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Abstract—In this paper, we consider transmit antenna selection
(TAS) in orthogonal time frequency space (OTFS) modulation
and analyze its performance. We assume that the channel is
quasi-static in the delay-Doppler (DD) domain and there is
limited feedback from the receiver to the transmitter. The
diversity performance of TAS is analyzed in a multiple-input
multiple-output OTFS (MIMO-OTFS) system. Antenna selection
is done based on the maximum channel Frobenius norm in the
DD domain, where ns antennas are selected out of nt transmit
antennas. Our analysis for one resolvable path in the DD channel
(i.e., P = 1) shows that i) when ns = 1, full spatial diversity of
nrnt (i.e., full receive diversity of nr and full transmit diversity of
nt) is achieved since the underlying symbol difference matrix is
full rank, and ii) when ns > 1, only nrth order receive diversity is
achieved because of rank deficiency. Simulation results are shown
to validate the analytically predicted diversity performance. For
P > 1, diversity orders are predicted through rank of the
difference matrices, validated through computation of pairwise
error probability (PEP) bounds and simulations.

keywords: OTFS modulation, MIMO-OTFS, transmit an-
tenna selection, spatial diversity, DD diversity.

I. INTRODUCTION

Next generation wireless communication systems beyond
5G are envisaged to operate in high-mobility/Doppler sce-
narios such as V2X communications, high-speed trains, and
mm-wave communications. These systems should be capable
of supporting high data rates and reliability in rapidly time-
varying channels. Orthogonal time frequency space (OTFS)
modulation is a novel modulation scheme proposed in re-
cent literature to tackle the doubly-dispersive nature of high-
Doppler channels [1],[2]. This modulation scheme multiplexes
information symbols in the DD domain, unlike conventional
multicarrier modulation schemes (e.g., OFDM), which use the
time-frequency (TF) domain. The multiplexed symbols in the
DD domain undergo 2D circular convolution with the channel
in DD, such that each symbol encounters almost constant
channel gain even in the rapidly time-varying channels. Be-
cause of the constant DD channel gain experienced by the
symbols, channel estimation and equalization overhead is re-
duced. One more advantage of OTFS modulation is that it can
be implemented using existing multicarrier architectures such
as OFDM with additional pre- and post-processing blocks.

Several recent articles on the OTFS modulation have ad-
dressed key issues such as channel estimation [3]-[4], low-
complexity signal detection [5]-[7], multiple access [8]-[10],
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peak-to-average power ratio (PAPR), and pulse shaping [11]-
[12]. Asymptotic diversity analysis of OTFS is carried out in
[13] and it has been shown that the asymptotic diversity of
single-input single-output OTFS (SISO-OTFS) is one. It also
explored a phase rotation scheme to extract full DD diversity.
It established the diversity orders of MIMO-OTFS with phase
rotation and without phase rotation, which are nrP and nr
respectively, where nr is the number of receive antennas and
P is the number of resolvable paths in the DD channel. Space-
time coded OTFS (STC-OTFS) is proposed in [14], where
it exploits the Alamouti structure generalized to matrices to
achieve full transmit diversity.

Practical MIMO systems have cost and complexity issues.
Antenna selection is an effective solution to address the RF
hardware complexity issue without compromising much in
performance. Antenna selection at the transmitter can reduce
the number of transmit radio frequency (RF) chains. Also, the
diversity performance of OTFS with transmit antenna selection
(TAS) has not been reported so far. Motivated by the above
observations, our contribution in this paper is the analysis of
the diversity performance of OTFS in the presence of antenna
selection at the transmitter. We assume the channel is quasi-
static in the DD domain and there is limited feedback from
the receiver to the transmitter. The antennas are selected based
on the channel Frobenius norms of the transmit antennas
in the DD domain. Our performance analysis in this paper
establishes the diversity achieved by the MIMO-OTFS system
with antenna selection at the transmitter. When the number
resolvable paths in the DD channel is one (P = 1), our
analysis shows full spatial diversity is achieved for a full
rank MIMO-OTFS and only receive diversity is achieved for
a rank deficient MIMO-OTFS system with antenna selection
at the transmitter. Simulation results are presented to validate
the analytical results. For P > 1, diversity performance is
obtained through the rank of the symbol difference matrices,
validated through pairwise error probability (PEP) bounds and
simulations. The performance MIMO-OTFS with Frobenius
norm based selection is compared with random antenna selec-
tion and without antenna selection to demonstrate the diversity
achieved by the Frobenius norm based selection.

The paper is organized as follows. The system model for
MIMO-OTFS with TAS is presented in Sec. II. Diversity
analyses are presented in Sec. III. Results and discussions are
presented in Sec. IV. Conclusions are presented in Sec. V.
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Fig. 1: OTFS modulation scheme.

II. SYSTEM MODEL FOR MIMO-OTFS WITH TAS

In this section, we introduce the system model. Towards
this, we present the input-output relation of basic OTFS
modulation and its extension to MIMO-OTFS with TAS.

A. Basic OTFS modulation

Consider the basic OTFS system which transmits and
receives QAM/PSK information symbols. Figure 1 shows
the basic OTFS modulation scheme. It consists of cascade
structures of 2D transforms both at transmitter and receiver.
It can also be viewed as a conventional OFDM system with
additional pre- and post-processing modules at the transmitter
and receiver. At the transmitter, the information symbols in
the DD domain are transformed to TF domain through 2D
inverse symplectic finite Fourier transform (ISFFT) followed
by windowing. Using Heisenberg transform, the TF domain
signal is transformed to time domain for transmission over
the wireless channel. At the receiver, Wigner transform and
2D symplectic finite Fourier transform (SFFT) are performed
to get the symbols in DD domain for demodulation.

The information symbols x[k, l]s are arranged in 2D N×M
DD grid, given by

Υ = {( k
NT ,

l
M∆f ), k = 0, · · · , N − 1, l = 0, · · · ,M − 1},

(1)
where 1/NT and 1/M∆f are the Doppler resolution and
delay resolution, respectively, and N and M are the number
of Doppler bins and delay bins, respectively. The information
symbols x[k, l] in the DD domain are mapped to the TF
domain using ISFFT. Assuming rectangular windowing, the
TF signal can be written as

X[n,m] =
1√
MN

N−1∑
k=0

M−1∑
l=0

x[k, l]ej2π(nk
N −

ml
M ). (2)

The TF signal X[n,m] is transformed to a time domain signal
x(t), using Heisenberg transform and transmit pulse gtx(t), as

x(t) =

N−1∑
n=0

M−1∑
m=0

X[n,m]gtx(t− nT )ej2πm∆f(t−nT ). (3)

The signal x(t) transmitted through the channel, whose com-
plex baseband channel response can be modeled in the DD
domain as

h(τ, ν) =

P∑
i=1

hiδ(τ − τi)δ(ν − νi), (4)

where P is the number of paths in the DD domain, and hi,
τi, and νi are the channel gain, delay, and Doppler shift of the

ith path, respectively. The received time domain signal y(t)
can be expressed as

y(t) =

∫
ν

∫
τ

h(τ, ν)x(t− τ)ej2πν(t−τ)dτdν + v(t), (5)

where v(t) is the additive white Gaussian noise. At the
receiver, Wigner transform is performed on the received signal
y(t) to get the TF domain signal Y [n,m], as

Y [n,m] =

[∫
g∗rx(t′ − t)y(t′)e−j2πf(t′−t)dt′

]
t=nT,f=m∆f

,

(6)
where grx(t) is the receive pulse. The pulses gtx(t) and grx(t)
are chosen in order to satisfy bi-orthogonality condition. Using
SFFT, the TF signal is mapped to the DD domain signal as

y[k, l] =
1√
MN

N−1∑
k=0

M−1∑
l=0

Y [n,m]e−j2π(nk
N −

ml
M ). (7)

Using (3)-(7), the input-output relation in the DD domain can
be written as [5]

y[k, l] =

P∑
i=1

h′ix[(k − βi)N , (l − αi)M ] + v[k, l], (8)

where h′i = hie
−j2πνiτi , αi and βi are assumed to be integers

satisfying τi , αi

M∆f and νi , βi

NT , (.)N denotes the modulo
N operation, and v[k, l] denotes the additive white Gaussian
noise. Here, his are assumed to be i.i.d and are distributed as
CN (0, 1/P ) with uniform scattering profile. The input-output
in (8) can be vectorized as [5]

y = Hx + v, (9)

where H ∈ CMN×MN , x,y,v ∈ CMN×1, the (k + Nl)th
entry of x, xk+Nl = x[k, l], k = 0, · · · , N−1, l = 0, · · · ,M−
1, and x[k, l] ∈ S, where S is the modulation alphabet (e.g.,
QAM/PSK). Similarly, yk+Nl = y[k, l] and vk+Nl = v[k, l],
k = 0, · · · , N − 1, l = 0, · · · ,M − 1.

An alternate input-output relation for (9): The input-output
relation in (9) can be written in an alternate form for diversity
analysis. We observe that there are only P non-zero entries in
each row and each column of the equivalent channel matrix
H because of modulo operation. Hence, (9) can be written in
an alternate form as

yT = h′X + vT , (10)

where yT is 1 × MN received signal vector, h′ is 1 × P
channel vector whose ith entry is given by h′i = hie

−j2πνiτi ,
vT is 1×MN noise vector, and X is P ×MN signal matrix
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Fig. 2: MIMO-OTFS with transmit antenna selection.

whose ith column X[i], i = k +Nl, k = 0, · · · , N − 1, l =
0, · · · ,M − 1, is given by

X[i] =


x(k−β1)N+N(l−α1)M

x(k−β2)N+N(l−α2)M
...

x(k−βP )N+N(l−αP )M

 . (11)

This representation is useful for diversity analysis.

B. MIMO-OTFS with TAS

Following (9), the input-output relation of MIMO-OTFS
system with nr receive antennas and nt transmit antennas can
be written as y1

...
ynr


︸ ︷︷ ︸

, ȳ

=

H11 · · · H1nt

...
. . .

...
Hnr1 · · · Hnrnt


︸ ︷︷ ︸

, H̄

 x1

...
xnt


︸ ︷︷ ︸
, x̄

+

 v1

...
vnr


︸ ︷︷ ︸

, v̄

, (12)

or equivalently
ȳ = H̄x̄ + v̄, (13)

where ȳ ∈ CnrMN×1 is received signal vector, H̄ ∈
CnrMN×ntMN is the overall equivalent channel matrix with
Hij being the MN × MN equivalent channel matrix be-
tween the jth transmit antenna and ith receive antenna, x̄ ∈
CntMN×1 is the OTFS transmit vector, and v̄ ∈ CnrMN×1

is the noise vector. For antenna selection at the transmitter,
pilot symbols can be transmitted from all the nt antennas and
the channel gain of each transmit antenna is estimated at the
receiver, and the indices of the transmit antennas to be selected
at the transmitter are fed back. Antennas are selected based on
the maximum DD channel Frobenius norm, i.e., ns antennas
are selected whose DD channel Frobenius norms, given by

nr∑
i=1

‖Hij‖2, j = 1, 2, · · · , nt, (14)

are the largest among those of the nt transmit antennas. Since
each Hij has only PMN non-zero entries with P unique
entries, (14) can be equivalently written as

nr∑
i=1

P∑
k=1

|h(k)
ij |

2, j = 1, 2, · · · , nt, (15)

where h(k)
ij are the unique non-zero entries of Hij . The input-

output relation of MIMO-OTFS with TAS can be written as y1

...
ynr


︸ ︷︷ ︸
, ȳ′

=

H′11 · · · H′1ns

...
. . .

...
H′nr1 · · · H′nrns


︸ ︷︷ ︸

, H̄′

 x1

...
xns


︸ ︷︷ ︸
, x̄′

+

 v1

...
vnr


︸ ︷︷ ︸
, v̄′

, (16)

or equivalently
ȳ′ = H̄′x̄ + v̄′, (17)

where ȳ′ ∈ CnrMN×1, H̄′ ∈ CnrMN×nsMN is the equivalent
channel matrix with TAS, x̄ ∈ CnsMN×1 is the OTFS transmit
vector, and v̄′ ∈ CnrMN×1 is the noise vector. Figure 2 shows
the block diagram of MIMO-OTFS with TAS.

An alternate form of MIMO-OTFS with TAS: Similar to (10),
the input-output relation of a MIMO-OTFS with TAS can be
written in an alternate form asy1

T

...
ynr
T


︸ ︷︷ ︸
, Ỹ

=

 h′11 · · · h′1ns

...
. . .

...
h′nr1 · · · h′ntns


︸ ︷︷ ︸

, H̃

X1

...
Xns


︸ ︷︷ ︸

, X̃

+

v1
T

...
vnr
T


︸ ︷︷ ︸
, Ṽ

, (18)

or equivalently
Ỹ = H̃X̃ + Ṽ, (19)

where Ỹ ∈ Cnr×MN with its ith row corresponding to the
received signal in the ith receive antenna, H̃ ∈ Cnr×nsP is
the channel matrix with h′ij ∈ C1×P containing P unique
non-zero entries of H′ij , X̃ is nsP ×MN symbol matrix, and
Ṽ ∈ Cnr×MN is the noise matrix.

C. OTFS with phase rotation
It has been shown that SISO-OTFS [13] with phase rotation

achieves full DD diversity, where the OTFS transmit vector x
is pre-multiplied by a phase rotation matrix Φ, which is of the
form

Φ = diag{φ0, φ1, · · · , φMN−1}, (20)

where φi = ejai , i = 0, 1, · · · ,MN − 1, are transcendental
numbers with ai being real, distinct, and algebraic. That is,
x′ = Φx is the phase rotated OTFS transmit vector. For
a MIMO-OTFS system, the OTFS vector in each transmit
antenna is pre-multiplied by the phase rotation matrix Φ.



D. Rank of MIMO-OTFS systems

In this subsection, we discuss the rank of MIMO-OTFS
systems with and without phase rotation.

1) MIMO-OTFS with ns = 1 with and without phase
rotation: Let X̃i and X̃j be two distinct symbol matrices
defined in (19). The minimum rank of (X̃i−X̃j) without phase
rotation is 1 < min(nsP,MN) [13]. Therefore, MIMO-OTFS
for ns = 1 and P > 1 is rank deficient. For P = 1, this system
is full rank with rank equal to 1. Next, considering MIMO-
OTFS with phase rotation, if X̃′i and X̃′j are the distinct phase
rotated symbol matrices in (19) then the minimum rank of
(X̃′i − X̃′j) is P ≤ min(P,MN), which is full rank.

2) MIMO-OTFS with ns > 1 and with and without phase
rotation: For ns > 1, without phase rotation, the minimum
rank of (X̃i − X̃j) is 1 < min(nsP,MN) and with phase
rotation the minimum rank is P < min(nsP,MN). Both of
these cases correspond to rank deficient.

III. DIVERSITY ANALYSIS OF MIMO-OTFS WITH TAS

In this section, we investigate the diversity order of MIMO-
OTFS.

A. Full rank MIMO-OTFS systems with TAS

Consider full rank MIMO-OTFS systems with TAS. Let X̃i

and X̃j be two distinct symbol matrices and γ = 1/N0 be the
normalized signal-to-noise ratio (SNR). Assuming perfect DD
channel knowledge and maximum likelihood (ML) detection
at the receiver, the conditional pairwise error probability (PEP)
between symbol matrices X̃i and X̃j is given by

P (X̃i → X̃j |H̃, X̃i) = Q

√‖H̃(X̃i − X̃j)‖2
2N0

. (21)

Averaging over the distribution of H̃ and upper bounding using
the Chernoff bound, the unconditional PEP can be written as

P (X̃i → X̃j) ≤ EH̃

[
exp

(
−γ ‖H̃(X̃i − X̃j)‖2

4

)]
. (22)

The distribution of H̃ is given by

fH̃(h′1, · · · ,h′ns
) =

nt!

(nt − ns)!ns!

·
( ns∑
l=1

[
1− e−‖h

′
l‖

2
nr−1∑
k=0

‖h′l‖2k

k!

]nt−ns

· IH̃l
(h′1, · · · ,h′ns

)

)
· 1

πnrns
e−(‖h′1‖

2+···+‖h′ns
‖2),

(23)

where h′i is the ith column of H̃, IH̃l
(h′1, · · · ,h′ns

) is the
indicator function given by

IH̃l
(h′1, · · · ,h′ns

) =

{
1 if (h′1, · · · ,h′ns

) ∈ H̃l
0 else,

(24)

with non-zero region H̃l where lth column has the min-
imum norm among the ns selected columns, i.e., H̃l =

{h′1, · · · ,h′ns
: ‖h′l‖ < ‖h′k‖, k = 1, · · · , l−1, l+1, · · · , ns}.

Using similar steps from [15], the upper bound on PEP can
be written as

P (X̃i → X̃j) ≤
nt!

(nt − ns)!ns!(nr!)nt−ns
· 1

λ̃ntnr

·

 nr∑
i1=1

· · ·
nr∑

inr(nt−ns)=1

k1! · · · knr
!

 · (γ
4

)−nrnt

,

(25)

where λ̃ is the minimum eigenvalue of (X̃i−X̃j)(X̃i−X̃j)
H .

This result shows that full spatial diversity of ntnr is achieved
for full rank MIMO-OTFS system when ns antennas are
selected at the transmitter. For P > 1, we can predict the
diversity order based on the rank of (X̃i − X̃j). We can
specialize the above diversity order for MIMO-OTFS systems,
which are full rank for P = 1 and P > 1 as follows.

• MIMO-OTFS system without phase rotation for P = 1
is full rank when ns = 1. Therefore, in this case, full
spatial diversity of ntnr is achieved when one antenna is
selected at the transmitter.

• MIMO-OTFS system with phase rotation for P > 1 is
also full rank when ns = 1. Therefore, in this case, we
can predict the diversity order to be nrntP (i.e., full
spatial and DD diversity).

B. Rank deficient MIMO-OTFS systems with TAS

Consider rank deficient MIMO-OTFS systems with TAS.
Let X̃i and X̃j be two distinct symbol matrices and γ be the
normalized SNR. Let r be the minimum rank of (X̃i − X̃j).
The upper bound on the PEP can be written as [15]

P (X̃i → X̃j) ≤
nt!

(nt − ns)!ns!(nr!)nt−ns
·

(
γλ̃

4

)−nrr

·
nr∑
i1=1

· · ·
nr∑

inr(nt−ns)=1

k1! · · · knr
!

(1 + γλ̃
4 )k1+1 · · · (1 + γλ̃

4 )knr+1
,

(26)

where λ̃ is the minimum non-zero eigenvalue of (X̃i −
X̃j)(X̃i − X̃j)

H . From the above equation, the diversity
achieved for the rank deficient case is at least rnr. For any
P > 1, we can predict the diversity order based on the
minimum rank of symbol difference matrices. Now, we can
specialize in the above result to MIMO-OTFS systems that
are rank deficient as follows.

• MIMO-OTFS without phase rotation for P = 1 is rank
deficient when ns > 1, with minimum rank of one.
Therefore, only nrth order diversity is achieved.

• MIMO-OTFS without phase rotation is rank deficient for
P > 1 and ns ≥ 1, with minimum rank equal to one.
Therefore, predicted diversity order in this case, is nr.

• MIMO-OTFS with phase rotation is also rank deficient
for P > 1 and ns > 1, with minimum rank equal to P .
Therefore, predicted diversity order in this case is nrP .



Parameter Value
Carrier frequency, fc
(GHz) 4
Subcarrier spacing, ∆f
(KHz) 3.75
Frame size (M,N) (2, 2)
DD profile for P = 1
(τi (µs), νi (kHz)) ( 1

M∆f
, 1
NT

)

DD profile for P = 2
(τi (µs), νi (kHz)) (0, 0), ( 1

M∆f
, 1
NT

)

Maximum speed (km/h) 506.2
Modulation scheme BPSK

TABLE I: Simulation parameters.

IV. RESULTS AND DISCUSSIONS

In this section, we discuss the bit error rate (BER) perfor-
mance of TAS with and without phase rotation for MISO-
OTFS and MIMO-OTFS systems for P = 1, 2 and ns = 1, 2.
The simulation parameters used are tabulated in Table I.

MISO/MIMO-OTFS with TAS for P = 1, ns = 1, 2
without phase rotation: Figure 3 shows the simulated BER
performance of MISO-OTFS and MIMO-OTFS without phase
rotation for P = 1, nr = 1, 2, ns = 1, 2, and nt = 2, 3.
All the systems use OTFS frame size of M = N = 2,
and BPSK modulation with ML detection at the receiver. A
carrier frequency of 4 GHz and subcarrier spacing of 3.75 kHz
with maximum Doppler of 1.875 kHz (corresponding speed is
506.2 km/h at 4 GHz) are considered. The DD channel model
considered for simulations is as per (8), and the various DD
profiles used are given in Table I. For MISO-OTFS system
with P = 1 and ns = 1 the system is full ranked and the
analytically derived diversity in Sec. III-A is nt. From Fig.
3 it is evident that diversity slopes of 2 and 3 are observed
for the MISO-OTFS systems with nt = 2, ns = 1 and
nt = 3, ns = 1, respectively, corroborating the analytically
predicted diversity order. For MIMO-OTFS system with TAS
with P = 1, nr = 2, nt = 3, and ns = 2, the system is
rank deficient with rank equal to 1 and analytically predicted
diversity order is nr. The BER plot in Fig. 3 shows a diversity
slope of 2 for this system, verifying the analytical predicted
diversity order in Sec. III-B.

MISO/MIMO-OTFS with TAS for P = 2 and ns = 1, 2 with
and without phase rotation: Figure 4 shows upper bound and
the simulated BER performance of 1) MISO-OTFS with TAS,
without phase rotation for P = 2, nt = 2, and ns = 1 and
2) MIMO-OTFS with TAS, without and with phase rotation
for P = 2, nt = 3, ns = 2, and nr = 2. The parameters for
simulations are given in Table I. The upper bound is based on
the union bound for the considered system. The considered
system is rank deficient and predicted diversity in Sec.III-B
is rnr. Figure 4 shows diversity slopes of 1 for MISO-OTFS
without phase rotation, 2 and 4 for MIMO-OTFS without and
with phase rotation, respectively. For the considered MISO-
OTFS and MIMO-OTFS system, the rank is 1 for without
phase rotation, and 2 for MIMO-OTFS system with phase
rotation. Also, the upper bound on BER is tight at high SNRs
for all the cases, verifying the predicted diversity of rnr in
Sec. III-B.
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Fig. 3: BER performance of MISO/MIMO-OTFS with TAS,
without phase rotation for P = 1, nr = 1, 2, ns = 1, 2, and
nt = 2, 3.
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Fig. 4: BER performance of MISO/MIMO-OTFS with TAS,
without and with phase rotation for P = 2, nt = 2, 3, ns =
1, 2 and nr = 1, 2.

Comparison between Frobenius norm based selection, ran-
dom selection, and no selection: Figure 5 compares the BER
performance with Frobenius norm based antenna selection,
random antenna selection, and without antenna selection in
OTFS systems with phase rotation and P = 2. In random
selection, ns distinct antennas are selected at random. The
systems considered in Fig. 5 are: SISO-OTFS without selec-
tion (nt = nr = 1), MISO-OTFS with Frobenius norm based
selection and random selection (nt = 2, ns = 1, nr = 1),
MIMO-OTFS without selection (nt = nr = 2), and MIMO-
OTFS with Frobenius norm based selection and random se-
lection (nt = 2, ns = 1, nr = 2). It is noted that, as per
the analysis in Sec. III, the considered SISO-OTFS system
without selection and MISO-OTFS and MIMO-OTFS systems
with Frobenius norm based selection (ns = 1) are full rank,
and hence they achieve the full diversity of ntnrP . That is,
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Fig. 5: BER performance comparison between i) Frobenius
norm based selection, ii) random selection, and iii) no selec-
tion in OTFS systems with phase rotation and P = 2.

SISO-OTFS has a diversity of ntnrP = 2, and MISO-OTFS
and MIMO-OTFS with norm based selection have a diversity
of ntnrP = 4 and ntnrP = 8, respectively. These diversity
slopes of 2, 4, and 8 can be observed in the corresponding BER
plots of SISO-OTFS, MISO-OTFS with norm based selection,
and MIMO-OTFS with norm based selection, respectively,
in Fig. 5. Likewise, the considered MIMO-OTFS system
without selection is rank deficient and it achieves a diversity
of nrP = 4. It is also seen that MISO-OTFS with random
selection (ns = 1) does not give diversity slope improvement
compared to without selection. MIMO-OTFS with random
selection (ns = 1) gives some SNR gain compared to MIMO-
OTFS without selection but has the same diversity slope of 4,
whereas the norm based selection achieves a diversity slope
of 8. Other selection criteria, such as capacity based selection
criteria, can be considered for further investigation.

V. CONCLUSIONS

We investigated the diversity performance of OTFS modula-
tion with antenna selection at the transmitter. The receiver was
assumed to know the DD channel and send limited feedback
to the transmitter. Antenna selection was made based on the
maximum channel Frobenius norms in the DD domain. We
quantified the diversity orders of the MIMO-OTFS with TAS
for full rank and rank deficient cases for P = 1. Our analysis
showed that MIMO-OTFS with TAS for P = 1 achieves
full spatial diversity of nrnt when ns = 1 due to full rank,
and only nrth order diversity is achieved when ns > 1 due
to rank deficiency. Simulation results on the BER perfor-
mance validated the analytically predicted diversity orders. For
P > 1, diversity orders were predicted through the rank of
symbol difference matrices, validated through computation of
PEP bounds and simulations. Diversity analysis of TAS for
P > 1, fractional DD values, and practical pulse shapes at the
transmitter and receiver, can be considered for future work.

Also, capacity based antenna selection in OTFS can also a
potential topic for future work.
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