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Abstract—The transceiver operations in the delay-Doppler
(DD) domain in Zak-OTFS modulation, including DD domain
filtering at the transmitter and receiver, involve twisted convo-
lution operation. The twisted convolution operations give rise
to multiple integrals in the end-to-end DD domain input-output
(I/O) relation. The I/O relation plays a crucial role in perfor-
mance evaluation and algorithm development for transceiver
implementation. In this paper, we derive discrete DD domain
closed-form expressions for the I/O relation and noise covariance
in Zak-OTFS. We derive these expressions for sinc and Gaussian
pulse shaping DD filters at the transmitter (Tx). On the receiver
(Rx) side, three types of DD filters are considered, viz., (i) Rx
filter identical to Tx filter (referred to as ‘identical filtering’),
(ii) Rx filter matched to the Tx filter (referred to as ‘matched
filtering’), and (iii) Rx filter matched to both Tx filter and
channel response (referred to as ‘channel matched filtering’). For
all the above cases, except for the case of sinc identical filtering,
we derive exact I/O relation and noise covariance expressions
in closed-form. For the sinc identical filtering case, we derive
approximate closed-form expressions which are shown to be
accurate. Using the derived closed-form expressions, we evaluate
the bit error performance of Zak-OTFS for different Tx/Rx filter
configurations. Our results using Vehicular-A (Veh-A) channel
model with fractional DDs show that, while matched filtering
achieves slightly better or almost same performance as identical
filtering, channel matched filtering achieves the best performance
among the three.

Index Terms—Zak-OTFS modulation, delay-Doppler domain,
Tx/Rx delay-Doppler filters, closed-form I/O relation expressions,
noise covariance.

I. INTRODUCTION

NEXT generation mobile communication systems (e.g.,
6G) strive to ensure reliable communication in high-

mobility scenarios, while catering to the emerging radar sens-
ing needs [1],[2]. High-mobility scenarios result in channel
characteristics that are rapidly time-varying [3], rendering the
channels as time-selective (due to Doppler spread) in addition
to being frequency-selective (due to delay spread). Dealing
with high time-selectivity in wireless channels is challeng-
ing. Orthogonal time frequency space (OTFS) waveform is
a promising waveform that can efficiently serve the com-
munication (through information multiplexing in the delay-
Doppler domain) as well as the radar sensing needs in 6G and
beyond [4]-[9]. OTFS is known to offer significantly superior
performance compared to OFDM, which is prone to inter-
carrier interference caused by time-selectivity of the channel.

OTFS research so far has evolved in two phases. In the
early version of OTFS introduced in 2017 [4], the delay-
Doppler (DD) domain to time domain conversion (and vice
versa) is done in two steps, namely, DD domain to time-
frequency (TF) domain conversion using inverse symplectic

finite Fourier transform followed by TF domain to time domain
conversion using Heisenberg transform. This approach was
motivated by compatibility with existing multicarrier (MC)
modulation in 4G/5G (hence it is referred to as “MC-OTFS”)
[4]-[23]. Recently, a more fundamental approach of direct
conversion from DD domain to time domain using a Zak
theoretic framework (referred to as “Zak-OTFS”) has emerged
[24],[25]. Two key aspects are central to Zak-OTFS. First, it
provides a formal mathematical framework using Zak theory
for describing OTFS and studying its fundamental properties,
in a manner analogous to how Fourier theory constitutes
an appropriate mathematical framework for describing and
understanding OFDM. Second, Zak-OTFS waveform is more
robust to a larger range of delay and Doppler spreads of the
channel. This is because the input-output (I/O) relation in Zak-
OTFS is non-fading and predictable, even in the presence of
significant delay and Doppler spreads, and, as a consequence,
the channel can be efficiently acquired and equalized.

While MC-OTFS research is more mature, Zak-OTFS re-
search is relatively more recent and new [24]-[36]. In this
context, we note that the early derivation of a closed-form
expression for the end-to-end I/O relation in the DD domain
for MC-OTFS in [7] triggered a surge of MC-OTFS research
output, exploiting the I/O relation expression for performance
analysis [10], signal detection and channel estimation [11]-
[20], precoding [21], adoption to spatial modulation [22] and
space-time shift keying [23], etc., in single user and multiuser
environments. A key and new contribution in this paper is the
derivation of such closed-form expressions in compact form
for the end-to-end I/O relation in Zak-OTFS, which has not
been reported. The context, relevance, and usefulness of the
contributions are highlighted below.

The transceiver operations in the DD domain in Zak-OTFS
modulation, including DD domain filtering at the transmitter
and receiver, involve twisted convolution operation1. The
cascade of twisted convolution operations in the transceiver
chain gives rise to multiple integrals in the end-to-end DD
domain I/O relation. The I/O relation plays a crucial role in
performance evaluation and algorithm development. Closed-
form expressions for the I/O relation in a compact form can aid
Zak-OTFS performance evaluation and algorithm development
for transceiver implementation. Motivated by this observation,
in this paper, we derive closed-form expressions for the I/O
relation in Zak-OTFS for sinc and Gaussian pulse shaping DD

1Twisted convolution of two DD functions a(τ, ν) and b(τ, ν), where τ ,
ν denote the delay and Doppler variables, respectively, is defined as
a(τ, ν) ∗σ b(τ, ν)

∆
=

∫∫
a(τ ′, ν′)b(τ − τ ′, ν − ν′)ej2πν′(τ−τ ′)dτ ′dν′,

where ∗σ denotes the twisted convolution operation.
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filters at the transmitter (Tx). On the receiver (Rx) side, we
consider three types of DD filters, viz., (i) Rx filter identical
to Tx filter (referred to as “identical filtering”), (ii) Rx filter
matched to the Tx filter (referred to as “matched filtering”),
and (iii) Rx filter matched to both Tx filter and DD channel
response (referred to as “channel matched filtering”).

Literature Survey on Zak-OTFS: A comprehensive overview
of OTFS modulation theory and applications is provided in
the recent book [36]. In contrast to a broader treatment in the
book, this paper delves into specific aspects of Zak-OTFS,
like deriving closed-form expressions for the I/O relation
and noise covariance for various filtering scenarios, enabling
efficient performance evaluation and comparison of different
Zak-OTFS receiver structures. Apart from the two early papers
on Zak-OTFS [24],[25], a few other papers on the topic have
appeared in the literature [26]-[35]. Identical filtering using
sinc and root raised cosine (RRC) DD Tx/Rx filters in Zak-
OTFS is considered in [25] (see Eqs. (24), (25) in [25]). But
no explicit closed-form expressions for the I/O relation is
given. In the absence of closed-form expressions, the integrals
in the I/O relation need to be computed numerically, which
is tedious and time-consuming. Matched filtering using sinc
and RRC filters is considered in [27] (see Eq. (18) in [27]).
Here again, no explicit closed-form I/O relation expression is
given. Matched filtering is also considered in [29] with sinc,
RRC, and Gaussian Tx/Rx filters. Closed-form I/O relation
expression for Gaussian filter is presented (see Theorem 1 and
Eqs. (34), (35) in [29]). Yet, closed-form expressions for other
filters are not given. Channel matched filtering is considered
in [28]. For a given Tx filter, channel matched filtering at
the Rx has been shown to maximize the signal-to-noise ratio
(SNR) [28]. But [28] does not give closed-form I/O relation
expressions. Other signal processing aspects of Zak-OTFS
including signal detection [30], LDPC-coded Zak-OTFS [31],
iterative turbo processing based detection/channel estimation
[32], and interleaved pilot schemes [33] considering sinc
and RRC filters have been reported. But no closed-form I/O
relation expressions for the considered systems are given. The
above works consider the Zak-OTFS framework introduced in
[24],[25], where quasi-periodicity is preserved using twisted
convolution operation between a quasi-periodized DD signal
and a DD filter which is not quasi-periodic, and these studies
gave good theoretical benchmarks and insights. The works in
[34],[35] address the issue of practical implementation of Zak-
OTFS by constructing DD domain basis functions which are
globally quasi-periodic and locally twisted-shifted, and using
practically realizable pulse shaping filters. In our current work,
we derive closed-form I/O relation expressions for the Zak-
OTFS framework in [24],[25] with different DD filters and Tx-
Rx filtering schemes, which provide good theoretical models,
insights, and benchmarks.

New contributions: Our new contribution in this paper
fills gaps in the previous works. We have considered all
the three filtering schemes in the Zak-OTFS literature and
derived closed-form expressions for all of them, providing
an efficient framework for performance evaluation and com-
parison. Specifically, we derive discrete DD domain closed-
form expressions for the I/O relation and noise covariance for

Closed-form I/O relation and noise covariance
expressions

Tx/Rx filtering sinc filter Gaussian filter
Literature This paper Literature This paper

Identical ✗ ✓ ✗ ✓
Matched ✗ ✓ ✓ [29] ✓
Channel matched ✗ ✓ ✗ ✓

Table I: Availability of closed-form expressions for I/O relation
and noise covariance in Zak-OTFS.

identical, matched, and channel matched filtering for sinc and
Gaussian filters, which have not been reported in the literature.
A summary of the new contributions is highlighted in Table
I. For all the considered cases except for the case of sinc
identical filtering, we derive exact expressions for I/O relation
and noise variance in closed-form. For the sinc identical
filtering case, we derive approximate closed-form expressions.
Numerical results show that the approximation is accurate.
Using the derived closed-form expressions, we evaluate the bit
error performance of Zak-OTFS for different Tx/Rx filters and
configurations. The derived closed-form expressions resulted
in significant reduction in simulation run times. Our results
using Vehicular-A (Veh-A) channel model with fractional DDs
show that matched filtering achieves slightly better or almost
same BER performance as identical filtering. Our results also
show that channel matched filtering performs best in terms of
BER, which is in line with the result in [28] which shows that
channel matched filtering performs best in terms of SNR.

The rest of the paper is structured as follows. The Zak-OTFS
system model is introduced in Sec. II. Closed-form expressions
for I/O relation and noise covariance for identical filtering,
matched filtering, and channel matched filtering are derived in
Secs. III, IV, and V, respectively. Performance results obtained
using the closed-form expressions are presented in Sec. VI.
Conclusions and future work are presented in Sec. VII.

II. ZAK-OTFS SYSTEM MODEL

The block diagram of the Zak-OTFS transceiver is shown in
Fig. 1. At the transmitter, the information-bearing continuous
DD domain signal is passed through the DD domain transmit
filter, which makes the signal to be time- and bandwidth-
limited, which is then converted into a time domain (TD)
signal for transmission via inverse time-Zak transform. At the
receiver, the TD signal is converted back into DD domain sig-
nal via Zak transform, followed by receive filter and sampling
operations in the DD domain for detection.

In Zak-OTFS, a pulse in DD domain, which is a quasi-
periodic localized function defined by a delay period τp and a
Doppler period νp = 1

τp
, is the basic information carrier. The

fundamental period in the DD domain is defined as

D0 = {(τ, ν) : 0 ≤ τ < τp, 0 ≤ ν < νp}, (1)

where τ and ν represent the delay and Doppler variables,
respectively. The fundamental period is discretized into M
bins on the delay axis and N bins on the Doppler axis, as
{(k τp

M , l
νp

N )|k = 0, . . . ,M − 1, l = 0, . . . , N − 1}. The TD
Zak-OTFS frame is limited to a time duration T = Nτp
and bandwidth B = Mνp. In each frame, MN information
symbols drawn from a modulation alphabet A, x[k, l] ∈ A,
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Figure 1: Transceiver signal processing in Zak-OTFS.

k = 0, . . . ,M − 1, l = 0, . . . , N − 1, are multiplexed on the
DD domain and transmitted. The information symbol x[k, l]
is carried by DD domain pulse xdd[k, l], which is a quasi-
periodic function with period M along the delay axis and
period N along the Doppler axis, i.e., for any n,m ∈ Z,

xdd[k + nM, l +mN ] = x[k, l]ej2πn
l
N . (2)

These discrete DD domain signals xdd[k, l]s are supported on
the information lattice

Λdd =
{(

k
τp
M

, l
νp
N

) ∣∣k, l ∈ Z
}
. (3)

The continuous DD domain information symbol is given by

xdd(τ, ν) =
∑
k,l∈Z

xdd[k, l]δ

(
τ − kτp

M

)
δ

(
ν − lνp

N

)
, (4)

where δ(.) denotes the Dirac-delta impulse function. For any
n,m ∈ Z, we have

xdd(τ + nτp, ν +mνp) = ej2πnντpxdd(τ, ν), (5)

so that xdd(τ, ν) is periodic with period νp along the Doppler
axis and quasi-periodic with period τp along the delay axis.
The DD domain transmit signal xwtx

dd (τ, ν) is given by
the twisted convolution of the transmit pulse shaping filter
wtx(τ, ν) with xdd(τ, ν) as

xwtx

dd (τ, ν) = wtx(τ, ν) ∗σ xdd(τ, ν)

=

∫∫
wtx(τ

′, ν′)xdd(τ − τ ′, ν − ν′)ej2πν
′(τ−τ ′)dτ ′dν′, (6)

where ∗σ denotes the twisted convolution. The transmitted TD
signal std(t) is the TD realization of xwtx

dd (τ, ν), given by

std(t) = Z−1
t

(
xwtx

dd (τ, ν)
)
, (7)

where Z−1
t denotes the inverse time-Zak transform2 operation.

Note that the pulse-shaping filter at the transmitter wtx(τ, ν)
is required to limit the time and bandwidth of the transmitted
signal std(t). In the absence of the pulse-shaping filter

(
i.e.,

wtx(τ, ν) = δ(τ)δ(ν)
)
, the transmitted signal has infinite

duration and bandwidth. The transmit signal std(t) passes
through a doubly-selective channel to give the output signal
rtd(t), where the DD domain impulse response of the physical
channel hphy(τ, ν) is given by

hphy(τ, ν) =

P∑
i=1

hiδ(τ − τi)δ(ν − νi), (8)

2Inverse time-Zak transform of a DD function a(τ, ν) is defined as
Z−1
t (a(τ, ν))

∆
=

√
τp

∫ νp
0 a(t, ν)dν.

where P denotes the number of DD paths, and the ith path
has gain hi, delay shift τi, and Doppler shift νi3. The received
TD signal y(t) at the receiver is given by

y(t) = rtd(t) + n(t), (9)

where n(t) is AWGN with variance N0, i.e., E[n(t)n(t+t′)] =
N0δ(t

′). The TD signal y(t) is converted to the corresponding
DD domain signal ydd(τ, ν) by applying Zak transform4, i.e.,

ydd(τ, ν) = Zt(y(t)) = Zt(rtd(t) + n(t))

= rdd(τ, ν) + ndd(τ, ν)

= hphy(τ, ν) ∗σ wtx(τ, ν) ∗σ xdd(τ, ν) + ndd(τ, ν), (10)

where rdd(τ, ν) is the Zak transform of rtd(t), given by
the twisted convolution cascade of xdd(τ, ν), wtx(τ, ν), and
hphy(τ, ν), and ndd(τ, ν) is the Zak transform of n(t), i.e.,

ndd(τ, ν) =
√
τp
∑
q∈Z

n(τ + qτp)e
−j2πνqτp . (11)

The receiver filter wrx(τ, ν) acts on ydd(τ, ν) through twisted
convolution to give the filtered output signal

ywrx

dd (τ, ν) = wrx(τ, ν) ∗σ ydd(τ, ν)

= wrx(τ, ν) ∗σ hphy(τ, ν) ∗σ wtx(τ, ν)︸ ︷︷ ︸
∆
= heff (τ,ν)

∗σxdd(τ, ν)

+ wrx(τ, ν) ∗σ ndd(τ, ν)︸ ︷︷ ︸
∆
= nwrx

dd (τ,ν)

, (12)

where heff(τ, ν) denotes the effective channel consisting of
the twisted convolution cascade of wtx(τ, ν), hphy(τ, ν), and
wrx(τ, ν), and nwrx

dd (τ, ν) denotes the noise filtered through
the Rx filter. The DD signal ywrx

dd (τ, ν) is sampled on the
information lattice, resulting in the discrete quasi-periodic DD
domain received signal ydd[k, l] as

ydd[k, l] = ywrx

dd

(
τ =

kτp
M

,ν =
lνp
N

)
, k, l ∈ Z, (13)

which is given by

ydd[k, l] = heff [k, l] ∗σ xdd[k, l] + ndd[k, l], (14)

where the ∗σ in (14) is twisted convolution in discrete DD
domain, i.e.,

3We note that the delays (τis) and Dopplers (νis) in the channel model
in (8) can take arbitrary values, i.e., DD values can be integer or fractional
values. Also, no assumptions are made on the nature of the DD values in the
I/O relation derivations in Secs. III, IV, and V, and therefore these derivations
are valid for the general case of fractional DDs. Consequently, the simulation
results in Sec. VI are reported for fractional DDs.

4Zak transform of a continuous TD domain signal a(t) is defined as
Zt (a(t))

∆
=

√
τp

∑
k∈Z a(τ + kτp)e−j2πνkτp .
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heff [k, l] ∗σ xdd[k, l] =
∑

k′,l′∈Z
heff [k − k′, l − l′]xdd[k

′, l′]

ej2π
k′(l−l′)

MN , (15)

where the effective channel filter heff [k, l] and filtered noise
samples ndd[k, l] are given by

heff [k, l] = heff

(
τ =

kτp
M

,ν =
lνp
N

)
, (16)

ndd[k, l] = nwrx

dd

(
τ =

kτp
M

,ν =
lνp
N

)
. (17)

Owing to the quasi-periodicity in the DD domain, it is
sufficient to consider the received samples ydd[k, l] within the
fundamental period D0. We write the ydd[k, l] samples as a
vector and the end-to-end DD domain I/O relation in matrix-
vector form as

y = Hx+ n, (18)

where x,y,n ∈ CMN×1, such that their (kN+l+1)th entries
are given by xkN+l+1 = xdd[k, l], ykN+l+1 = ydd[k, l],
nkN+l+1 = ndd[k, l], and H ∈ CMN×MN is the channel
matrix such that

H[k′N + l′ + 1, kN + l + 1] =
∑

m,n∈Z
heff [k

′ − k − nM,

l′ − l −mN ]ej2πnl/Nej2π
(l′−l−mN)(k+nM)

MN , (19)

where k′, k = 0, . . . ,M − 1, l′, l = 0, . . . , N − 1.
The system model in (18) allows performance evaluation of

Zak-OTFS for different choices of Tx/Rx filters and can aid
Zak-OTFS transceiver algorithms development. However, the
expressions for heff [k, l] and covariance of ndd[k, l] involve
multiple integrals due to twisted convolution operations (see
(12)), the computation of which is tedious and consumes
substantial run times. We alleviate this by deriving closed-
form expressions for heff [k, l] and covariances of ndd[k, l] for
different Tx/Rx filter configurations, which can be computed
in closed-form to obtain the channel matrix H and the noise
vector n in (18). This needs the derivation of the cascade of
twisted convolution in (12) among Tx filter wtx(τ, ν), physical
channel response hphy(τ, ν), and Rx filter wrx(τ, ν). In Secs.
III, IV, and V, we carry out the above derivations for sinc and
Gaussian Tx filters and the following choices of Rx filter.

A. Identical Filtering

In this case, a Rx filter that is identical to the Tx filter is
used, i.e., the Rx filter is chosen to be [25]

wrx(τ, ν) = wtx(τ, ν). (20)

B. Matched Filtering

Here, a Rx filter that is matched to the Tx filter is used, i.e.,
the Rx filter is chosen to be [27], [29]

wrx(τ, ν) = w†
tx(τ, ν) = w∗

tx(−τ,−ν)ej2πντ . (21)

C. Channel Matched Filtering

In this case, a Rx filter that is matched to the cascade of
the Tx filter and the physical channel response is used, i.e.,
the Rx filter is chosen to be [28]5

wrx(τ, ν)=(hphy(τ, ν)∗σwtx(τ, ν))
†=w†

tx(τ, ν)∗σh
†
phy(τ, ν).

(22)
The Tx filter is considered to be of the form wtx(τ, ν) =
w1(τ)w2(ν) [24],[25], so that the sinc Tx filter is of the form

wtx(τ, ν) =
√
BT sinc(Bτ) sinc(Tν), (23)

where w1(τ) =
√
B sinc(Bτ) and w2(ν) =

√
T sinc(Tν), and

the Gaussian Tx filter is of the form

wtx(τ, ν) =
(2ατB

2

π

) 1
4

e−ατB
2τ2
(2ανT

2

π

) 1
4

e−ανT
2ν2

. (24)

Since Gaussian pulse has infinite support, we work with
time interval T ′ where 99% of the Zak-OTFS frame energy
is localized in TD, and with bandwidth B′ where 99%
of the frame energy is localized in FD. We can configure
Gaussian pulse by adjusting the parameters ατ and αν . No
time/bandwidth expansion (T ′ = T , B′ = B) corresponds to
ατ = αν = 1.584.

III. CLOSED-FORM EXPRESSIONS FOR IDENTICAL
FILTERING

In this section, we derive closed-form expressions for the
I/O relation and noise covariance for identical filtering with
sinc and Gaussian Tx filters. The effective channel in the con-
tinuous DD domain for identical filtering, i.e., for wrx = wtx,
can be written as

heff(τ, ν) = wrx(τ, ν) ∗σ hphy(τ, ν) ∗σ wtx(τ, ν)

= wrx(τ, ν) ∗σ

(
P∑

i=1

hiδ(τ − τi)δ(ν − νi)

)
∗σ w1(τ)w2(ν)

= w1(τ)w2(ν) ∗σ

(
P∑

i=1

hiw1(τ − τi)w2(ν − νi)e
j2πνi(τ−τi)

)

=

P∑
i=1

hie
j2πνi(τ−τi)

(∫
w1(τ

′)w1(τ − τ ′ − τi)e
−j2πνiτ

′

(∫
w2(ν

′)w2(ν − ν′ − νi)e
j2πν′(τ−τ ′)dν′

)
︸ ︷︷ ︸

∆
=I

(1)
i (τ,τ ′,ν)

dτ ′
)
. (25)

5We note that the channel matched filter is motivated by the work in
[28] (Theorem 5), where it has been shown that, for any arbitrary Tx filter
wtx(τ, ν), the optimal Rx filter that maximizes the SNR is the one that is
matched to the physical channel hphy(τ, ν) and the Tx filter wtx(τ, ν), which
we have termed as the channel matched filtering in this paper. Therefore,
deriving closed-form expressions for the system with this filter and evaluating
its BER performance can serve as a performance benchmark for comparing
the performance of different filtering schemes.
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The continuous DD domain noise at the output is

nwrx

dd (τ, ν)=wrx(τ, ν) ∗σ ndd(τ, ν)

= w1(τ)w2(ν) ∗σ
(√

τp
∑

q∈Z n(τ + qτp)e
−j2πνqτp

)
=

√
τp
∑∞

q=−∞ e−j2πνqτp

(∫
w1(τ

′)n(τ − τ ′ + qτp)(∫
w2(ν

′)ej2πν
′(τ−τ ′+qτp)dν′

)
︸ ︷︷ ︸

∆
=I

(2)
q (τ,τ ′)

dτ ′
)
. (26)

A. heff [k, l] for sinc filter

Integration of the inner integral defined as I(1)i (τ, τ ′, ν), 1 ≤
i ≤ P , in (25) gives

I
(1)
i (τ, τ ′, ν) = ejπ(τ−τ ′)(ν−νi)

(
T − |τ − τ ′|

T

)
sinc((T − |τ − τ ′|)(ν − νi))1{−T<τ−τ ′<T}, (27)

where 1{.} denotes the indicator function. Substituting (27) in
(25) gives

heff(τ, ν) =

(
B

T

) P∑
i=1

hie
−j2πτiνi

(∫
ejπ(τ−τ ′)(ν+νi)

sinc(Bτ ′)sinc(B(τ − τ ′ − τi))(T − |τ − τ ′|)

sinc((T − |τ − τ ′|)(ν − νi))1{−T<τ−τ ′<T}dτ
′
)

=

(
B

T

) P∑
i=1

hie
−j2πτiνi

(∫ T

−T

e−jπx(ν+νi)sinc(B(x+ τ))

sinc(B(x+ τi))(T − |x|)sinc((T − |x|)(ν − νi))dx

)
, (28)

where the last step is by the substitution x = τ ′ − τ , and
heff [k, l] is obtained by sampling heff(τ, ν) on the information
lattice (see (16)). Analytical simplification of the integral in
(28) into an exact closed-form is difficult, and hence we
obtain an approximate closed-form expression for heff [k, l] as
follows.

Theorem 1. For identical filtering with sinc filter, the effective
channel heff [k, l] in approximate closed-from is given by

heff [k, l] ≈
(
B

2

) P∑
i=1

hie
−j2πτiνisinc

(
T

(
lνp
N

− νi

))
(
Pi,k

(
lνp
N

)
+ Pi,k(νi)

)
, (29)

where the function Pi,k(f) is given by

Pi,k(f) =ejπf(
kτp
M +τi)

(
B − |f |
B2

)
sinc

(
(B − |f |)

(
kτp
M

− τi

))
1{−B<f<B}. (30)

Proof: See Appendix A.

B. Noise covariance for sinc filter

For sinc filter at the transmitter, the integral I(2)q (τ, τ ′) in
(26) is simplified as

I(2)q (τ, τ ′) =
√
T

∫
sinc(Tν′)ej2πν

′(τ−τ ′+qτp)dν′

=
1√
T
rect

(
τ − τ ′ + qτp

T

)
, (31)

where the rect(.) function is defined as [37]

rect

(
t

T

)
=


0, |t| > T

2
1
2 , |t| = T

2

1, |t| < T
2 .

(32)

Substituting (31) in (26) gives

nwrx

dd (τ, ν) =

√
Bτp
T

∞∑
q=−∞

e−j2πνqτp

(∫
sinc(Bτ ′)

n(τ − τ ′ + qτp)rect

(
τ − τ ′ + qτp

T

)
dτ ′

)

=

√
Bτp
T

∞∑
q=−∞

e−j2πνqτp

(∫ T
2

−T
2

sinc(B(τ + qτp + x))n(−x)dx

)
︸ ︷︷ ︸

∆
=f(τ+qτp)

, (33)

where the last step comes via the substitution x = τ ′−τ−qτp.
Sampling (33) on Λdd = {(k τp

M , l
νp

N )|k, l ∈ Z} gives

ndd[k, l] =

√
Bτp
T

∞∑
q=−∞

e−j2πql/Nf

(
kτp
M

+ qτp

)
. (34)

From (34), we can write the noise covariance as

E[ndd[k1, l1]n
∗
dd[k2, l2]] =

(
Bτp
T

) ∞∑
q1=−∞

∞∑
q2=−∞

ej2π
q2l2−q1l1

N E
[
f

(
k1τp
M

+ q1τp

)
f∗
(
k2τp
M

+ q2τp

)]
︸ ︷︷ ︸

∆
=E{k1,k2,q1,q2}

, (35)

where the term E{k1,k2,q1,q2} is given by

E{k1,k2,q1,q2}=

∫ T
2

−T
2

∫ T
2

−T
2

sinc

(
B

(
k1τp
M

+ q1τp + x1

))
sinc

(
B

(
k2τp
M

+ q2τp + x2

))
E[n(−x1)n

∗(−x2)]︸ ︷︷ ︸
=N0δ(x2−x1)

dx1dx2

=N0

[ ∫ T
2

−T
2

sinc

(
B

(
k1τp
M

+ q1τp + x

))
sinc

(
B

(
k2τp
M

+q2τp + x

))
dx

]
. (36)
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Substituting (36) in (35), we get

E[ndd[k1, l1]n
∗
dd[k2, l2]] = N0

(
Bτp
T

) ∞∑
q1=−∞

∞∑
q2=−∞

ej2π
q2l2−q1l1

N

(∫ T
2

−T
2

sinc

(
B

(
k1τp
M

+ q1τp + x

))
sinc

(
B

(
k2τp
M

+ q2τp + x

))
dx

)
. (37)

For large M and N (consequently, large B and T ), the integral
in (37) can be approximated as∫ T

2

−T
2

sinc

(
B

(
k1τp
M

+ q1τp + x

))
sinc

(
B

(
k2τp
M

+ q2τp + x

))
dx

≈



0,∀k1 ̸= k2; 0 ≤ k1, k2 ≤ M − 1,

0,∀q1 ̸= q2; q1, q2 ∈ Z(
1
B

)
,∀k1 = k2, q1 = q2, q1τp +

k1τp
M ∈

(
−T

2 ,
T
2

)(
1
2B

)
,∀k1 = k2, q1 = q2, q1τp +

k1τp
M ∈

{
− T

2 ,
T
2

}
0, otherwise.

(38)

Substituting (38) in (37) and subsequently solving the sum-
mation (which is finite sum due to the limit in the range of
q1 and q2) will give the noise covariance expression, i.e., for
all k1, k2 = 0, 1, . . . ,M − 1, l1, l2 = 0, 1, . . . , N − 1, the
(k1N+ l1+1, k2N+ l2+1)th element of the noise covariance
matrix is given by

E[ndd[k1, l1]n
∗
dd[k2, l2]] ≈

{
N0,∀k1 = k2, l1 = l2

0, otherwise.
(39)

C. heff [k, l] for Gaussian filter

Integration of I(1)i (τ, τ ′, ν) in (25) for Gaussian filter gives

I
(1)
i (τ, τ ′, ν) = e

−ανT2

2

(
(ν−νi)

2−j2π
(ν−νi)(τ−τ′)

ανT2 +
(

π(τ−τ′)
ανT2

)2
)
.

(40)
Substituting (40) in (25) gives

heff(τ, ν) =

(
2ατB

2

π

) 1
2 P∑

i=1

hie
j2πνi(τ−τi)

(∫
e−ατB

2τ2
1 e−ατB

2(τ−τ1−τi)
2

e−j2πνiτ1

e
−ανT2

2

(
(ν−νi)

2−j2π
(ν−νi)(τ−τ1)

ανT2 +
(

π(τ−τ1)

ανT2

)2
)
dτ1

)
. (41)

The integral in (41) can be solved analytically to obtain a
closed-form expression for heff(τ, ν), which can be sampled
on the information lattice to obtain heff [k, l] in exact closed-
form. The following theorem states the result.

Theorem 2. For identical filtering with Gaussian filter, the
effective channel heff [k, l] in exact closed-form is given by

heff [k, l] =

(
2ατB

2

2ατB2 + π2

2ανT 2

) 1
2 P∑

i=1

hie
−gi[k,l], (42)

where the function gi[k, l], ∀ 1 ≤ i ≤ P is given by

gi[k, l] = ατB
2

(
k2τ2p
M2

+ τ2i

)
+ j2πνiτi +

ανT
2

2

(
lνp
N

−νi

)2

−

(
2ατB

2
(

kτp
M + τi

)
+ jπ

(
lνp

N + νi

))2
4
(
2ατB2 + π2

2ανT 2

) . (43)

Proof: See Appendix B

D. Noise covariance for Gaussian filter

Integration of the inner integral I
(2)
q (τ, τ ′) in (26) for

Gaussian filter gives

I(2)q (τ, τ ′) =

(
2π

ανT 2

) 1
4

e
−π2(τ−τ′+qτp)2

ανT2 . (44)

Substituting (44) in (26), we obtain

nwrx

dd (τ, ν) =
√
τp

(
2π

ανT 2

) 1
4

∞∑
q=−∞

e−j2πνqτp

(∫
w1(τ

′)n(τ − τ ′ + qτp)e
−π2(τ−τ′+qτp)2

ανT2 dτ ′
)

=

√
2Bτp
T

(
ατ

αν

) 1
4

∞∑
q=−∞

e−j2πνqτp

(∫
e−ατB

2τ2
1 e

−π2(τ−τ1+qτp)2

ανT2 n(τ − τ1 + qτp)dτ1

)
︸ ︷︷ ︸

∆
=f(τ+qτp)

. (45)

Sampling (45) on Λdd = {(k τp
M , l

νp

N )|k, l ∈ Z} gives

ndd[k, l] =

√
2Bτp
T

(
ατ

αν

) 1
4

∞∑
q=−∞

e−j2πql/Nf

(
kτp
M

+ qτp

)
.

(46)
From (46), the noise covariance is given by

E[ndd[k1, l1]n
∗
dd[k2, l2]] =

(
2Bτp
T

)√
ατ

αν

∞∑
q1=−∞

∞∑
q2=−∞

ej2π
q2l2−q1l1

N E
[
f

(
k1τp
M

+ q1τp

)
f∗
(
k2τp
M

+ q2τp

)]
︸ ︷︷ ︸

∆
=E{k1,k2,q1,q2}

. (47)

We can analytically solve the term E{k1,k2,q1,q2} in (47) to
obtain the following result in exact closed-form.

Theorem 3. For identical filtering with Gaussian filter, for
all k1, k2 = 0, 1, . . . ,M − 1, l1, l2 = 0, 1, . . . , N − 1, the
(k1N+ l1+1, k2N+ l2+1)th element of the noise covariance
matrix is given by

E[ndd[k1, l1]n
∗
dd[k2, l2]]=N0

(
2Bτp
T

)(
πατ

2ατανB2 + 2π2

T 2

) 1
2

∞∑
q1=−∞

∞∑
q2=−∞

ej2π
q2l2−q1l1

N e
− g[k1,k2,q1,q2](

2ατB2+ 2π2

ανT2

)
, (48)
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where the function g[k1, k2, q1, q2], ∀ 0 ≤ k1, k2 ≤ M−1 and
q1, q2 ∈ Z, is given by

g[k1, k2, q1, q2] =
(
ατB

2
)2(k2 − k1

M
+ (q2 − q1)

)2

τ2p

+ 2π2ατB
2

ανT 2

((
k1
M

+ q1

)2

+

(
k2
M

+ q2

)2
)
τ2p . (49)

Proof: See Appendix C.
The range of q1, q2 in the infinite sum in (48) can be

chosen to be in a reasonable finite range. A range of -20 to
20 for q1, q2 in (48) has been found to be adequate for the
computation. Increasing beyond this range has been found to
have negligible effect.

IV. CLOSED-FORM EXPRESSIONS FOR MATCHED
FILTERING

In this section, we are interested in exact closed-form
expressions for heff [k, l] and noise covariance for the case of
matched filtering with sinc and Gaussian Tx filters. The exact
closed-form expressions for the case of sinc filter have not
been reported in the literature, and we derive them here. The
exact closed-form expressions for the case of Gaussian filter
have been reported in [29], and we reproduce them here for
immediate reference.

The effective channel in the continuous DD domain for the
case of matched filtering, i.e., wrx = w†

tx, can be written as

heff(τ, ν) = wrx(τ, ν) ∗σ hphy(τ, ν) ∗σ wtx(τ, ν)

=wrx(τ, ν) ∗σ

(
P∑
i=1

hiδ(τ − τi)δ(ν − νi)

)
∗σ w1(τ)w2(ν)

=w∗
1(−τ)w∗

2(−ν)ej2πντ ∗
( P∑

i=1

hiw1(τ − τi)w2(ν − νi)

ej2πνi(τ−τi)

)
=

P∑
i=1

(∫
w∗

1(−τ ′)w1(τ − τi − τ ′)e−j2πνiτ
′
dτ ′
)

︸ ︷︷ ︸
∆
=I

(1)
i (τ)(∫

w∗
2(−ν′)w2(ν − νi − ν′)ej2πν

′τdν′
)

︸ ︷︷ ︸
∆
=I

(2)
i (τ,ν)

hie
j2πνi(τ−τi). (50)

The continuous DD domain noise at the output is

nwrx

dd (τ, ν) = wrx(τ, ν) ∗σ ndd(τ, ν)

= w∗
1(−τ)w∗

2(−ν)ej2πντ∗σ
(√

τp
∑
q∈Z

n(τ + qτp)e
−j2πνqτp

)
=

√
τp

∞∑
q=−∞

e−j2πνqτp

(∫
w∗

1(−τ ′)n(τ − τ ′ + qτp)dτ
′
)

(∫
w∗

2(−ν′)ej2πν
′(τ+qτp)dν

′
)

︸ ︷︷ ︸
∆
=I

(3)
q (τ)

. (51)

Exact closed-form expressions for heff [k, l] and noise covari-
ance for sinc filter are derived in the following subsections.

A. heff [k, l] for sinc filter

Integration of the inner integrals defined as I
(1)
i (τ) and

I
(2)
i (τ, ν), 1 ≤ i ≤ P , in (50) gives

I
(1)
i (τ) =

(
B − |νi|

B

)
e−jπνi(τ−τi)

sinc((B − |νi|)(τ − τi))1{−B<νi<B}, (52)

I
(2)
i (τ, ν) =

(
T − |τ |

T

)
ejπτ(ν−νi)

sinc((T − |τ |)(ν − νi))1{−T<τ<T}. (53)

Substituting (52) and (53) in (50) gives

heff(τ, ν) =

P∑
i=1

hie
jπ(τν−τiνi)

(
T − |τ |

T

)(
B − |νi|

B

)
sinc((B − |νi|)(τ − τi))sinc((T − |τ |)(ν − νi))

1{−T<τ<T}1{−B<νi<B}. (54)

Sampling (54) on Λdd = {(k τp
M , l

νp

N )|k, l ∈ Z} gives the exact
closed-from expression for heff [k, l] as

heff [k, l] =

P∑
i=1

hie
jπ( kl

MN −τiνi)

(
T − |kτpM |

T

)(
B − |νi|

B

)
sinc

(
(B − |νi|)

(
kτp
M

− τi

))
sinc

((
T −

∣∣∣∣kτpM

∣∣∣∣)(
lνp
N

− νi

))
1{−T<

kτp
M <T}1{−B<νi<B}. (55)

B. Noise covariance for sinc filter

Integration of the inner integral I(3)q (τ), q ∈ Z, in (51) gives

I(3)q (τ) =
1√
T
rect

(
τ + qτp

T

)
. (56)

Substituting (56) in (51) gives

nwrx

dd (τ, ν) =

√
Bτp
T

∞∑
q=−∞

e−j2πνqτprect

(
τ + qτp

T

)
(∫

sinc(Bτ ′)n(τ − τ ′ + qτp)dτ
′
)

︸ ︷︷ ︸
∆
=f(τ+qτp)

. (57)

Sampling (57) on Λdd = (k
τp
M , l

νp

N )|k, l ∈ Z gives

ndd[k, l] =

√
Bτp
T

∞∑
q=−∞

e−j2πql/N rect

(
kτp
M + qτp

T

)

f

(
kτp
M

+ qτp

)
. (58)

From (58), the expression for the noise covariance can be
written as

E[ndd[k1, l1]n
∗
dd[k2, l2]] =

(
Bτp
T

) ∞∑
q1=−∞

∞∑
q2=−∞

ej2π
q2l2−q1l1

N rect

(
k1τp
M + q1τp

T

)
rect

(
k2τp
M + q2τp

T

)

E
[
f

(
k1τp
M

+ q1τp

)
f∗
(
k2τp
M

+ q2τp

)]
. (59)
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The term E
[
f
(

k1τp
M + q1τp

)
f∗
(

k2τp
M + q2τp

)]
can be

solved analytically as

E
[
f

(
k1τp
M

+ q1τp

)
f∗
(
k2τp
M

+ q2τp

)]
=

∫∫
sinc(Bτ1) sinc(Bτ2)

E
[
n

(
k1τp
M

+ q1τp − τ1

)
n∗
(
k2τp
M

+ q2τp − τ2

)]
︸ ︷︷ ︸

=N0δ(τ2−τ1−(
k2−k1

M )τp−(q2−q1)τp)

dτ1dτ2

=N0

∫
sinc(Bτ1) sinc

(
B

((
k2 − k1

M

)
τp + (q2 − q1)τp

+ τ1

))
dτ1

=

(
N0

B

)
sinc

(
B

((
k2 − k1

M

)
τp + (q2 − q1)τp

))
. (60)

Substituting (60) in (59) gives the closed-form expression

E[ndd[k1, l1]n
∗
dd[k2, l2]] = N0

(τp
T

) ∞∑
q1=−∞

∞∑
q2=−∞

ej2π(
q2l2−q1l1

N )sinc

(
B

((
k2 − k1

M

)
τp + (q2 − q1)τp

))
rect

(
k1τp
M + q1τp

T

)
rect

(
k2τp
M + q2τp

T

)
. (61)

Though the range of q1, q2 in (61) is from −∞ to +∞, the
sum will go over only in a finite range due to the presence of
the rect(.) functions.

C. Expressions for Gaussian filter

For matched filtering with Gaussian filter, closed-form ex-
pressions for heff [k, l] and E[ndd[k1, l1]n

∗
dd[k2, l2]] are pre-

sented in (34) and (35), respectively, in [29]. We reproduce
these equations below for immediate reference:

heff [k, l] =

P∑
i=1

hie
jπ( kl

MN −τiνi)e
−ατB2

2

(
kτp
M −τi

)2

e
−ανT2

2

(
lνp
N −νi

)2

e
−π2

2

(
k2τ2

p

M2ανT2 +
ν2
i

ατB2

)
, (62)

E[ndd[k1, l1]n
∗
dd[k2, l2]] = N0

(τp
T

)√2π

αν
∞∑

q1=−∞

∞∑
q2=−∞

ej2π
q2l2−q1l1

N e
−

π2τ2
p

ανT2

(
( k1

M +q1)
2
+( k2

M +q2)
2
)

e−
ατB2

2 (( k2−k1
M )τp+(q2−q1)τp)

2

. (63)
A range of -20 to 20 for q1, q2 has been found to be adequate

for accurate computation of (63).

V. CLOSED-FORM EXPRESSIONS FOR CHANNEL MATCHED
FILTERING

In this section, we derive exact closed-form expressions
for heff [k, l] and E[ndd[k1, l1]n

∗
dd[k2, l2]] for channel matched

filtering, where the Rx filter is matched to both the Tx filter and

the physical channel, i.e., wrx = (hphy(τ, ν) ∗σ wtx(τ, ν))
†.

Expressions for both sinc and Gaussian filters are derived.
The effective channel in the continuous DD domain for

channel matched filtering can be written as

heff(τ, ν) = wrx(τ, ν) ∗σ hphy(τ, ν) ∗σ wtx(τ, ν)

= wrx(τ, ν) ∗σ

(
P∑
i=1

hiδ(τ − τi)δ(ν − νi)

)
∗σ w1(τ)w2(ν)

=

(
P∑
i=1

h∗
iw

∗
1(−τ − τi)w

∗
2(−ν − νi)e

j2πνi(τ+τi)ej2πντ

)
∗σ P∑

j=1

hjw1(τ − τj)w2(ν − νj)e
j2πνj(τ−τj)


=

P∑
i=1

P∑
j=1

h∗
i hje

j2π(τiνi−τjνj)ej2πτνj

(∫
w∗

1(−τ ′ − τi)w1(τ − τj − τ ′)ej2π(νi−νj)τ
′
dτ ′
)

︸ ︷︷ ︸
∆
=I

(1)
ij (τ)(∫

w∗
2(−ν′ − νi)w2(ν − νj − ν′)ej2πν

′τdν′
)

︸ ︷︷ ︸
∆
=I

(2)
ij (τ,ν)

. (64)

The continuous DD domain noise at the output is

nwrx

dd (τ, ν) = wrx(τ, ν) ∗σ ndd(τ, ν)

=

(
P∑
i=1

h∗
iw

∗
1(−(τ + τi))w

∗
2(−(ν + νi))e

j2πνi(τ+τi)+j2πντ

)

∗σ

√
τp
∑
q∈Z

n(τ + qτp)e
−j2πνqτp


=
√
τp

∞∑
q=−∞

P∑
i=1

h∗
i e

j2πτiνie−j2πνqτp

(∫
w∗

1(−τ ′ − τi)n(τ − τ ′ + qτp)e
j2πνiτ

′
dτ ′
)

(∫
w∗

2(−ν′ − νi)e
j2πν′(τ+qτp)dν′

)
︸ ︷︷ ︸

∆
=I

(3)
iq (τ)

. (65)

A. heff [k, l] for sinc filter

Integration of the inner integrals defined as I
(1)
ij (τ) and

I
(2)
ij (τ, ν), 1 ≤ i, j ≤ P , in (64) gives

I
(1)
ij (τ) = e−j2πνijτiejπνij(τ+τij)

(
B − |νij |

B

)
sinc((B − |νij |)(τ + τij))1{−B<νij<B}, (66)

I
(2)
ij (τ, ν) = e−j2πνiτejπτ(ν+νij)

(
T − |τ |

T

)
sinc((T − |τ |)(ν + νij))1{−T<τ<T}, (67)
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where τij = τi−τj , νij = νi−νj , ∀ 1 ≤ i, j ≤ P . Substituting
(66) and (67) in (64) gives

heff(τ, ν) =

P∑
i=1

P∑
j=1

h∗
i hje

jπ(τν+τij(νi+νj))

(
B − |νij |

B

)
(
T − |τ |

T

)
sinc ((B − |νij |) (τ + τij))

sinc ((T − |τ |) (ν + νij))1{−B<νij<B}1{−T<τ<T}. (68)

Sampling (68) on Λdd = {(k τp
M , l

νp

N )|k, l ∈ Z} gives the exact
closed-form expression for heff [k, l] as

heff [k, l] =

P∑
i=1

P∑
j=1

h∗
i hje

jπ( kl
MN +τij(νi+νj))

(
B − |νij |

B

)
(
T − |kτpM |

T

)
sinc

(
(B − |νij |)

(
kτp
M

+ τij

))
1{−B<νij<B}

sinc

((
T −

∣∣∣∣kτpM

∣∣∣∣)( lνp
N

+ νij

))
1{−T<

kτp
M <T}. (69)

B. Noise covariance for sinc filter

Integration of the inner integral I(3)iq (τ), q ∈ Z, in (65) gives

I
(3)
iq (τ) =

1√
T
e−j2πνi(τ+qτp)rect

(
τ + qτp

T

)
. (70)

Substituting (70) in (65) gives

nwrx

dd (τ, ν) =

√
Bτp
T

∞∑
q=−∞

P∑
i=1

h∗
i e

j2πτiνie−j2πνqτp

e−j2πνi(τ+qτp)rect

(
τ + qτp

T

)
(∫

sinc(B(τ ′ + τi))n(τ − τ ′ + qτp)e
j2πνiτ

′
dτ ′
)

︸ ︷︷ ︸
∆
=fi(τ+qτp)

. (71)

Sampling (71) on Λdd =
{
(k

τp
M , l

νp

N )|k, l ∈ Z
}

gives

ndd[k, l] =

√
Bτp
T

∞∑
q=−∞

P∑
i=1

h∗
i e

j2πτiνie−j2πql/N

e
−j2πνi

(
kτp
M +qτp

)
rect

(
τ + qτp

T

)
fi

(
kτp
M

+ qτp

)
. (72)

From (72), the expression for the noise covariance can be
written as
E[ndd[k1, l1]n

∗
dd[k2, l2]] =

(
Bτp
T

) ∞∑
q1=−∞

∞∑
q2=−∞

P∑
i=1

P∑
j=1

h∗
i hje

j2π
q2l2−q1l1

N ej2π(τiνi−τjνj)ej2πτp(νj( k2
M +q2)−νi( k1

M +q1))

E
[
fi

(
k1τp
M

+ q1τp

)
f∗
j

(
k2τp
M

+ q2τp

)]
rect

(
k1τp
M + q1τp

T

)
rect

(
k2τp
M + q2τp

T

)
. (73)

The term E
[
fi

(
k1τp
M + q1τp

)
f∗
j

(
k2τp
M + q2τp

)]
in (73) can

be solved analytically as

E
[
f

(
k1τp
M

+ q1τp

)
f∗
(
k2τp
M

+ q2τp

)]
=

∫∫
sinc(B(τ1 + τi))sinc(B(τ2 + τj))e

j2πνiτ1e−j2πνjτ2

E
[
n

(
k1τp
M

+ q1τp − τ1

)
n∗
(
k2τp
M

+ q2τp − τ2

)]
︸ ︷︷ ︸

=N0δ(τ2−τ1−(
k2−k1

M )τp−(q2−q1)τp)

dτ1dτ2

=N0

∫
sinc(B(τ1 + τi))sinc

(
B

((
k2 − k1

M

)
τp+(q2 − q1)τp︸ ︷︷ ︸

∆
=z[k1,k2,q1,q2]

+τ1 + τj

))
ej2πνiτ1e−j2πνj(( k2−k1

M )τp+(q2−q1)τp+τ1)dτ1

= N0e
−jπ(νi+νj)z[k1,k2,q1,q2]e−jπ(τi+τj)νij

(
B − |νij |

B2

)
sinc((B − |νij |)(τij − z[k1, k2, q1, q2]))1{−B<νij<B}. (74)

Substituting (74) in (73) gives the closed-form expression

E[ndd[k1, l1]n
∗
dd[k2, l2]] =

(
N0τp
T

) ∞∑
q1=−∞

∞∑
q2=−∞

P∑
i=1

P∑
j=1

h∗
i hj

(
B − |νij |

B

)
ej2π

q2l2−q1l1
N

ej2πτp(νj( k2
M +q2)−νi( k1

M +q1))ejπ(νi+νj)(τij−z[k1,k2,q1,q2])

sinc((B − |νij |)(τij − z[k1, k2, q1, q2]))1{−B<νij<B}

rect

(
k1τp
M + q1τp

T

)
rect

(
k2τp
M + q2τp

T

)
. (75)

Though the range of q1, q2 in (75) is from −∞ to +∞, the
sum will go over only in a finite range due to the presence of
the rect(.) functions.

C. heff [k, l] for Gaussian filter

Integration of the inner integrals defined as I
(1)
ij (τ) and

I
(2)
ij (τ, ν), 1 ≤ i, j ≤ P , in (64) gives

I
(1)
ij (τ) =e

−ατB2

2

(
(τ+τij)

2−2j(τ+τij)
πνij

ατB2 +
(

πνij

ατB2

)2
)

e−j2πνijτi , (76)

I
(2)
ij (τ, ν) =e

−ανT2

2

(
(ν+νij)

2−2j(ν+νij)
πτ

ανT2 +
(

πτ
ανT2

)2
)

e−j2πνiτ . (77)

Substituting (76) and (77) in (64) gives

heff(τ, ν) =

P∑
i=1

P∑
j=1

h∗
i hje

jπ(τν+τij(νi+νj))e−
ατB2

2 (τ+τij)
2

e−
ανT2

2 (ν+νij)
2

e
−π2

2

(
τ2

ανT2 +
ν2
ij

ατB2

)
. (78)

Sampling (78) on Λdd = {(k τp
M , l

νp

N )|k, l ∈ Z} gives

heff [k, l]=

P∑
i=1

P∑
j=1

h∗
i hje

jπ( kl
MN +τij(νi+νj))e

−ατB2

2

(
kτp
M +τij

)2

e
−ανT2

2

(
lνp
N +νij

)2

e
−π2

2

(
k2τ2

p

M2ανT2 +
ν2
ij

ατB2

)
. (79)
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D. Noise covariance for Gaussian filter

Integration of the inner integral I(3)iq (τ), q ∈ Z, in (65) gives

I
(3)
iq (τ) =

(
2π

ανT 2

) 1
4

e−j2πνi(τ+qτp)e
−π2(τ+qτp)2

ανT2 . (80)

Substituting (80) in (65) gives

nwrx

dd (τ, ν) =

√
2Bτp
T

(
ατ

αν

) 1
4

∞∑
q=−∞

P∑
i=1

h∗
i e

j2πτiνi

e−j2πνqτpe−j2πνi(τ+qτp)e
−π2(τ+qτp)2

ανT2(∫
e−ατB

2(τ1+τi)
2

n(τ − τ1 + qτp)dτ1

)
︸ ︷︷ ︸

∆
=fi(τ+qτp)

. (81)

Sampling (81) on Λdd =
{
(k

τp
M , l

νp

N )|k, l ∈ Z
}

gives

ndd[k, l] =

√
2Bτp
T

(
ατ

αν

) 1
4

∞∑
q=−∞

P∑
i=1

h∗
i e

j2πτiνie−j2π ql
N

e
−

π2τ2
p( k

M
+q)

2

ανT2 e−j2πνiτp( k
M +q)fi

(
kτp
M

+ qτp

)
. (82)

From (82), we can write

E[ndd[k1, l1]n
∗
dd[k2, l2]] =

(
2Bτp
T

)√
ατ

αν

∞∑
q1=−∞

∞∑
q2=−∞

P∑
i=1

P∑
j=1

h∗
i hje

j2π
q2l2−q1l1

N e
−

π2τ2
p

ανT2

(
( k1

M +q1)
2
+( k2

M +q2)
2
)

ej2π(τiνi−τjνj)ej2πτp
[
νj( k2

M +q2)−νi( k1
M +q1)

]
E
[
fi

(
k1τp
M

+ q1τp

)
f∗
j

(
k2τp
M

+ q2τp

)]
. (83)

The term E
[
fi

(
k1τp
M + q1τp

)
f∗
j

(
k2τp
M + q2τp

)]
in (83) can

be solved analytically as

E
[
fi

(
k1τp
M

+ q1τp

)
f∗
j

(
k2τp
M

+ q2τp

)]
=

∫∫
e−ατB

2(τ1+τi)
2

e−ατB
2(τ2+τj)

2

E
[
n

(
k1τp
M

− τ1 + q1τp

)
n∗
(
k2τp
M

− τ2 + q2τp

)]
︸ ︷︷ ︸

∆
=N0δ(τ2−τ1−( k2−k1

M )τp−(q2−q1)τp)

dτ1dτ2

=N0

∫
e−ατB

2(τ1+τi)
2

e−ατB
2(τ1+z[k1,k2,q1,q2]+τj)

2

dτ1

=N0

√
π

2ατB2
e−

ατB2

2 (τij−z[k1,k2,q1,q2])
2

. (84)

where z[k1, k2, q1, q2] in (84) is same as defined in (74).
Substituting (84) in (83) gives

E[ndd[k1, l1]n
∗
dd[k2, l2]] = N0

(τp
T

)√2π

αν

∞∑
q1,q2=−∞

P∑
i=1

P∑
j=1

h∗
i hje

j2π
q2l2−q1l1

N e
−

π2τ2
p

ανT2

(
( k1

M +q1)
2
+( k2

M +q2)
2
)
ej2π(τiνi−τjνj)

ej2πτp
[
νj( k2

M +q2)−νi( k1
M +q1)

]
e−

ατB2

2 (τij−z[k1,k2,q1,q2])
2

. (85)

Figure 2: BER performance of Zak-OTFS for identical filtering
with sinc filter using approximate closed-form and exact I/O
relation expressions.

A range of -20 to 20 for q1, q2 has been found to be adequate
for accurate computation of (85).

VI. RESULTS AND DISCUSSIONS

In this section, we present the numerical results on the
bit error rate (BER) performance of Zak-OTFS for different
Tx/Rx DD filter configurations. The BER performance of iden-
tical filtering, matched filtering, and channel matched filtering
using sinc and Gaussian filters are evaluated and compared. A
Zak-OTFS system with M = 12 and N = 14 is considered.
The Doppler period is fixed at νp = 15 kHz and the delay
period, therefore, is τp = 1

νp
= 66.66 µs. Consequently, the

time duration of a Zak-OTFS frame is T = Nτp = 0.93 ms
and the bandwidth is B = Mνp = 180 kHz. We consider
the Veh-A channel model [38] having P = 6 paths with
fractional DDs and a power delay profile (PDP) as detailed
in Table II. The Doppler shift of the ith path is modeled as

Path index (i) 1 2 3 4 5 6
Delay τi (µs) 0 0.31 0.71 1.09 1.73 2.51

Relative power (dB) 0 -1 -9 -10 -15 -20

Table II: Power delay profile of Veh-A channel model.

νi = νmax cos θi, i = 1, . . . , P , where θis are independent and
uniformly distributed in [0, 2π). Perfect knowledge of the I/O
relation is assumed at the receiver. Also, in the simulations,
the range of values of m and n in (19) is limited to -2 to 2,
and this is found to ensure an adequate support set of heff [k, l]
that captures the channel spread accurately.

For identical filtering with sinc filter, we have obtained
approximate closed-form expressions for heff [k, l] and noise
covariance in (29) and (39), whose exact expressions are ob-
tained by computing (28) and (37), respectively, and sampling
on Λdd. In Fig. 2, we assess the accuracy of the approximation
by comparing the BER performance obtained using the exact
and approximate expressions. BPSK and 8-QAM modulation,
MMSE detection, and Veh-A channel model with νmax = 815
Hz are considered. At a carrier frequency of fc = 4 GHz
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Figure 3: BER performance of Zak-OTFS for identical filter-
ing, matched filtering, and channel matched filtering with sinc
filter.

and speed of light c = 3 × 108 m/s, the maximum Doppler
νmax = 815 Hz corresponds to a mobile speed of v = cνmax

fc
=

61.125 m/s = 220 km/h. From Fig. 2, we observe that the BER
performance evaluated using the approximate closed-form
expressions is almost same as that evaluated using the exact
expressions, demonstrating the accuracy of the approximation.

Next, in Fig. 3, we compare the BER performance of Zak-
OTFS for identical filtering, matched filtering, and channel
matched filtering with sinc filter, BPSK, MMSE detection, and
Veh-A channel model with νmax = 815 Hz. From Fig. 3, we
observe that the BER performance for identical filtering and
matched filtering are nearly the same, and that the performance
of channel matched filtering is the best among the three
(better by about 1 dB at 10−3 BER). This is in line with
the result in [28] which shows that channel matched filtering
operation at the receiver maximizes the SNR. Further, we
note that the derived closed-form expressions can avoid the
computationally intensive numerical evaluation of the integrals
involved in the computation of the effective channel taps
heff[k, l]s and the noise covariance matrix, yielding simulation
speedups. While the computation of heff[k, l]s needs to be
done for each channel realization, the noise covariance matrix
computation needs to be done only once. The simulation
times taken to compute the noise covariance matrix with
closed-form expression and without closed-form expression
(i.e., with numerical integration) are found to be 0.23 s and
26.05 min, respectively6, for the system parameters in Fig. 3
with sinc filter and matched filtering at the receiver. Also, the
corresponding simulation times taken for the computation of
heff[k, l]s for 1000 channel realizations at a given SNR are
found to be 0.42 s and 92.01 min, respectively. This, in turn,
speeds up the BER simulations, e.g., 1.544 min and 118.77
min simulation times for the cases with closed-form expression

6The simulations are run on a PC with a 13th Gen Intel Core i7-13700
processor (16 cores, 24 threads) and 48.0 GiB of RAM, using MATLAB
R2023b.

Figure 4: BER performance of Zak-OTFS for identical fil-
tering, matched filtering, and channel matched filtering with
Gaussian filter.

0.19 0.195 0.2 0.205 0.21

-0.4

-0.2

0

0.2

(a) Sinc filter

0.19 0.195 0.2 0.205 0.21

-0.04

-0.02

0

0.02

(b) Gaussian filter

Figure 5: SNR performance of identical, matched, and channel
matched filtering as a function of normalized delay (τ/τp) at
ν = ν1 for (a) sinc filter and (b) for Gaussian filter.

and with numerical integration, respectively, for 1000 channel
realizations at a given SNR.

In Fig. 4, we present a comparison of the BER performance
of identical filtering, matched filtering, and channel matched
filtering when Gaussian filter is used, with BPSK, MMSE
detection, and Veh-A channel model with νmax = 815 Hz. We
examine two types of Gaussian filters, namely, (i) Gaussian
filter without bandwidth and time expansion (i.e., B′ = B and
T ′ = T ), and (ii) Gaussian filter with bandwidth and time
expansion where B′ = 1.12B and T ′ = 1.25T . The following
observations can be made from Fig. 4. As observed in the case
of sinc filter in Fig. 3, the performance of identical filtering
and matched filtering with Gaussian filter are almost the same,
and the performance of channel matched filtering is better
than those of identical filtering and matched filtering. Also,
with expansion in bandwidth and time of the Gaussian filter
(B′ = 1.12B and T ′ = 1.25T ), the performance improves
by about 2 dB at high SNRs compared to the performance
without bandwidth and time expansion (B′ = B, T ′ = T ).
This improvement in BER is achieved at the cost of increased
bandwidth and time.
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Figure 6: BER versus νmax performance of Zak-OTFS with
identical filtering, matched filtering, and channel matched
filtering with sinc and Gaussian filters.

Remark: As mentioned earlier, it has been shown in [28]
(Theorem 5) that, for any arbitrary Tx filter wtx(τ, ν), the
optimal Rx filter that maximizes the SNR is the one that is
matched to the physical channel hphy(τ, ν) and the Tx filter
wtx(τ, ν), which we have termed as the channel matched filter-
ing in this paper. Here, in Figs. 5a and 5b, we present an SNR
performance comparison between the three filtering schemes,
for sinc and Gaussian filters. For illustration purposes, these
SNR plots are generated for a system with M = N = 32 using
a frame consisting of a symbol +1 at location (0,0) and zeros
elsewhere, assuming a channel with P = 1 and parameters
(h1, τ1, ν1) = (1, 0.2τp,−0.25νp). The SNRs are plotted as
a function of normalized delay τ/τp at ν = ν1. It can be
seen that while identical filtering and matched filtering achieve
almost the same SNR performance, channel matched filtering
achieves the highest maximum SNR. This, in turn, leads to
the better BER performance of channel matched filtering as
observed in Figs. 3 and 4.

Next, in Fig. 6, we present the BER performance as a func-
tion of νmax at SNR = 15 dB with BPSK, MMSE detection, and
Veh-A channel model for identical filtering, matched filtering,
and channel matched filtering with sinc and Gaussian filters.
First, the robustness of Zak-OTFS for increased Dopplers
can be observed in this figure. It can also be observed that
sinc filter achieves better performance compared to Gaussian
filter. This can be attributed to the fact that the sinc filter
has nulls at points on Λdd (whereas Gaussian filter has non-
zero values at these points), which, in the presence of perfect
knowledge of the I/O relation, leads to the better performance
of sinc filter. Further, channel matched filtering is observed to
achieve better performance when sinc filter is used compared
to when Gaussian filter is used even with some bandwidth/time
expansion (B′ = 1.12B, T ′ = 1.25T ).

In Fig. 7, we assess the effect of imperfect channel state
information (CSI) on the BER performance. Towards this, we
consider the estimation error model ĥi = hi + ei, where ei

Figure 7: BER performance comparison between sinc and
Gaussian filters in Zak-OTFS with MMSE detection for M =
12, N = 14, P = 6, under imperfect CSI.

is the error in the estimate of the channel gain, modeled as
ei ∼ CN (0, σ2

e). BER plots for different estimation error
variances (σ2

e = 0.001, 0.01, 0.05) are shown for sinc and
Gaussian filters with MMSE detection. BER plot with perfect
CSI is also shown. The results indicate that the sinc filter out-
performs the Gaussian filter for the considered error variances,
which is consistent with perfect CSI results. Furthermore, as
σ2
e increases, both filters exhibit performance degradation, with

sinc filter showing a sharper performance decline compared
to the Gaussian filter, suggesting its higher sensitivity to
estimation inaccuracies.

The derived closed-form expressions for the noise covari-
ance for different filters/configurations can be used to whiten
the noise and obtain the performance of maximum-likelihood
(ML) detection as follows. The received signal vector y is
given by (18), i.e., y = Hx+n, where n is the correlated noise
vector with the covariance matrix Cn. The noise-whitened
received vector, denoted by ỹ, is given by

ỹ = R−1
n y = R−1

n Hx+R−1
n n, (86)

where Rn ∈ CMN×MN is a lower-triangular matrix obtained
from Cholesky decomposition of the noise covariance matrix
Cn, i.e., RnR

H
n = Cn. The R−1

n n in (86) is the whitened
noise vector with covariance matrix I. Now, the ML detection
rule is given by

x̂ML = argmin
x∈AMN

||ỹ −R−1
n Hx||2. (87)

Since the ML detection complexity in (87) is exponential in
the frame size (which is prohibitively complex for large M
and N ), we evaluated the ML BER performance for a system
with a small frame size. Figure 8 shows the simulated ML
BER performance of sinc and Gaussian filters in Zak-OTFS
with matched filtering for M = N = 2, νp = 3.75 kHz,
BPSK, and P = 2 paths with a fractional DD profile given by
{(τ1 = 0.6

τp
M , ν1 = 0.7

νp

N ), (τ2 = 1.2
τp
M , ν2 = 0.9

νp

N )} and
uniform PDP. The BER performance of identical filtering and
channel matched filtering with Gaussian filter are also plotted.
As observed in large frame sizes with MMSE detection, in
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Figure 8: BER performance comparison between different
filters/configurations in Zak-OTFS under ML detection for
M = N = 2, P = 2, and BPSK.

Fig. 8 also we observe that i) with matched filtering, sinc
filter achieves better performance compared to Gaussian filter,
and ii) with Gaussian filter, matched filtering performs slightly
better than identical filtering (by about 1 dB at 10−4 BER),
and channel matched filter performs better than both identical
and matched filtering (by about 5 to 6 dB at 10−4 BER).

A. Out-of-band emission characteristics

In this subsection, we present the out-of-band emission
characteristics of the sinc and Gaussian filters. For this, we
need to obtain the frequency domain representation of the DD
domain signal at the output of the Tx filter. MN symbols,
x[k, l], 0 ≤ k ≤ M − 1, 0 ≤ l ≤ N − 1, are placed inside the
fundamental period D0. Owing to the quasi-periodicity, the
DD domain representation of the (k, l)th symbol becomes

xdd,k,l(τ, ν) = x[k, l]
∑

n,m∈Z
δ
(
τ − kτp

M
− nτp

)
δ
(
ν − lνp

N
−mνp

)
ej2π

nl
N . (88)

The entire DD frame is given by xdd(τ, ν) =∑M−1
k=0

∑N−1
l=0 xdd,k,l(τ, ν). After passing through the

Tx filter wtx(τ, ν) = w1(τ)w2(ν), the DD domain signal
becomes

xwtx

dd (τ, ν) = wtx(τ, ν) ∗σ xdd(τ, ν)

=

M−1∑
k=0

N−1∑
l=0

x[k, l]
∑

n,m∈Z
w1

(
τ − kτp

M
− nτp

)
w2

(
ν− lνp

N
−mνp

)
e
j2πν

(
kτp
M +nτp

)
e
−j2π

kτp
M

(
lνp
N +mνp

)
.(89)

The frequency domain representation of a DD domain signal
can be obtained via inverse frequency-Zak transform7. There-

7Inverse frequency-Zak transform of a DD function a(τ, ν) is defined as
Z−1
f (a(τ, ν)) =

√
νp

∫ τp
0 a(τ, f)e−j2πfτdτ.

fore, the frequency domain Tx filtered signal is given by

X(f) = Z−1
f

(
x
wtx(τ,ν)
dd

)
=

√
νp

M−1∑
k=0

N−1∑
l=0

x[k, l]
∑
m∈Z

w2

(
f − lνp

N
−mνp

)
e−j2π

kτp
M

(
lνp
N +mνp

)
∑
n∈Z

∫ τp

0

w1

(
τ − kτp

M
− nτp

)
e−j2πf

(
τ− kτp

M −nτp

)
dτ︸ ︷︷ ︸

∆
=W1(f)

=
√
νp W1(f)

M−1∑
k=0

N−1∑
l=0

x[k, l]
∑
m∈Z

w2

(
f − lνp

N
−mνp

)
e−j2π

kτp
M

(
lνp
N +mνp

)
, (90)

where W1(f) is the frequency domain representation of the
delay domain component of the Tx filter w1(τ). Using (90),
we have computed the PSD of the Tx filter output signal for
sinc and Gaussian filters. Figure 9 shows these PSD plots for
two types of frames: 1) a point pilot frame where x[k, l] = 1
for k = M/2, l = N/2 and zero otherwise, and 2) a data frame
where x[k, l], k = 0, · · · ,M − 1, l = 0, · · · , N − 1 are drawn
from BPSK alphabet. Figures 9(a) and (b) show the PSD plots
for point pilot frame and data frame, respectively, for sinc
filter. Likewise, Figs. 9(c) and (d) show the PSD plots for point
pilot frame and data frame, respectively, for Gaussian filter. It
can be observed that the PSD for sinc filter is fully contained
within the range (−B/2, B/2). Whereas, the Gaussian filter
has components outside of the (−B/2, B/2) range. For the
chosen value of ατ = 1.584 for Gaussian filter, the leakage
outside (−B/2, B/2) is close to 1%.

VII. CONCLUSION

We derived discrete DD domain closed-form expressions for
the end-to-end I/O relation and noise covariance in Zak-OTFS
modulation for different DD domain filters employed at the
transmitter and receiver. We considered sinc and Gaussian DD
filters at the transmitter, and identical filtering (Rx filter same
as Tx filter), matched filtering (Rx filter matched to Tx filter),
and channel matched filtering (Rx filter matched to the cascade
of Tx filter and channel) at the receiver. Except for the case of
identical filtering with sinc filter, we derived exact closed-form
expressions. For identical filtering with sinc filter, we obtained
approximate closed-form expressions which are shown to be
accurate. For easy and immediate reference, we have summa-
rized the equation numbers of the closed-form expressions in
Table III. The derived closed-form expressions eliminate the
need to numerically compute the multiple integrals involved
in the cascade of twisted convolution operations in the Zak-
OTFS transceiver, which, in turn, significantly reduced system
simulation run times. Our simulation results showed that,
while matched filtering achieved slightly better or almost
the same performance as identical filtering, channel matched
filtering achieved the best performance among the three. In
this work, we have considered sinc and Gaussian filters which
are commonly considered in the Zak-OTFS literature (e.g.,
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Figure 9: PSD plots of the DD domain signal after Tx filter for (a) sinc filter, point pilot frame, (b) sinc filter, data frame, (c)
Gaussian filter, point pilot frame, and (d) Gaussian filter, data frame.

Eq. nos. of closed-form expressions
Tx/Rx filtering sinc filter Gaussian filter

heff [k, l] Noise heff [k, l] Noise
covariance covariance

Identical (29) (39) (42) (48)
Matched (55) (61) (62) (63)
Channel matched (69) (75) (79) (85)

Table III: Summary of Eq. nos. of closed-form expressions.

[25],[29]). The derivation of closed-form expressions for RRC
filter remains open. Derivation of closed-form expressions for
other types of filters, including the RRC filter, can be taken
up for future work. Also, transceiver algorithms for Zak-
OTFS detection/channel estimation, and design of efficient
pilot schemes in both single-user and multiuser scenarios can
be taken up for future investigation.

APPENDIX A
DERIVATION OF (29)

The term (T−|x|)sinc((T−|x|)(ν−νi)) inside the integral
of (28) is expanded as

(T − |x|)sinc((T − |x|) (ν − νi)︸ ︷︷ ︸
∆
=ν′

i

) = T sinc(Tν′i) cos(π|x|ν′i)︸ ︷︷ ︸
=cos(πxν′

i)

− cos(πTν′i)|x|sinc(π|x|ν′i). (91)

Substituting (91) in (28) gives the integral in (28) as

Ii(τ, ν)
∆
=

∫ T

−T

e−jπx(ν+νi)sinc(B(x+ τ))

sinc(B(x+ τi))(T − |x|)sinc((T − |x|)ν′i)dx

= T sinc(Tν′i)

(∫ T

−T

αi(x)dx

)
− cos(πTν′i)

(∫ T

−T

βi(x)dx

)
, (92)

where αi(x) and βi(x) are given by

αi(x) = e−jπx(ν+νi)sinc(B(x+ τ))sinc(B(x+ τi))

cos(πxν′i), (93)

βi(x) = e−jπx(ν+νi)sinc(B(x+ τ))sinc(B(x+ τi))

|x|sinc(π|x|ν′i). (94)

It is observed that the contribution of the integral of βi(x) in
(92) is much small compared to that of the integral of αi(x) for
large M and N (consequently, large B and T ) and operation
in the crystalline regime (i.e., τmax << τp and 2νmax << νp
[24]). Hence, (92) can be approximated as

Ii(τ, ν) ≈ T sinc(Tν′i)

(∫ T

−T

αi(x)dx

)

= T sinc(Tν′i )

∫ T

−T

e−jπx(ν+νi)sinc(B(x+ τ))

sinc(B(x+ τi))cos(πxν
′
i)dx

≈ T sinc(Tν′i )

∫ ∞

−∞
e−jπx(ν+νi)

sinc(B(x+ τ))sinc(B(x+ τi))︸ ︷︷ ︸
∆
=pi(x)

cos(πxν′i)︸ ︷︷ ︸
∆
=qi(x)

dx. (95)

For large M and N , the effect of changing the limit of
integration from [−T, T ] to (−∞,∞) in (95) is negligible,
since the function pi(x) is comparatively very small outside
the range [−T, T ]. So, (95) can be written as

Ii(τ, ν) ≈ T sinc(Tν′i)

∫ ∞

−∞
pi(x)qi(x)e

−jπ(ν+νi)xdx

= T sinc(Tν′i)(Pi(f) ∗Qi(f))|f= ν+νi
2

= T sinc(Tν′i)

[
Pi(f) ∗

1

2

(
δ

(
f − ν′i

2

)
+δ

(
f +

ν′i
2

))]∣∣∣∣
f=

ν+νi
2

=

(
T

2

)
sinc(Tν′i)

[
Pi

(
f − ν′i

2

)
+ Pi

(
f +

ν′i
2

)]∣∣∣∣
f=

ν+νi
2

=

(
T

2

)
sinc(Tν′i) (Pi(νi) + Pi(ν)) , (96)

where Pi(f) and Qi(f) denote the Fourier transforms of the
functions pi(x) and qi(x), respectively. Pi(f) is given by

Pi(f) =

∫ ∞

−∞
sinc(B(x+ τ))sinc(B(x+ τi))e

−j2πfxdx

= ejπf(τ+τi)
(B − |f |

B2

)
sinc((B − |f |)(τ − τi))

1{−B<f<B}. (97)
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Substituting (96) in (28) gives

heff(τ, ν) ≈
(
B

2

) P∑
i=1

hie
−j2πτiνisinc(T (ν − νi))

(Pi(ν) + Pi(νi)). (98)

Sampling (98) on Λdd = {(k τp
M , l

νp

N )|k, l ∈ Z} gives (29) and
(30).

APPENDIX B
DERIVATION OF (42)

Making the substitution x = τ1− τ , the integral in (41) can
be written as

∫
e−ατB

2(x+τ)2e−ατB
2(x+τi)

2

e−j2πνi(x+τ)

e
−ανT2

2

(
(ν−νi)

2+j2π
(ν−νi)x

ανT2 +
(

πx
ανT2

)2
)
dx

=

(∫
e
−
(
2ατB

2+ π2

2ανT2

)x+
2ατB2(τ+τi)+jπ(ν+νi)

2

(
2ατB2+ π2

2ανT2

)
2

dx

)
︸ ︷︷ ︸

=

(
π

2ατB2+ π2

2ανT2

) 1
2

e
−

ατB
2(τ2+τ2

i )+j2πνiτ+
ανT2

2 (ν−νi)
2− (2ατB2(τ+τi)+jπ(ν+νi))

2

4

(
2ατB2+ π2

2ανT2

)
︸ ︷︷ ︸

∆
=e−fi(τ,ν)

=

(
π

2ατB2 + π2

2ανT 2

) 1
2

e−fi(τ,ν). (99)

Substituting (99) in (41), we get heff(τ, ν) in closed-form as

heff(τ, ν) =

(
2ατB

2

2ατB2 + π2

2ανT 2

)1
2 P∑

i=1

hie
−gi(τ,ν), (100)

where the DD domain function gi(τ, ν) is given by

gi(τ, ν) = ατB
2(τ2 + τ2i ) + j2πνiτi +

ανT
2

2
(ν − νi)

2

− (2ατB
2(τ + τi) + jπ(ν + νi))

2

4
(
2ατB2 + π2

2ανT 2

) . (101)

Sampling (100) on Λdd = {(k τp
M , l

νp

N )|k, l ∈ Z} gives (42),
where gi[k, l] is the sampled version of gi(τ, ν) given by (43).

APPENDIX C
DERIVATION OF (48)

The term E{k1,k2,q1,q2} in (47) is given by

E{k1,k2,q1,q2} =

∫∫
e−ατB

2τ2
1 e−ατB

2τ2
2

e
−

π2
(

k1τp
M

−τ1+q1τp

)2

ανT2 e
−

π2
(

k2τp
M

−τ2+q2τp

)2

ανT2

E
[
n

(
k1τp
M

− τ1 + q1τp

)
n∗
(
k1τp
M

− τ1 + q1τp

)]
︸ ︷︷ ︸

=N0δ
(
τ2−τ1−

(k2−k1)τp
M −(q2−q1)τp

)
dτ1dτ2

= N0

∫
e
−ατB

2

(
τ2
1+

(
τ1+

(k2−k1)τp
M +(q2−q1)τp

)2
)

e
−

π2
(

k1τp
M

−τ1+q1τp

)2

ανT2 e
−

π2
(

k1τp
M

−τ1+q1τp

)2

ανT2 dτ1

=

√
π

2ατB2 + 2π2

ανT 2

e
− g[k1,k2,q1,q2](

2ατB2+ 2π2

ανT2

)
, (102)

where the term g[k1, k2, q1, q2] is given by (49). Substituting
(102) in (47) gives the expression in (48).
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