . δ

(k)(N−1)
ij

δ
(k)(N−1)
ij δ

(k)(0)
ij . . . δ

(k)(N−2)
ij

...
...

...
δ

(k)(1)
ij . . . . . . δ

(k)(0)
ij

 , (15)

where δ
(k)(l)
ij is the lth element in the first row of the kth

circulant matrix ∆
(k)
ij of dimension N × N . In Table I, we

enumerate the first row of the 8 rank one difference matrices1.
Case 2 (P 6= MN): Here, we consider a N ×M channel

grid with P non-zero values filled over a subgrid of size r1×r2

such that P = r1r2, i.e., αi ∈ {0, 1, · · · , r2 − 1} and βi ∈
{0, 1, · · · , r1−1}. For such a channel structure, from (10), X
forms a partial block circulant matrix (r2 consecutive blocks
out of M ) with partial circulant blocks (r1 consecutive rows
out of N ). Hence, in this case, the partial difference matrix,
denoted by

(
∆′ij

)
r1r2×MN

, also has the same structure. We
now have the following theorem.

Theorem 1:
(
∆′ij

)
r1r2×MN

is rank one if and only if
(∆ij)MN×MN is rank one.

Proof: The r1r2 × MN partial difference matrix can be
written as

∆′ij =


∆′ij

(0) ∆′ij
(1) . . . ∆′ij

(M−1)

∆′ij
(M−1) ∆′ij

(0) . . . ∆′ij
(M−2)

...
...

...
...

∆′ij
(M−(r2−1)) . . . . . . ∆′ij

(M−r2)

 ,
(16)

where ∀ k

∆′ij
(k) =


δ

(k)(0)
ij δ

(k)(1)
ij . . . δ

(k)(N−1)
ij

δ
(k)(N−1)
ij δ

(k)(0)
ij . . . δ

(k)(N−2)
ij

...
...

...
δ

(k)(N−(r1−1))
ij . . . . . . δ

(k)(N−r1)
ij

 , (17)

1If either of M or N is odd, then κ = 4 and only the first four rows of
Table I are valid. If both M and N are odd, then κ = 2 and only the first
two rows of Table I are valid.



First rows of ∆ij (i.e., values of δ(k)(l)
ij

, k = 0 to M − 1; l = 0 to N − 1)

Sl.No (k = 0; l = 0 to N − 1) (k = 1; l = 0 to N − 1) (k = 2; l = 0 to N − 1) (k = 3; l = 0 to N − 1) · · · (k = M − 1; l = 0 to N − 1)
1 2 2 2 2 · · · 2 2 2 2 2 · · · 2 2 2 2 2 · · · 2 2 2 2 2 · · · 2 · · · 2 2 2 2 · · · 2

2 −2 −2 −2 −2 · · · −2 −2 −2 −2 −2 · · · −2 −2 −2 −2 −2 · · · −2 −2 −2 −2 −2 · · · −2 · · · −2 −2 −2 −2 · · · −2

3 2 2 2 2 · · · 2 −2 −2 −2 −2 · · · −2 2 2 2 2 · · · 2 −2 −2 −2 −2 · · · −2 · · · −2 −2 −2 −2 · · · −2

4 −2 −2 −2 −2 · · · −2 2 2 2 2 · · · 2 −2 −2 −2 −2 · · · −2 2 2 2 2 · · · 2 · · · 2 2 2 2 · · · 2

5 2 −2 2 −2 · · · −2 2 −2 2 −2 · · · −2 2 −2 2 −2 · · · −2 2 −2 2 −2 · · · −2 · · · 2 −2 2 −2 · · · −2

6 −2 2 −2 2 · · · 2 −2 2 −2 2 · · · 2 −2 2 −2 2 · · · 2 −2 2 −2 2 · · · 2 · · · −2 2 −2 2 · · · 2

7 2 −2 2 −2 · · · −2 −2 2 −2 2 · · · 2 2 −2 2 −2 · · · −2 −2 2 −2 2 · · · 2 · · · −2 2 −2 2 · · · 2

8 −2 2 −2 2 · · · 2 2 −2 2 −2 · · · −2 −2 2 −2 2 · · · 2 2 −2 2 −2 · · · −2 · · · 2 −2 2 −2 · · · −2

TABLE I
FIRST ROWS OF THE 8 RANK ONE DIFFERENCE MATRICES.

where δ(k)(l)
ij is the lth element in the first row of the kth partial

circulant matrix ∆′ij
(k), whose dimension is r1×N . Now, let

us define F = FM ⊗ FN and its corresponding r1r2 ×MN
partial matrix as

F′ =


F′N F′N . . . F′N
F′N ωMF′N . . . ω

(M−1)
M F′N

...
...

. . .
...

F′N ω
(r2−1)
M F′N . . . ω

(r2−1)(M−1)
M F′N


= F′M ⊗ F′N ,

(18)

where, defining ωN = ej
2π
N and ωM = ej

2π
M ,

F′N =


1 1 . . . 1

1 ωN . . . ω
(N−1)
N

...
...

. . .
...

1 ω
(r1−1)
N . . . ω

(r1−1)(N−1)
N

 , (19)

F′M =


1 1 . . . 1

1 ωM . . . ω
(M−1)
M

...
...

. . .
...

1 ω
(r2−1)
M . . . ω

(r2−1)(M−1)
M

 , (20)

By the property of Kronecker product,
rank(F′) = rank(F′M ).rank(F′N ). (21)

Since F′N and F′M are Vandermonde matrices [14], they are
full rank matrices with ranks r1 and r2, respectively. So, the
rank of F′ is r1r2. It can be further verified that

∆′ijF = F′D, (22)
where
D = diag(g(1), g(ω0

M , ω
1
N ), g(ω0

M , ω
2
N ), · · · g(ωM−1

M , ωN−1
N ))

(23)
and

g(x1, x2) =

M−1∑
k=0

N−1∑
l=0

δ
(k)(l)
ij xk1x

l
2. (24)

The values in D are nothing but the eigen values of ∆ij . If
∆′ij is rank one, then D has only one non-zero value which
implies ∆ij is also rank one. Therefore, the rank one matrices
for both cases P = MN and P 6= MN are the same.

In order to get second order diversity, we need to eliminate
these rank one cases. Applying index modulation can aid the
elimination of rank one cases. Indexing introduces zeros in non
active indices. By wisely choosing the number of active delay
and Doppler indices, we can eliminate the rank one difference
matrices from occurring in the signal set. In both 1D and 2D
indexing, there are some possibilities of occurrence of rank
one difference matrices in the signal set.

In all three types of 2D indexing as described in Sec. II-A,
there are two cases where we obtain rank one difference
matrices. These two cases occur when i) K1 = M/2 and
K2 = N , and ii) K1 = M and K2 = N/2. In the above
two cases, symbols from the modulation alphabet fill half the
bins in the N × M DD grid, and there is a possibility of
occurrence of completely filled difference matrices whose first
rows follow the same pattern as those in Table I with values
scaled by a factor of 0.5. Except for the above mentioned
K1 and K2 values, it can be verified that all other values of
K1 and K2 will produce a difference matrix set with no rank
one difference matrix in it. Therefore, the asymptotic diversity
order achieved by OTFS with 2D indexing is two. �

We will verify the above diversity result through simulations
in the next section.

IV. DIVERSITY AND PAPR RESULTS

A. Diversity performance

In this subsection, the diversity performance of both 1D
indexed (delay indexed and Doppler indexed) and 2D indexed
OTFS systems with maximum likelihood (ML) detection are
presented. The results are compared with those of conventional
OTFS (without indexing). Table II shows the simulation pa-
rameters used. Figure 2 shows the BER performance of i)
delay indexed OTFS with M = 4, N = 2, K1 = 1, and
4-QAM, and ii) conventional OTFS with M = 4, N = 2,
and BPSK. Both systems have 1 bpcu rate. It can be seen
from the Fig. 2 that the simulated BER of the delay indexed
system attains an asymptotic diversity order of two and the
conventional OTFS system attains an asymptotic diversity
order of one, which verifies the analytical results in Sec.
III. We can also observe that delay indexed system achieves
SNR gains of 1 dB and 2 dB at a BER of 10−3 and 10−4,
respectively, compared to conventional OTFS. Figure 3 shows
the second order diversity performance achieved by Type 2 2D
indexed OTFS system with M = 4, N = 2, K1 = 2, K2 = 1,
4-QAM, and 1 bpcu. The rank histogram of the difference
matrices corresponding to Figs. 2 and 3 are given in Table III,
where we can see that the indexed OTFS systems considered
have no rank one difference matrices, and hence they attain a
diversity order of two, as observed Figs. 2 and 3.

For practical large values of M and N , ML detector
becomes impractical due to its exponentially growing de-
coding complexity. Message passing (MP) algorithms are
used to attain near-optimal and low-complexity detection in
such cases where M and N are large. The system model
given in (6) can be modeled as a sparsely connected fac-



Parameter Value
Carrier frequency (GHz) 4
Subcarrier spacing (KHz) 3.75
Number of paths (P ) 4
Delay-Doppler profile (τi, νi) (0, 0), (0, 1

NT
),

( 1
M∆f

, 0), ( 1
M∆f

, 1
NT

)

TABLE II
SIMULATION PARAMETERS (FOR FIGURES 2 & 3).

System Ranks
1 2 3 4

M = 4, N = 2 w/o indexing 8 2328 1536 61408
M = 4, N = 2, K1 = 1
1D delay indexing

0 1056 512 63712

M = 4, N = 2, K1 = 2, K2 = 1
2D Type 2 indexing

0 1664 768 62848

TABLE III
RANK HISTOGRAM OF DIFFERENCE MATRICES.

tor graph. Scalar messages are exchanged between MN
variable nodes and MN observation nodes to get an es-
timate of the transmitted symbols in the message passing
based detection [5]. In MP detector for indexed systems,
an additional layer of DD bin activation pattern nodes are
used to exploit the structure obtained from indexing [16].
A carrier frequency of 4 GHz, subcarrier spacing of 15
KHz, number of paths P = 6, and a DD profile (τi, νi) =
{(0, 0), (0, 1

NT
), ( 1

M∆f
, 0), ( 1

M∆f
, 1

NT
), ( 2

M∆f
, 0), ( 2

M∆f
, 1
NT

)}
are used for simulations. Figure 4 shows the BER performance
of i) 1D delay indexed OTFS with M = 8, N = 8, K1 = 2,
and 4-QAM, and ii) conventional OTFS with M = 8, N = 8,
and BPSK, each having 1 bpcu rate. We can observe that 1D
delay indexed OTFS performs better than conventional OTFS,
which is attributed to the higher diversity order achieved by
the proposed indexing in OTFS.

B. PAPR performance

In this subsection, the PAPR performance of 1D indexed
OTFS system is analyzed. As discussed in Sec. II, the infor-
mation symbols mounted on DD grid are transformed to time
domain using ISFFT followed by Heisenberg transform. Let X
denote the N ×M matrix containing the information symbols
in the DD grid. The ISFFT operation can be viewed as N -
point IDFT along the columns and M -point DFT along the
rows of X. Assuming rectangular transmit and receive pulses,
the OTFS transmit signal in matrix form is given by

S = FHNXFMFHM = FHNX, (25)

where FN and FM are the N -point and M -point DFT
matrices, respectively. It can be observed from (25) that the
N -point IDFT is performed along the columns of X which
makes the maximum PAPR of OTFS modulation vary linearly
with N and not with M [15].

In 1D indexing along the Doppler axis, there will be only
K2 active bins along the columns of X. So, the maximum
PAPR of 1D indexing along the Doppler axis depends on the
value of K2 < N . The maximum PAPR in this indexing
scheme will be PAPRmax = K2PAPRc, where PAPRc is the
PAPR of the modulation alphabet used. In 1D indexing along
the delay axis, there can be up to N active bins along the
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Fig. 2. BER performance of 1D delay indexed OTFS and conventional OTFS
(without indexing) using ML detection.
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Fig. 3. BER performance of 2D Type 2 indexed OTFS and conventional
OTFS (without indexing) using ML detection.

columns of X. Since the average power transmitted in this
delay indexed scheme is lower compared to conventional
OTFS scheme, the maximum PAPR of 1D indexing along the
delay axis will be PAPRmax = (NM/K1)PAPRc.

Figure 5 shows the CCDF of PAPR of delay indexed and
Doppler indexed OTFS systems with M = 32, N = 32, K1 =
16 and K2 = 16, and conventional OTFS system with M = 32
and N = 32. All systems use 4-QAM and Nyquist sampling
(oversampling ratio = 1). It can be seen from the figure that
the PAPR performance of the Doppler indexed OTFS system
is better than the conventional OTFS system. Since K2 < N ,
the maximum PAPR value of Doppler indexed system is lower
compared to conventional OTFS system. From the figure, we
can observe that the delay indexed OTFS system has higher
PAPR compared to conventional OTFS system. This is because
the PAPRmax value of the delay indexed OTFS system is higher
compared to conventional OTFS system.

Effect of number of active bins : Figure 6 shows the CCDF
of PAPR of delay indexed and Doppler indexed OTFS systems
with M = 32, N = 32, K1 = 12, 16, and K2 = 12, 16. Both
systems use 4-QAM and Nyquist sampling (oversampling ratio
= 1). From Fig. 6, we can observe that the Doppler indexed
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Fig. 4. BER performance of 1D delay indexed OTFS and conventional OTFS
(without indexing) using message passing detection.
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Fig. 5. Comparison of CCDF of PAPR of Doppler indexed, delay indexed,
and conventional OTFS systems.

system with smaller number of active bins (K2) have lower
PAPR values. It can be seen that the PAPRmax value of Doppler
indexed system linearly varies with K2. In contrast, the delay
indexed system with smaller number of active bins (K1) has
higher PAPR values. It can be seen that the PAPRmax of delay
indexed system has an inverse dependence on the value of K1.

V. CONCLUSIONS

We proposed DD indexing designs for OTFS that can
achieve an asymptotic diversity order of two. This is an
interesting new contribution given that the asymptotic diversity
order of conventional OTFS (without indexing) is just one.
We achieved this diversity order of two by eliminating the
occurrences of rank one difference matrices. Simulation results
validated the analytically proved second order diversity. We
also showed that DD indexing can improve the PAPR perfor-
mance of OTFS. The effect of pulse shapes on the diversity
performance of indexed OTFS is a topic of future work. Also,
DD indexing designs to achieve more than diversity order two
can be investigated as future work.
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Fig. 6. Effect of active bins on the CCDF of PAPR of delay indexed and
Doppler indexed OTFS systems.
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