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Abstract—In visible light communication (VLC) systems, like
in radio frequency (RF) wireless communication systems, the
channel has to be estimated to aid transceiver operations such
as data detection and precoding. The LEDs which serve as VLC
transmitters have to maintain a desired average intensity as they
are simultaneously used for both data transmission as well as
lighting, and each LED also has a maximum power constraint.
In this paper, we are concerned with channel estimation in
VLC systems under these constraints. Specifically, we consider
extensions to combinational codes for optimal pilot transmission
assuming that the receiver employs a zero-forcing decoder. We
construct optimal codes which need much fewer pilot channel
uses for channel estimation compared to that needed by simple
concatenation of combinational codes. We propose a recursive
algorithm to construct such codes that are short in length
and meet the optimality constraints. The bit error performance
achieved using the estimates of the channel obtained using the
proposed codes are shown to be quite close to that with perfect
channel knowledge.

Keywords – Visible light communication, channel estimation,

MIMO-VLC, compact pilot design, combinational code.

I. INTRODUCTION

Visible light communication (VLC) systems are proving

to be attractive for wireless communications in indoor and

vehicular environments [1],[2]. In VLC systems, light emitting

diodes (LED) and photo diodes (PD) serve as optical wireless

transmitters and receivers, respectively. VLC transceivers are

simple and cost effective compared to RF communication

transceivers. Simultaneous lighting and data transmission ca-

pability, security in closed-room applications, and free visible

light spectrum are some key advantages of VLC. In VLC,

information is conveyed through modulation of the optical in-

tensity radiated by the LED(s). Consequently, the information

signals that intensity modulate the LEDs are real and non-

negative. Communication using multiple LEDs and multiple

PDs in multiple-input multiple-output (MIMO) configuration

is an attractive means to achieve high data rates [3],[4]. In

indoor applications where LEDs have to support both lighting

as well as communication needs, the LEDs have to maintain

a desired average intensity, and each LED also must satisfy a

maximum intensity constraint.

Like in RF wireless communication systems, estimates of

the channel coefficients are needed in VLC systems as well

for the purposes of implementing transceiver functions such as

data detection at the receiver and precoder at the transmitter. In

MIMO VLC systems, estimating the columns of the channel

matrix by illuminating one LED at a time could render

meeting the average intensity requirement without exceeding

the maximum intensity constraint per LED difficult when

more transmit LEDs are involved. This opens up the problem

of finding optimal channel estimation schemes that take into

account the aforementioned practical intensity constraints on

the transmitter LEDs.

Channel estimation in VLC systems has been considered

in the literature [6]-[10]. Channel estimation schemes for

optical OFDM systems such as DCO-OFDM [11] and ACO-

OFDM [12] and their performance are extensively studied

[6]-[9]. The other work related to channel estimation in VLC

include the problem of finding the scheme that minimizes

the noise variance under practical considerations such as

maximum power and average power constraints [10]. While

average power constraints arise from the need to ensure a

desired illumination of lighting, maximum power constraint

arises from the LED’s maximum power rating. The sufficient

conditions under which a pilot code is optimal for the above

problem has been reported in [10]. An example of a code

which satisfies these conditions, namely combinational code,

has also been reported.

Though the combinational code is optimal, the number

of pilot channel uses required increases significantly as the

in number of LEDs is increased. Whereas, optimal codes

with fewer channel uses for pilot transmission are desired

for increasing number of LEDs. Construction of such codes

forms the key focus of this paper. Specifically, we construct

optimal codes with short lengths for VLC channel estimation

with average and maximum power constraints. The pilot

matrices are chosen to have certain structure, which we

call as concatenated circulant structure. The condition under

which these pilot matrices are optimal when zero-forcing

(ZF) detection is used is shown. Also, a recursive algorithm

which generates these optimal pilot matrices for given number

of LEDs is presented. It is shown that the optimal codes

generated by the recursive algorithm are defined for much

smaller number of channel uses compared to that of codes

obtained by simple concatenation of combinational codes. We

also evaluated the bit error rate (BER) performance of spatial

multiplexing (SMP) in a MIMO VLC system when channel

matrices estimated using the constructed codes are used

in data detection. Results show that the BER performance

achieved using the estimated channel is quite close (within

about 1 dB) to that achieved with perfect channel knowledge.

The rest of this paper is organized as follows. The indoor

MIMO VLC system model and the VLC channel estimation

problem are introduced in Sec. II. The conditions for optimal

pilot design and combinational code are presented in Sec. III.

The proposed codes with concatenated circulant structure are

presented in Sec. IV. Results and discussions are presented in

Sec. V. Conclusions are presented in Sec. VI.

II. SYSTEM MODEL AND CHANNEL ESTIMATION PROBLEM

A. Indoor MIMO VLC system model

Consider an indoor MIMO VLC system with Nt LEDs

(transmitter) and Nr PDs (receiver), where the LEDs are

assumed to have Lambertian radiation pattern [5]. In a given
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Fig. 1. Schematic showing various angles which determine LOS path gain.

signaling interval, an LED is either OFF or emits light with

some intensity. Let x = [x1 x2 · · ·xNt
]T be the Nt × 1

transmit vector, where xi is the light intensity emitted by the

ith LED, which depends on the modulation scheme used. The

MIMO VLC channel matrix H is of the order Nr×Nt and its

(i, j)th element hij is the path gain from the jth LED to the

ith PD, j = 1, · · · , Nt, and i = 1, · · · , Nr. The expression

for the LOS path gain hij is given by [5]

hij =
n+ 1

2π
cosn φij cos θij

A

R2
ij

rect
( θij
FOV

)
, (1)

where φij is the angle of emergence from the jth source

(LED) with respect to the normal at the source, n is the mode

number of the radiating lobe which is given by n = − ln(2)
ln cosΦ 1

2

,

Φ 1

2

is the half-power semiangle of the LED, θij is the angle

of incidence at the ith PD, A is the area of the PD, Rij is

the distance between the jth LED and the ith PD, FOV is

the field-of-view of the PD, and rect(x) = 1, if |x| ≤ 1,

and rect(x) = 0, if |x| > 1. See Fig. 1 for the definition of

various angles in the model. Assuming the electrical-to-optical

conversion factor to be unity, the Nr×1 received signal vector

at the receiver in the electrical domain is given by

y = aHx+ n, (2)

where a is the responsivity of the PD (in Amperes/Watt)

and n = [n1 n2 · · ·nNr
]T is the noise vector. The electrical

noise variables nis in n are modeled as i.i.d. real AWGN

with zero mean and variance σ2. The SNR at a PD in

the electrical domain is defined as
(aPr)

2

σ2 , where Pr is the

total received optical power and σ2 is the noise power at

a PD. The total power received at the ith PD is given by

E{(Hix)
2}. Therefore, the average received optical power

is given by E{‖Hx‖2} = 1
Nr

Nr∑
i=1

E{(Hix)
2}, where Hi is

the ith row of H, ‖.‖ is the Euclidean norm operator, E{.}
is the expectation operator, and the expectation is w.r.t. the

signal vector x. Hence, the average SNR at the receiver in the

electrical domain is given by γ = a2

σ2Nr

Nr∑
i=1

E{(Hix)
2}, and

the corresponding Eb/N0 is given by Eb/N0 = γ
η

, where η
is the rate of the modulation scheme used, in bits per channel

use (bpcu).

B. Channel estimation problem in VLC

In this subsection, we formulate the VLC channel estima-

tion problem by considering a MISO system for simplicity

of exposition though it extends to MIMO VLC systems in

a straightforward manner. Consider a MISO VLC system

consisting of Nt LEDs and one PD. The LOS path gains

from the LEDs to the PD are to be estimated in the pilot

transmission phase. Let hj denote the LOS path gain from

jth LED to the PD, Ncu (Ncu ≥ Nt) denote the number of

pilot channel uses used to estimate these path gains, and ajm
denote the intensity that is transmitted by jth LED in the mth

channel use. It is assumed that hjs remains constant during

the estimation phase (this is a reasonably valid assumption as

indoor VLC channels are slow fading in nature). Without loss

of generality, a responsitivity of a = 1 Amp/Watt is assumed.

The observed variable ym received by the PD in the mth

channel use based on the system model considered in Sec.

II-A is given by

ym =

Nt∑

j=1

hjajm + nm, m = 1, 2, · · ·Ncu. (3)

Grouping all observables over Ncu channel uses (3) can be

written in vector form as

yp = hA+ np, (4)

where yp = [y1 y2 · · · yNcu
], h = [h1 h2 · · ·hNt

], A =
[ajm]

Nt×Ncu
, and np = [n1 n2 · · ·nNcu

]. Here, the matrix A

is the pilot matrix. In RF communication systems, typically

Ncu = Nt with pilot matrix A to be the identity matrix

is used. Such a scheme in VLC will be inadequate when

maximum and average power constraints are taken into con-

sideration. Assume each LED supports a maximum intensity

of µ lumens and the average illumination required from each

LED is Φ lumens. Then the entries of the pilot matrix A

should be chosen such that

0 ≤ ajm ≤ µ, ∀j,m, (5)

1

Ncu

Ncu∑

m=1

ajm = Φ, ∀j. (6)

Now, assuming that a ZF decoder is used at the receiver, the

estimate of h is given by

ĥ = ypW

= h+ npW (7)

where W = AT (AAT )
−1

. For a fixed matrix A, the mean

square error (MSE) of the estimate in (7) is obtained as

E{‖ h− ĥ ‖2} = E{‖ npW ‖2}

= E{(npW)(npW)T }

= Tr
(

E{(npW)T (npW)}
)

= Tr
(

W
T
E{np

T
np}W

)

= σ
2 Tr

(

W
T
W

)

= σ
2 Tr

(

(

(AA
T )

−1
)T

AA
T (AA

T )
−1

)

= σ
2 Tr

(

(

(AA
T )

−1
)T

)

= σ
2 Tr

(

(AA
T )

−1
)

. (8)



From (8) it is clear that minimizing the MSE amounts to

minimizing the metric Tr
(
(AAT )

−1
)

. Hence, the optimal

pilot matrix is obtained as

Aopt = argmin
A

Tr
(
(AAT )

−1
)

, given constraints (5), (6).

(9)

Note that the optimal pilot matrix in (9) is independent of

the statistics of h (because of the ZF operation), which also

implies that the problem is independent of the location of the

receiver PD with respect to transmitter LEDs. Also, if there

are multiple PDs at the receiver, the optimal matrix is the

same as that in (9) for each PD. Therefore the optimal pilot

matrix is given by (9) for MIMO VLC configuration as well.

III. CONDITIONS FOR THE OPTIMAL PILOT DESIGN AND

COMBINATIONAL CODE

Though the problem (9) is non-convex, the pilot matrix A

is optimal solution to the problem if it satisfies the conditions

given in Theorem 1 [10].

Theorem 1. If A = [ajm]
Nt×Ncu

constrained by (5) and

(6) satisfies the following conditions:

C1. For all j and j′ 6= j, both
∑

m a2jm and
∑

m(ajm)(aj′m)
are constants,

C2.
∑

j ajm = ΦNt for all m,

C3. For all j and m, ajm = 0 or µ,

then A is an optimal solution to (9).

A. Combinational code

For Nt LEDs, each LED having maximum power of µ and

average power Φ, combinational code is the pilot transmission

scheme in which the columns of pilot matrix are chosen to be

all possible permutation of NtΘ µ’s and Nt(1−Θ) 0’s, where

Θ = Φ
µ

. The number of channel uses the combinational code

requires is given by Ncu =
(

Nt

NtΘ

)
. The combinational code

and its time repetition satisfy all the conditions in Theorem

1. Hence they are optimal solutions to the problem (9) [10].

If a matrix A′ satisfies the condition C1, C2, and C3 of

Theorem 1, then it is easy to verify that any matrix obtained

by interchanging the columns of A′ also satisfies conditions

C1, C2, and C3. This means a code obtained by interchanging

columns of the optimal code is also optimal.

Example 1. If µ = 1, Nt = 4, and Φ = 1
2 , then Ncu =(

4
2

)
= 6 and the corresponding combinational code is




1 0 0 1 1 0
1 1 0 0 0 1
0 1 1 0 1 0
0 0 1 1 0 1


 . (10)

IV. PROPOSED CODES WITH CONCATENATED CIRCULANT

STRUCTURE

A. Concatenated circulant structure

A pilot matrix A is said to have concatenated circulant

structure if it is formed by a concatenation of matrices

A1,A2, · · ·AL, i.e, A = [A1 A2 · · ·AL], where L is a

arbitrary positive finite integer and the lth matrix Al is

described by Nt×1 vector vl and parameter βl, l = 1, 2, · · ·L
as

Al =
[
v0
l v1

l · · ·v
βl−1
l

]

Nt×βl

, (11)

where v
ρ
l denotes vector vl circularly shifted by ρ in down-

ward direction. For each l, the parameter βl should be such

that v
βl

l = v0
l . The number of columns in A will be the sum

of the number of columns of Al, l = 1, 2, · · ·Nt. So, we have

Ncu =

L∑

l=1

βl. (12)

Now consider a vector v of size Nt × 1. Let αv denote the

minimum positive number such that vαv = v0. Circularly

shifting a vector by ρ1+ρ2 is same as first circularly shifting

by ρ1 and then by ρ2. Using this fact, it can be shown that

for any positive integer ρ, vρ = vρ mod αv . Let the matrix

Bv corresponding to vector v be

Bv =
[
v0 v1 · · ·vαv−1

]
Nt×αv

. (13)

If a vector of size Nt is circularly shifted by Nt all the

elements in the vector get back to its initial position and we

get back th same vector, i.e vNt = v0. Hence Nt is multiple

of αv. Let this multiplying factor be Tv, i.e., Nt = Tvαv.

The repeated concatenation of matrix Bv by Tv times gives

us a circulant matrix with first column as v0 or simply v. We

denote this circulant matrix as Cv. The matrix CT
v will also

be circulant and will have v as the first row. Using the fact

that the eigen vectors of a circulant matrix are the columns of

DFT matrix and the eigen values are DFT of the first row of

the circulant matrix considered, and by applying eigen value

decomposition on CT
v , we have

CT
v = FNt

diag{V (0), V (1), · · ·V (Nt − 1)}FH
Nt
, (14)

where FNt
denotes the Nt × Nt normalized DFT matrix,

V (k) is the (k + 1)th entry of the DFT of the vector v,

k = 0, 1 · · ·Nt − 1, and diag{p1, p2 · · · pNt
} denotes the

diagonal matrix with p1, p2 · · · pNt
as the diagonal entries.

Considering the entries of vector v to be real, CT
v = CH

v .

Hence we will have

Cv = FNt
diag{V ∗(0), V ∗(1), · · ·V ∗(Nt − 1)}FH

Nt
,
(15)

CvC
T
v = FNt

diag{|V (0)|2, |V (1)|2, · · · |V (Nt − 1)|2}FH
Nt
,

(16)

where V ∗(k) is conjugate of V (k) and |V (k|2 is square of

the magnitude of V (k). Hence the eigen values of CvC
T
v are

the square of the magnitudes of the DFT values of vector v.

Since Cv is Tv times repeated concatenation of Bv, we have

BvB
T
v =

(
1

Tv

)
CvC

T
v . (17)

Hence the eigen values of BvBvT are |V (k)|2/Tv, k =
0, 1, · · ·Nt − 1. Now, since v

βl

l = v0
l for each l, βl = tlαvl

,

which means the matrix Al is tl times repeated concatenation



of matrix Bvl
. Hence we have

AlA
T
l = tlBvl

BT
vl

=

(
tl
Tvl

)
Cvl

CT
vl

=

(
βl/αvl

Nt/αvl

)
Cvl

CT
vl

=

(
βl
Nt

)
Cvl

CT
vl
. (18)

So the eigen values of AlA
T
l are

(
βl

Nt

)
|Vl(k)|

2
, k =

0, 1 · · ·Nt − 1 and the eigen vectors are the columns of DFT

matrix, i.e.,
[
1 exp

(
−j 2πk

Nt

)
· · · exp

(
−j 2π(Nt−1)k

Nt

)]
, k =

0, 1, · · ·Nt − 1. The matrix A being concatenation of

A1,A2, · · ·AL, we have

AAT =

L∑

l=1

AlA
T
l . (19)

Since the eigen vectors of AlA
T
l are same for all l, the

eigen values of AAT are given by summing the eigen

values of AlA
T
l . So AAT will have

L∑
l=1

(
βl

Nt

)
|Vl(k)|

2
,

k = 0, 1 · · ·Nt − 1 as the eigen values and columns of DFT

matrix as the eigen vectors.

Any code having concatenated circulant structure can

be described completely by the vectors v1,v2, · · ·vL

and corresponding parameters β1, β2, · · · βL respectively.

We denote code with these vectors and parameters as

circ ({v1, β1}, {v2, β2}, · · · {vL, βL}).

B. Criteria for code to be optimal

Consider A
Nt

µ,Θ to be the set of all codes having concate-

nated circulant structure, where all the representative vectors

vl ∈ P
Nt

µ,Θ, l = 1, 2 · · ·L, where P
Nt

µ,Θ is the set of all possible

permutation of NtΘ µ’s and Nt(1−Θ) 0’s. Any pilot matrix

A ∈ A
Nt

µ,Θ satisfies the condition C2 and C3 of Theorem 1

and also meets the constraints (5) and (6). This is justified by

the following.

1) The columns of matrix A are the representative vectors

and their circular shifts. Since the entries of these

vectors are either µ or 0, all the entries of A are also

either µ or 0. So constraint (5) and condition C3 of

Theorem 1 are satisfied.

2) Each column of A has NtΘ entries to be µ’s and

remaining entries to be 0’s. So the sum of the entries

in each column is NtΘµ = ΦNt. Hence condition C2

of Theorem 1 is satisfied.

3) For each l, the fraction of entries being µ in the

representative vector vl is Θ. As the matrix Cvl
is

circulant, each row will have the same elements as

that of the columns, and as the columns are shifted

versions of vl, the fraction of elements being µ in each

row of Cvl
will be Θ. Since matrices Cvl

and Al are

repeated concatenated version of the same matrix Bvl
,

the fraction of entries being µ in each row will be the

same for both. So the fraction of entries being µ in

each row of Al will be Θ for each value of l. Hence

the fraction of entries being µ in matrix A, which is

concatenated version of A1,A2 · · ·AL will also be Θ.

Since the entries other than µ are 0, the average value

of each row will be Θµ = Φ. So A also satisfies the

constraint (6).

We have seen that any code from the set A
Nt

µ,Θ meets the

constraints (5) and (6) and also satisfies conditions C1 and

C2 of Theorem 1. If the code also satisfies C3, then it is

optimal. To know under what condition the code from the set

A
Nt

µ,Θ satisfy C3, we will make use of the following Lemma.

Lemma 1. For a matrix A = [ajm]
Nt×Ncu

, given that

the eigen vectors of AAT are columns of DFT matrix, for

all j and m 6= j, both
∑

m a2jm and
∑

m(ajm)(aj′m) are

constants if and only if the eigen values except the one which

corresponds to the eigen vector [1 1 · · · 1]T are equal.

Proof: Let
∑

m a2jm = ψ and
∑

m(ajm)(aj′m) = ω, for

all j and m 6= j. This means that the matrix AAT is

AAT =




ψ ω · · · ω
ω ψ · · · ω
...

...
. . .

...

ω ω · · · ψ


 , (20)

or simply AAT is a circulant matrix with the first row as

z = [ψ ω · · ·ω]. So the eigen values of AAT will be DFT of

z. Let DFT of z be denoted by Z, then

Z(k) =

Nt−1∑

n=0

z(n) exp

(
−j

2πnk

Nt

)
, k = 0, 1, · · ·Nt − 1

= ψ + ω

Nt−1∑

n=1

exp

(
−j

2πnk

Nt

)

= ψ − ω + ω

Nt−1∑

n=0

exp

(
−j

2πnk

Nt

)
. (21)

Now, using the relation

N−1∑

n=0

exp

(
−j

2πnk

N

)
=

{
N, k = pN, p ∈ Z

0, k 6= pN, p ∈ Z,
(22)

we can write Z(k) in (21) as

Z(k) =

{
ψ − ω + ω(0), k = 1, · · ·Nt − 1

ψ − ω + ωNt, k = 0,
(23)

Z(k) =

{
ψ − ω, k = 1, · · ·Nt − 1

ψ + ω(Nt − 1), k = 0.
(24)

From (24), we can say that DFT of [ψ ω · · ·ω] is [ψ +
(Nt − 1)ω ψ − ω · · ·ψ − ω]. Therefore, the eigen value

corresponding to [1 1 · · · 1]T is ψ + (Nt − 1)ω and all other

eigen values are equal to ψ− ω. This completes the proof of

forward implication.

Regarding the proof of converse, let the eigen value cor-

responding to [1 1 · · · 1]T be γ and all other eigen values be

equal to δ. Since it is given that eigen vectors of AAT are

columns of DFT, AAT will be circulant and first row will be

IDFT of eigen values. Now, by replacing γ and δ in place of ψ
and ω in the above DFT-IDFT pair, IDFT of [γ δ · · · δ] will be

(1/Nt)[γ+ (Nt − 1) δ γ− δ · · · γ− δ]. So AAT is circulant

with first row as (1/Nt)[γ + (Nt − 1) δ γ − δ · · · γ − δ].



Algorithm 1 Obtaining combinational code in terms of rep-

resentative vectors

1: Inputs: Nt, µ,Φ
2: Initialize: Θ = Φ

µ
; set S = P

Nt

µ,Θ; l = 1

3: while (S 6= ∅) do

4: choose a vector vl randomly from the set S

5: βl = αvl

6: S = S\{v′|v′ is circular shift of vl}
7: l = l + 1
8: end while

9: L = l − 1
10: Output: A = circ ({v1, β1}, {v2, β2}, · · · {vL, βL})

So
∑

m a2jm = γ+(Nt−1) δ
Nt

and
∑

m(ajm)(aj′m) = γ−δ
Nt

.

Therefore,
∑

m a2jm and
∑

m(ajm)(aj′m) are constants.

For any code A ∈ A
Nt

µ,Θ, if condition C1 is satisfied, then it

is optimal as it automatically satisfies other conditions. Since

it has the concatenated circulant structure, the eigen values of

AAT are
L∑

l=1

(
βl

Nt

)
|Vl(k)|

2
, k = 0, 1 · · ·Nt − 1. Now, using

Lemma 1, we can say that condition C1 is satisfied if all

the eigen values except the one corresponding to eigen vector

[1 1 · · · 1]T are equal. Eigen value of AAT corresponding

to [1 1 · · · 1]T is
L∑

l=1

(
βl

Nt

)
|Vl(0)|

2
. So A will be optimal if

L∑
l=1

(
βl

Nt

)
|Vl(k)|

2
is same for k = 1, 2, · · ·Nt − 1.

By definition, the vectors in the set PNt

µ,Θ are same as the

columns of the combinational code. So, Algorithm 1 generates

combinational code, where the columns are arranged such

that it has concatenated circulant structure. This means that

it can be represented in terms of the representative vectors

and corresponding parameters. Using Algorithm 1, it can be

verified that the combinational code in example 1 is same

as the code circ({[1 1 0 0]T , 4}, {[1 0 1 0]T , 2}). All the

combinational codes with columns arranged appropriately are

examples of optimal codes among the code belonging to the

set ANt

µ,Θ. There can be some codes other than combinational

codes which are also optimal in the set ANt

µ,Θ. One such code

is given in Example 2 below.

Example 2. Given Nt = 10, µ = 1, Φ = 1
2 , the code A =

circ({v1, 10}, {v2, 10}, {v3, 10}, {v4, 10}, {v5, 10}, {v6, 4}),
where v1 = [1 1 1 1 1 0 0 0 0 0]T , v2 = [1 1 1 0 0 1 1 0 0 0]T ,

v3 = [1 1 1 0 0 1 0 1 0 0]T , v4 = [1 1 0 1 1 0 0 1 0 0]T ,

v5 = [1 1 0 1 0 1 0 0 1 0]T , v6 = [1 0 1 0 1 0 1 0 1 0]T . The

eigen values of AAT are [135 15 15 15 15 15 15 15 15 15].
Hence, using Lemma 1, we can say that code A is optimal.

For this code Ncu = 54.

C. Recursive algorithm

The number of channel uses Ncu =
(

Nt

NtΘ

)
used by

combinational code increases rapidly with increase in Nt. For

any even Nt, Ncu is maximum for the case of Θ = 1
2 . So for

this case, we propose Algorithm 2 to generate optimal codes

for larger Nt, having much smaller Ncu compared to that in

combinational code.

Algorithm 2 Algorithm to generate code A2Nt
∈ A

2Nt

µ, 1
2

using

the representative vectors and corresponding parameters of the

code ANt
∈ A

Nt

µ, 1
2

1: Inputs: Representative vectors v1,v2, · · ·vL ∈ P
Nt

µ, 1
2

and corresponding parameters β1, β2, · · · βL of the code

ANt
∈ A

Nt

µ, 1
2

The vectors u1,u2, · · ·u2L+1 ∈ P
2Nt

µ, 1
2

and their cor-

responding parameters β
′

1, β
′

2 · · ·β
′

2L+1 are obtained as

follows (the vectors are indexed starting from 0)

2: for l = 1, 2, · · ·L
3: for m = 0, 1, · · ·Nt − 1
4: ul(2m) = ul(2m+ 1) = vl(m)
5: uL+l(2m) = vl(m)
6: uL+l(2m+ 1) = µ− vl(m)
7: end for

8: β′

l = 2βl
9: β′

L+l = 2βl
10: Vl = DFT(vl)
11: end for

12: u2L+1 = [µ 0 µ 0 · · ·µ 0]T

13: β
′

2L+1 = 8
Ntµ2

L∑
l=1

(
βl

Nt

)
|Vl(

Nt

2 )|
2

14: Output:

ANt
= circ

(
{u1, β

′

1}, {u2, β
′

2}, · · · {u2L+1, β
′

2L+1}
)

Proposition 1. If ANt
∈ A

Nt

µ, 1
2

is optimal, then the code

A2Nt
∈ A

2Nt

µ, 1
2

generated by Algorithm 2 using ANt
is also

optimal.

Proof: The proof is given in Appendix A.

Example 3. In this example, we present an optimal

code generated by Algorithm 2 for Nt = 8, µ = 1,

Θ = 1
2 from Nt = 48, µ = 1, Θ = 1

2 . The code

ANt
= circ({v1, 4}, {v2, 2}), where v1 = [1 1 0 0]T

and v2 = [1 0 1 0]T . The eigen values of ANt
AT

Nt

are [6 2 2 2], making ANt
optimal. Using Algorithm

2 we have, u1 = [1 1 1 1 0 0 0 0]T , u2 =
[1 1 0 0 1 1 0 0]T , u3 = [1 0 1 0 0 1 0 1]T , u4 =
[1 0 0 1 1 0 0 1]T , u5 = [1 0 1 0 1 0 1 0]T , and A2Nt

=
circ({u1, 8}, {u2, 4}, {u3, 8}, {u4, 4}, {u5, 4}). The eigen

values of A2Nt
AT

2Nt
are [56 8 8 8 8 8 8 8], and so A2Nt

is

also optimal.

V. RESULTS AND DISCUSSION

In this section, we present the results on the optimal codes

generated, MSE performance, and BER performance of the

proposed optimal codes and combinational codes. The number

of channel uses Ncu for different Nt for combinational codes

and optimal codes generated using Algorithm 2 are given

in Table I. The codes that are compared with combinational

codes for Nt = 8, 16, 32 are generated by repeatedly using

Algorithm 2 starting with Nt = 4 combinational code as the

input. Similarly, codes for Nt = 12, 24 are generated using

Algorithm 2 starting with Nt = 6 combinational code, and

the code for Nt = 20 is obtained from Nt = 10 scheme



Nt Ncu

Optimal code generated using Combinational code
proposed recursive algorithm

8 28 70

12 88 924

16 120 12870

20 228 184756

24 368 2704156

32 496 601080390

TABLE I
COMPARISON OF OPTIMAL CODE GENERATED USING RECURSIVE

ALGORITHM WITH COMBINATIONAL CODE IN TERMS OF Ncu FOR Θ =
1

2
.
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Fig. 2. Mean square error of various channel estimation schemes as a function
of Ncu.

that is given in Example 2. From Table I, we see that the

codes generated using the proposed recursive algorithm have

much fewer channel uses compared to those of combinational

codes, and that this advantage gets increasingly more for

larger values of Nt.

Like in the case of combinational codes, time repetition

of optimal codes generated using the recursive algorithm is

also optimal. If we consider Nt = 8, Ncu for combinational

code is 70 and its time repetition will be multiple of 70,

whereas Ncu for the code obtained using recursive algorithm

is 28 and its time repetition will be multiple of 28. The MSE

for these schemes along with the those of other schemes

which satisfy constraints (5) and (6) are shown in Fig. 2.

TDMA with all LEDs ON is a scheme in which the pilot
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Fig. 3. (a) Location of LEDs and (b) location of PDs considered for BER
simulations.
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Fig. 4. Comparison of BER performance of SMP in 8 × 8 MIMO VLC
system with estimated and perfect channel knowledge.

matrix is either concatenation of µINt
and µ1Nt×(Nt−2) or

its time repetition, where IN refers to N ×N identity matrix

and 1N1×N2
refers to matrix of order N1 × N2 where all

the elements are 1. TDMA with DC offset is a scheme in

which pilot matrix is either µ
Nt−1

(
Nt

2 INt
+ Nt−2

2 1Nt×Nt

)
or

its time repetition. From Fig. 2, we see that, being optimal,

the combinational codes and the codes obtained using the

proposed recursive algorithm achieve significantly better MSE

performance compared to the TDMA based schemes.

Finally, in Figs. 4 and 5 we present the BER performance of

SMP in 8×8 and 12×12 MIMO VLC systems, respectively,

for the cases of perfect and estimated channel knowledge.

Each LED uses ON/OFF keying where intensity 0 or µ is

radiated based on information bits. The location of LEDs and

PDs used for the simulation are shown in Fig. 3. For 12× 12
system, all LEDs and PDs (marked in blue and red) are used.

For 8 × 8 system, only those LEDs and PDs marked in red

are used. From Figs. 4 and 5, we observe that the degradation

of BER performance with estimated channel compared to that

with perfect channel knowledge is quite small. For example,

the SNR degradation is not more than 1 dB compared to the

performance with perfect channel knowledge which demon-

strates the effectiveness of the proposed optimal codes with

small number of pilot channel uses.

VI. CONCLUSIONS

We considered the problem of channel estimation in VLC

systems under maximum power and average power con-

straints. We chose the pilot matrices to have a structure,

which we called as concatenated circulant structure. We

gave the representation of these pilot matrices in terms of

representative vectors and a parameter associated with each

vector. We also presented the condition under which pilot

matrices having this structure are optimal. We proposed a

recursive algorithm which generates optimal code for 2Nt

given the optimal code for Nt for the case of Θ = 1
2 . The

recursive algorithm gave the optimal codes having much fewer

pilot channel uses compared to combinational codes. So the

proposed codes can be practical even for large Nt, making it

suitable for applications requiring high data rates. Simulation
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Fig. 5. Comparison of BER performance of SMP in 12× 12 MIMO VLC
system with estimated and perfect channel knowledge.

results showed that there is only about 1 dB SNR degrada-

tion in BER performance when estimated channel using the

proposed codes is used (compared to the performance with

perfect channel knowledge). Obtaining compact optimal codes

for Θ other than 1
2 is a topic for further research.

APPENDIX A: PROOF OF PROPOSITION 1

Since ANt
is optimal, from Lemma 1, the eigen values of

ANt
AT

Nt
other than that corresponding to the eigen vector

[1 1 · · · 1]T are equal. Let these eigen values be equal to ω,

i.e.,

L∑

l=1

(
βl
Nt

)
|Vl(k)|

2
= ω, for k = 1, 2, · · ·Nt − 1. (25)

Using Lemma 1, we can say that code A2Nt
will be opti-

mal if all the eigen values of A2Nt
AT

2Nt
are same except

the one corresponding to eigen vector [1 1 · · · 1]T . So we

will have to show that
2L+1∑
l=1

(
β
′

l

2Nt

)
|Ul(k)|

2
is same for

k = 1, 2, · · · 2Nt − 1, where Vl and Ul are DFT of the

vectors vl and ul, respectively. For any {l ∈ 1, 2, · · ·L} and

{k ∈ 0, 1, · · · 2Nt − 1}, we have

Ul(k) =

2Nt−1∑

m′=0

ul(m
′) exp

(
−j

2πm′k

2Nt

)

=

Nt−1∑

m=0

ul(2m) exp

(
−j

2π(2m)k

2Nt

)
+

Nt−1∑

m=0

ul(2m+ 1) exp

(
−j

2π(2m+ 1)k

2Nt

)

=

Nt−1∑

m=0

vl(m) exp

(
−j

2πmk

Nt

)
+

Nt−1∑

m=0

vl(m) exp

(
−j

2πmk

Nt

)
exp

(
−j

πk

Nt

)

= Vl(k) + Vl(k) exp

(
−j

πk

Nt

)
, (26)

which, using (22), can be written as

Ul(k) =





Vl(k) + Vl(k) exp
(
−j πk

Nt

)
, k 6= 0, Nt

2Vl(0), k = 0

0, k = Nt,

(27)

and

UL+l(k) =

2Nt−1∑

m′=0

uL+l(m
′) exp

(
−j

2πm′k

2Nt

)

=

Nt−1∑

m=0

uL+l(2m) exp

(
−j

2π(2m)k

2Nt

)
+

Nt−1∑

m=0

uL+l(2m+ 1) exp

(
−j

2π(2m+ 1)k

2Nt

)

=

Nt−1∑

m=0

vl(m) exp

(
−j

2πmk

Nt

)
+

Nt−1∑

m=0

(µ− vl(m)) exp

(
−j

2πmk

Nt

)
exp

(
−j

πk

Nt

)

= Vl(k) + µ

Nt−1∑

m=0

exp

(
−j

2πmk

Nt

)
exp

(
−j

πk

Nt

)

− Vl(k) exp

(
−j

πk

Nt

)
, (28)

which again, using (22), can be written as

UL+l(k) =





Vl(k)− Vl(k) exp
(
−j πk

Nt

)
, k 6= 0, Nt

Ntµ, k = 0

2Vl(Nt)−Ntµ, k = Nt.

(29)

As vl ∈ P
2Nt

µ, 1
2

, Nt

2 entries are µ and remaining entries are 0.

So we have

Vl(Nt) =

Nt−1∑

m=0

vl(m) exp

(
−j

2πmNt

Nt

)

=

Nt−1∑

m=0

vl(m) =
Nt

2
µ. (30)

Substituting (30) in (29), we get

UL+l(k) =





Vl(k)− Vl(k) exp
(
−j πk

Nt

)
, k 6= 0, Nt

Ntµ, k = 0

0, k = Nt.
(31)



In Algorithm 2, we have chosen vector u2L+1 to have even

entries as µ and odd entries as 0. So we have

U2L+1(k) =

2Nt−1∑

m′=0

u2L+1(m
′) exp

(
−j

2πm′k

2Nt

)

=

Nt−1∑

m=0

µ exp

(
−j

2π(2m)k

2Nt

)

= µ

Nt−1∑

m=0

exp

(
−j

2πmk

Nt

)

=

{
Ntµ, k = 0, Nt

0, k 6= 0, Nt.
(32)

Let Ṽl(k) = Vl(k) exp
(
−j πk

Nt

)
. Now, we have

2L+1∑

l=1

(
β

′

l

2Nt

)
|Ul(k)|

2

=

L∑

l=1

(
β

′

l

2Nt

)
|Ul(k)|

2
+

L∑

l=1

(
β

′

L+l

2Nt

)
|UL+l(k)|

2

+

(
β

′

2L+1

2Nt

)
|U2L+1(k)|

2

=

L∑

l=1

(
βl
Nt

)
|Vl(k) + Ṽl(k)|

2
+

L∑

l=1

(
βl
Nt

)
|Vl(k)− Ṽl(k)|

2

(33)

+ 0 , k 6= 0, Nt

=

L∑

l=1

(
βl
Nt

)(
|Vl(k)+Ṽl(k)|

2
+ |Vl(k)−Ṽl(k)|

2
)
, k 6= 0, Nt

=

L∑

l=1

(
βl
Nt

)
2
(
|Vl(k)|

2
+ |Ṽl(k)|

2
)
, k 6= 0, Nt

=
L∑

l=1

(
βl
Nt

)
2
(
|Vl(k)|

2
+ |Vl(k)|

2
)
, k 6= 0, Nt

= 4
L∑

l=1

(
βl
Nt

)
|Vl(k)|

2
, k 6= 0, Nt

= 4ω, k 6= 0, Nt, (34)

where (34) is obtained by using (25). Now, for k = Nt, (33)

is given by

2L+1∑

l=1

(
β

′

l

2Nt

)
|Ul(Nt)|

2
= 0 + 0 +

(
β

′

2L+1

2Nt

)
(Ntµ)

2
. (35)

Substituting for β
′

2L+1 as given in Algorithm 2, (35) can be

written as

2L+1∑

l=1

(
β′

l

2Nt

)
|Ul(Nt)|

2
= 4

L∑

l=1

(
βl
Nt

)
|Vl(Nt/2)|

2

= 4ω. (36)

So
2L+1∑
l=1

(
β′

l

2Nt

)
|Ul(k)|

2
is same and equal to 4ω for k =

1, 2, · · · 2Nt − 1. This means the eigen values of A2Nt

are equal except the one corresponding to eigen vector

[1 1 · · · 1]T . Hence Proposition 1 is proved.
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