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Abstract—Media-based modulation (MBM) is an attractive chan-
nel modulation scheme with rate, performance, and hardware
advantages. In this paper, we are concerned with two important
aspects of MBM. The first one is on the capacity of MBM and
the other is on low-complexity detection of high-rate MBM signals
using structured spare recovery techniques. We derive closed-form
expression for the capacity of generalized MBM (GMBM). The
main idea in the capacity analysis is to recognize that MBM uses
two alphabets to convey information, namely, the source alphabet
(e.g., QAM/PSK) and the channel alphabet (fade coefficients). This
observation allows us to show that the capacity is achieved when the
mutual information is maximized over the source-channel product
alphabet. We then propose a greedy structured sparse recovery
algorithm for the detection of GMBM signal vectors. The proposed
algorithm is a two-stage algorithm in which support recovery is
done in greedy manner first, followed by data detection in the non-
zero positions. Simulation results show that the proposed algorithm
achieves good performance at low complexity even when the system
is highly underdetermined.

Index Terms—Media-based modulation, channel alphabet, capac-
ity, structured sparsity, signal detection.

I. INTRODUCTION

Media-based modulation (MBM) is a channel modulation

scheme in which a collection of channel fade coefficients/vectors

is used as a channel modulation alphabet, in addition to a

conventional modulation alphabet such as QAM/PSK [1]-[7]. The

set of fade coefficients/vectors that form the channel modulation

alphabet is created using radio frequency (RF) mirrors placed

in the near field of the transmit antenna. These RF mirrors act

as digitally controlled scatterers. Each RF mirror either reflects

(ON state) or allows (OFF state) the RF signal radiated by the

transmit antenna to pass through, depending on the digital input

given to it. The digital control inputs, in turn, are decided based

on information bits to be transmitted. Suppose there are mrf RF

mirrors at the transmitter, then there are Nm , 2mrf different

ON/OFF combinations, called ‘mirror activation patterns’ (MAP).

Each of these MAPs creates a different near field geometry for

the transmitted signal. In a rich scattering environment, even a

small perturbation in the near field will be augmented by random

reflections. This leads to different end-to-end fade realizations for

different MAPs. If nr is the number of receive antennas, then each

of the Nm channel realizations is an nr × 1 vector of channel

coefficients. The collection of these Nm fade vectors form the
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channel alphabet, denoted by H. The transmitter activates one

of the MAPs (or equivalently selects one of the Nm channels

from H) based on mrf information bits. Also, a symbol from a

source alphabet A (e.g., QAM/PSK) is transmitted by the transmit

antenna, which conveys M , log2 |A| bits. Therefore, MBM

uses two alphabets to convey information bits, namely, the source

alphabet A with M symbols and the channel alphabet H with

Nm symbols. The achieved rate in MBM is, therefore, given by

ηMBM = mrf + log2 M bits per channel use (bpcu). MBM has

been shown to achieve good bit error performance in both the

point-to-point and multiuser settings [1]-[7]. Also, MBM has the

advantage of RF hardware simplicity because it needs only a

single RF chain and RF mirrors can be realized using simple

varactors/PIN diodes.

Generalized MBM (GMBM) [4] is a scheme in which MBM is

used along with generalized spatial modulation (GSM). In GSM

[8],[9], there are nt antennas and nrf transmit RF chains. In each

channel use, nrf out of nt antennas are activated, and which nrf

antennas are active conveys information bits, in addition to the

bits conveyed by nrf symbols from A sent on the nrf activated

antennas. The achieved rate in GSM is therefore given by ηGSM =
⌊log2

(
nt

nrf

)
⌋+ nrf log2 M bpcu.

In a GMBM system, there are ntu transmit units (TU) and

nrf transmit RF chains, and each TU consists of one transmit

antenna and mrf RF mirrors (see Fig. 1). In a given channel

use, information bits are conveyed through 1) spatial indexing of

TUs (i.e., by activating nrf out of ntu TUs), 2) mrf RF mirrors

in each active TU, and 3) nrf symbols from a conventional

modulation alphabet A, resulting in the achieved rate of ηGMBM =
⌊log2

(
ntu

nrf

)
⌋ + nrf (mrf + log2 M) bpcu, where M , log2 |A|.

It has been shown that GMBM can achieve superior bit error

performance compared to MBM and other index modulation

schemes [4]. In terms of capacity, with only channel alphabet

and no source alphabet (tone), [2] has shown that MBM achieves

the capacity of nr parallel AWGN channels asymptotically as

mrf → ∞. This work does not consider capacity analysis in

the non-asymptotic regime. Filling this gap is one of our new

contributions in this paper. Specifically, we derive a closed-

form expression for GMBM capacity, where the key idea is to

recognize that MBM uses two alphabets to convey information,

namely, the source alphabet and the channel alphabet, and that the

capacity is achieved when the mutual information is maximized

over the source-channel product alphabet.

Next, signal detection is another important issue in high-rate



GMBM systems. Algorithms based on message passing have

been proposed for GMBM signal detection in the literature [12].

Sparse recovery techniques offer a promising approach to low-

complexity signal detection [13]-[17]. Here, we take note of the

fact GMBM signals are inherently sparse with an interesting

structure, and exploit this structured sparsity for low-complexity

detection of GMBM signals. Specifically, we propose a detection

algorithm using greedy structured sparse recovery techniques.

This forms the second contribution in this paper. We call the

proposed algorithm as GMBM matching pursuit (GMBM-MP)

algorithm. Simulation results show that the proposed GMBM-

MP algorithm achieve good performance at low computational

complexity even in highly underdetermined systems.

II. SYSTEM MODEL

In this section, we first present the GMBM transmitter structure

and the transmission scheme. Then, we present the GMBM

channel alphabet, signal set, and the input-output system model.

A. GMBM transmitter

Figure 1 shows the block diagram of a GMBM transmitter. An

MBM transmit unit (MBM-TU) consists of a transmit antenna

and mrf RF mirrors placed near that transmit antenna. The

GMBM transmitter consists of ntu MBM-TUs and nrf transmit

RF chains. In a channel use, nrf out of ntu MBM-TUs are

selected based on ⌊log2
(
ntu

nrf

)
⌋ information bits. An nrf × ntu

switch connects the nrf RF chains to the transmit antennas of the

nrf selected MBM-TUs. The mirror activation pattern (MAP) for

each active MBM-TU is selected based on mrf information bits,

and hence nrfmrf information bits are conveyed by the MAPs

of the nrf active MBM-TUs. Further, on an active MBM-TU,

a symbol from an M -ary source alphabet A (e.g., QAM/PSK)

is transmitted, which conveys log2 M bits per active MBM-TU.

The achieved rate in GMBM is therefore given by

ηGMBM =

⌊
log2

(
ntu

nrf

)⌋
+ nrf (mrf + log2 M) bpcu. (1)

B. GMBM channel alphabet

Before presenting the GMBM channel alphabet, we first

present the MBM channel alphabet.

1) MBM channel alphabet: Let hm
k denote the nr×1 channel

gain vector corresponding to mth MAP of the kth MBM-TU,

where hm
k = [hm

1,k hm
2,k · · ·h

m
nr,k

]T , hm
i,k is the channel gain from

kth MBM-TU to ith receive antenna when mth MAP is used,

m = 1, · · · , Nm, k = 1, · · · , ntu, i = 1, · · · , nr, and Nm ,

2mrf . The hm
i,ks are assumed to be i.i.d and distributed CN (0, 1).

The MBM channel alphabet of the kth MBM-TU, denoted by Hk,

is the set of Nm channel gain vectors, Hk = {h1
k, h

2
k, · · · ,h

Nm

k }.

2) GMBM channel alphabet: In GMBM, nrf out of ntu

MBM-TUs are selected based on ⌊log2
(
ntu

nrf

)
⌋ bits, which is

equivalent to selecting a combination of nrf channel alphabets

Hk1
, · · · ,Hknrf

out of the 2
⌊log

2 (
ntu
nrf

)⌋
available combinations.

For each active MBM-TU, a MAP is chosen based on mrf bits,

Fig. 1: GMBM system block diagram.

which is equivalent to selecting one of the channels h
ml

kj
out

of the Nm available channels in each Hkj
, j = 1, · · · , nrf ,

l = 1, · · · , Nm. Overall, the MBM-TU indexing and the

MAP indexing together selects a combination of nrf channels,

hm1

k1
,hm2

k2
, · · · ,h

mnrf

knrf

. The set of all such combinations form the

GMBM channel alphabet, given by

H =

{
[hm1

k1
hm2

k2
· · ·h

mnrf

knrf

]

∣∣∣∣(k1, · · · , knrf
) ∈ B

nrf
ntu

and mi ∈ {1, · · · , Nm}, i = 1, · · · , nrf

}
, (2)

where B
nrf
ntu is the set of MBM-TU activation patterns (MTAP),

where an MTAP is an nrf -tuple, which contains the indices of the

nrf active MBM-TUs. The size of the GMBM channel channel

alphabet is |H| = 2
(⌊log

2 (
ntu
nrf

)⌋+nrfmrf )
, and we denote the sym-

bols of this channel alphabet by Hl, l = 1, 2, · · · , |H|. Therefore,

in GMBM, one of the |H| symbols is chosen from the GMBM

channel alphabet H based on the log2 |H| = (⌊log2
(
ntu

nrf

)
⌋ +

nrfmrf ) bits, thereby conveying these information bits using the

channel alphabet.

C. GMBM signal set

We first present the MBM signal set and then extend it to the

GMBM signal set.

1) MBM signal set: Define A0 , A∪0. The MBM signal set,

denoted by SMBM, is the set of Nm× 1-sized MBM signal vectors

given by

SMBM =
{
sm,q ∈ A

M
0 : m = 1, · · · , Nm, q = 1, · · · , |A|

}

s.t sm,q = [0, · · · , 0, sq︸︷︷︸
mth coordinate

0, · · · , 0]T , sq ∈ A, (3)

where m is the index of the MAP.



2) GMBM signal set: In GMBM, MBM signal vectors are

transmitted on the nrf active MBM-TUs and the remaining

(ntu − nrf ) MBM-TUs are silent, which is equivalent to zero

vectors being transmitted. With this, the GMBM signal set is

given by

SGMBM=

{
x =[xT

1 x
T
2 · · ·xT

ntu
]T s.t xi ∈ SMBM ∪ 0, i = 1, · · · , nt,

‖x‖0 = nrf , and (k1, · · · , knrf
) ∈ B

nrf
ntu

}
, (4)

where (k1, . . . , knrf
) are the indices of the nrf active MBM-TUs

and B
nrf
ntu is the set of MTAPs as defined earlier.

D. GMBM received signal

Let nr denote the number of receive antennas and A , A
nrf

denote the GMBM source alphabet, which is the set of all

combinations of nrf symbols from A. Then, the nr × 1 received

GMBM signal vector is given by

y = Hx+ n = Hls+ n, (5)

where H = [H1 · · · Hntu
] is nr × ntuNm channel matrix, x ∈

SGMBM is the ntuNm × 1 GMBM transmit vector, Hl ∈ H is an

nr × nrf GMBM channel symbol, s ∈ A is the GMBM source

symbol which forms the non-zero part of x, and n ∈ C
nr×1 is

the additive white Gaussian noise vector. The entries of n are

modeled as i.i.d complex Gaussian with zero mean and variance

of σ2.

Assuming perfect channel state information at the receiver

(which is equivalent to the channel alphabet being known at

the receiver), the maximum likelihood (ML) detection rule is to

jointly detect the channel and source symbols as follows:

[
Ĥl, ŝ

]
= argmin

Hl∈H,s∈A

‖y −Hls‖2. (6)

The ML detection has exponential complexity and hence ML de-

tection becomes infeasible for GMBM systems with higher num-

ber of MBM-TUs and RF chains. We consider low-complexity

detection of GMBM signals in Sec. IV. Before that, we carry out

the capacity analysis of GMBM in the following section.

III. GMBM CAPACITY ANALYSIS

In this section, we derive an expression for the capacity of

GMBM in closed-form. The main idea here is to recognize that, in

GMBM, information is conveyed using channel symbols Hl ∈ H
and the source symbols s ∈ A. Therefore, the mutual information

is the amount of information gained about both the channel and

the source symbols on receiving y, which is given by

I(y;H,A) = H(y)−H(y|H,A), (7)

where
H(y) = −Ey(log2 p(y)) (8)

is the entropy of y, with p(y) being the probability density

function (pdf) of y, and

H(y|H,A) = H(n) = −En(log2 p(n)) (9)

is the noise entropy, with p(n) being the pdf of noise. The pdf

of y can be simplified as

p(y) =
∑

Hl∈H

∑

s∈A

p(y,Hl, s)

=
∑

Hl∈H

∑

s∈A

p(y|Hl, s)p(Hl, s). (10)

Since the channel and the source symbols are independent, the

pdf of y can be further simplified as

p(y) =
∑

Hl∈H

∑

s∈A

p(y|Hl, s)p(Hl)p(s)

=
∑

Hl∈H

∑

s∈A

1

2ηGMBM

1

(πσ2)nr
e−

‖y−Hl
s‖2

σ2 . (11)

Using (11) in (8), the entropy of y can be simplified as

H(y)=−nr log2(πσ
2)− Ey







log
2





1

2ηGMBM

∑

Hl∈H

∑

s∈A

e
−

‖y−Hl
s‖2

σ2











. (12)

For the circularly symmetric Gaussian noise, the conditional

entropy in (9) becomes [11]

H(y|H,A) = H(n) = nr log2(πσ
2e). (13)

Using (12) and (13) in (7), the mutual information is given by

I(y;H,A)=−nr log2(e)−Ey







log
2





1

2ηGMBM

∑

Hl∈H

∑

s∈A

e
−

‖y−Hl
s‖2

σ2











.

(14)

To find the capacity of GMBM, the mutual information has to

be maximized jointly over the pdfs of the channel and source

alphabets. Thus, the capacity of GMBM is given by

C = max
pH,pA

I(y;H,A)

= max
pH,pA

H(y)−H(y|H,A), (15)

where pH and pA denote the pdfs of channel and source alpha-

bets, respectively. It should be noted that there is no averaging on

the channel in (15) since channel serves as an alphabet to convey

information and is known at the receiver, like the source alphabet

is known at the receiver.

From (13) it is clear that, the H(y|H,A) in (15) does not

depend on H and A, hence they need not be considered for

maximization. Therefore, to maximize the mutual information

I(y;H,A) in (15), we need to maximize the entropy of y, i.e.,

maximize H(y). It is known that the distribution maximizing

the entropy of y is Gaussian [11]. However, the key idea is to

observe from (5) that, for y to have Gaussian distribution, the
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Fig. 2: Capacity of GMBM with nr = 2, 4, and 8.

product Hls should be Gaussian distributed. That is, the entropy

of y is maximized when the product of the source and channel

symbols is Gaussian distributed. Combining this with the fact

that there is no averaging over the channel in (15), the capacity

of GMBM is achieved when the source-channel product alphabet

HA is Gaussian. However, since the channel alphabet is fixed, a

suitable signal shaping of the source symbols is required for the

product alphabet to be Gaussian. It has been shown in [10] in the

context of space modulation techniques that, when the channel

is Rayleigh, the product alphabet HA is Gaussian distributed

if the symbols of the source alphabet have constant amplitude

and uniformly distributed (in [−π, π]) phases. With this, let the

product distribution HA ∼ CN (0, Inr
), where Inr

is the nr×nr

identity matrix. Then, the maximum entropy of y is

max
pH,pA

H(y) = nr log2(πe(1 + σ2)). (16)

Now, using (13), (16) in (15), the capacity of GMBM is obtained

as

C = nr log2

(
1 +

1

σ2

)
= nr log2(1 + γ), (17)

where γ , 1
σ2 is the signal-to-noise ratio (SNR).

It can be seen from (17) that the capacity of GMBM depends

only on the SNR and the number of receive antennas. A similar

result has been recently shown in [10] in the context of spa-

tial modulation. It is noted that the earlier literature on MBM

[3],[5] has shown only the asymptotic (mrf → ∞) capacity of

MBM, when only the channel alphabet is used for conveying

information, to be equal to the expression in (17). However, our

current analysis is more general, since it considers both channel

and source alphabets. Further, the result in (17) is not asymptotic

and is valid for any number of RF mirrors. This result has not

been reported before for GMBM. Figure 2 shows the capacity of

GMBM with nr = 2, 4, and 8, where we can observe the capacity

increase with increase in the number of receive antennas. This

shows that GMBM in well suited for large-scale MIMO systems

that employ large number of receive antennas.

IV. STRUCTURED SPARSITY EXPLOITING DETECTION

In this section, we develop a sparsity exploiting algorithm

for GMBM signal detection. The MBM signal vectors in (3)

are inherently sparse with only one non-zero element out of

Nm = 2mrf elements. Therefore, GMBM signal vectors which

are constructed using nrf MBM signal vectors and (ntu − nrf )
zero-vectors is also sparse with nrf non-zeros out of the ntuNm

elements. For example, for a GMBM system with nt = 16,

nrf = 8, and mrf = 6 (Nm = 2mrf = 64), the sparsity factor is
8

16× 64
=

1

128
. Also, there is a structure in the GMBM signal

vectors. A GMBM signal vector consists of nrf subvectors each

of length Nm with only one non-zero entry (MBM vectors of

the active MBM-TUs) and (ntu − nrf ) zero subvectors each of

length Nm (of the inactive MBM-TUs). This can be seen from the

GMBM signal set in (4). Conventional sparse recovery algorithms

like those in [13]-[15] can not be used for GMBM signal detection

since these algorithms are generic and have no constraint on

the support of the signal vectors to be reconstructed. Further,

incorporating the structure in the sparse recovery process can lead

to significant performance gains in the signal detection [16],[17].

Therefore, we propose a greedy structured sparsity exploiting

detection algorithm for the detection of GMBM signal vectors.

We call the proposed algorithm is as the GMBM matching pursuit

(GMBM-MP) algorithm.

A. GMBM signal detection as structured sparse recovery

The signal detection of GMBM can be formulated as a struc-

tured sparse recovery problem as follows:

min ‖x‖1 s.t

(i) y = Hx+ n

(ii) ‖xi‖0 ∈ {0, 1}, i = 1, · · · , ntu

(iii) ‖x‖0 = nrf . (18)

Note that the formulation in (18) takes into account all the

constraints discussed before. We take greedy sparse recovery

approach to reconstruct the GMBM signal vector, where the first

step is to recover the support of the vector and the next step

is to recover the non-zero values corresponding to the detected

support. The main challenge is in the support recovery stage, since

the recovered support has to satisfy the constraints in (18). In the

proposed algorithm we carefully refine and restrict the support in

each step so that the constraints in (18) are satisfied.

B. GMBM matching pursuit (GMBM-MP)

The listing of the proposed GMBM-MP algorithm is given in

Algorithm 1. The algorithm starts with an initial support S0,

which contains the initial estimates of the non-zero positions of

x. To find S0, the algorithm first computes the inner products of

the received vector y with the channel vectors corresponding to

the different MAPs of all the MBM-TUs. Let W0 be the Nm ×



Algorithm 1 GMBM matching pursuit

1: Inputs: y,H, nrf , ntu,mrf

2: Initialize:

3: S0 = {l01, l
0
2, · · · , l

0
nrf

},

where l0j = k0j (Nm − 1) +m0
j , j = 1, · · · , nrf ,

with (m0
j , k

0
j ) = pos. of jth max. entry in W0 s.t {k0j }

nrf

j=1

are distinct, where W0(m, k) = (hm
k )Hy, m = 1, · · · , Nm,

k = 1, · · · , ntu

4: a0 =
(
HH

S0HS0 + 1
γ
I
)−1

HH
S0y

5: r0 = y −HS0a0

6: Iteration: In the ith iteration, do the following:

7: S̃i = Si−1 ∪ {l′} s.t l′ = k′(Nm − 1) +m′,

where (m′, k′) = pos. of max. entry of Wi,

with Wi(m, k) = (hm
k )Hri−1

8: z =
(
HH

S̃i
HS̃i + 1

γ
I
)−1

HH

S̃i
y

9: Si = {li1, · · · , l
i
nrf

}, where li1, · · · , l
i
nrf

are nrf elements

of S̃i corresponding to distinct MBM-TUs and resulting in

highest nrf values of z

10: ai =
(
HH

SiHSi + 1
γ
I
)−1

HH
Siy

11: ri = y −HSiai

12: If ‖ri‖ > ‖ri−1‖, let Si = Si−1 and quit the iteration

13: S = Sl and a =
(
HH

S HS + 1
γ
I
)−1

HH
S y

14: ŝk = argmins∈A
‖ak − s‖2, ∀k = 1, · · · , nrf

15: Output: The estimated GMBM signal vector x̂ satisfying

x̂{1,··· ,ntuNm}\S = 0 and x̂S = ŝ = [ŝ1 · · · ŝnrf
]T .

ntu matrix of inner products of y with the Nm channel vectors

corresponding to different MAPs of the ntu MBM-TUs, with kth

column of W0 containing the inner products of y with different

MAPs of kth MBM-TU. The (m, k)th entry of W0 is given by

W0(m, k) = (hm
k )Hy, (19)

where hm
k denotes the channel gain vector from kth MBM-

TU using mth MAP to nr receive antennas. Now, the nrf

pairs {(m0
1, k

0
1), · · · , (m

0
nrf

, k0nrf
)} are selected which are the

nrf (m, k) positions of W0 with highest inner product values

such that k01, · · · , k
0
nrf

are distinct. The k01, · · · , k
0
nrf

are the

initial estimates of the nrf active MBM-TUs and m0
1, · · · ,m

0
nrf

are the initial estimates of the MAPs corresponding to the

active MBM-TUs. The initial support S0 of x is then given by

l0j = (k0j − 1)Nm +m0
j , j = 1, · · · , nrf . This is shown in step

3 of the algorithm. The initial estimates of the non-zero values

corresponding to the detected initial support is then obtained as

a0 =

(
HH

S0HS0 +
1

γ
I

)−1

HH
S0y, (20)

where γ is the SNR, HS0 denotes the nr×nrf matrix obtained by

restricting the columns of H to S0. Note that this is the MMSE

detection done for the non-zero part of x. This is shown in step

4 of the algorithm. The initial residue r0 is found in step 5.

The algorithm then refines the support in each iteration and

finds the non-zeros corresponding to the refined support. In the

ith iteration, the inner product of the residue of (i−1)th iteration,

ri−1, with the channel vectors hm
k s are computed to obtain the

matrix Wi. The (m, k)th entry of Wi is given by

Wi(m, k) = (hm
k )Hri−1. (21)

Let l′ = (k′ − 1)Nm + m′, where (m′, k′) is the position of

the highest inner product in Wi. Now, an intermediate support

set S̃i is formed by appending l′ to the support set of (i − 1)th
iteration, Si−1. This is shown in the step 7 of the algorithm.

This support set is refined by first computing the non-zeros

corresponding to the support S̃i in step 8 and taking the nrf

elements of S̃i corresponding to different MBM-TUs, that result

in nrf maximum non-zero values. This is shown in step 9 of

the algorithm, where Si denotes the refined support set of ith

iteration. The non-zeros corresponding to the refined support are

computed as

ai =

(
HH

SiHSi +
1

γ
I

)−1

HH
Siy, (22)

which is shown in step 10 of the algorithm. The residue in the

ith iteration is computed in step 11 and this residue is compared

to the residue of the previous iteration in step 12. If the current

residue is less than the residue of previous iteration, then the

algorithm proceeds to the next iteration; otherwise the iteration

is stopped. Finally, the computed non-zeros are mapped to the

valid symbols from A in step 14.

Complexity: The main steps contributing to the complexity

of GMBM-MP are the computation of Wi and ai. The Wi

can be efficiently computed as HHy and reshaping and has

the complexity of O(nrntuNm). The computation of ai has the

complexity of O(n3
rf ). Therefore, the complexity of the GMBM-

MP is O(nrntuNm + n3
rf ), which is only polynomial in the

system parameters, unlike ML detection whose complexity is

exponential in system parameters.

C. Results and discussions

In this section, we present the simulated GMBM BER per-

formance and complexity results using the proposed GMBM-MP

algorithm. We compare these results with those of GMBM using

a multi-layered message passing (MLMP) algorithm in [12].

BER performance with GMBM-MP and MLMP detection: Figure

3 shows a BER performance comparison between GMBM-MP

detection and MLMP detection. The following two GMBM sys-

tem configurations are considered: i) system-1: ntu = 8, nrf = 4,

nr = 48, mrf = 5, 4-QAM, and 34 bpcu, ii) system-2: ntu = 16,

nrf = 8, nr = 96, mrf = 6, 4-QAM, and 77 bpcu. It is noted

that both the systems are underdetermined with system-1 having

256 transmit and 48 receive dimensions, and system-2 having

1024 transmit and 96 receive dimensions. From Fig. 3, it can
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Fig. 3: BER performance of GMBM systems 1 and 2 with

GMBM-MP and MLMP detection.

be seen that system-1 achieves almost similar BER performance

with both GMBM-MP and MLMP detection. However, the BER

results for system-2 show that the performance with GMBM-

MP detection is much superior compared to the performance

with MLMP detection. For example, in system-2, GMBM-MP

detection achieves about 3.5 dB better performance compared to

that with MLMP detection at a BER of 2 × 10−3. Note that

system-2 is more underdetermined than system-1. This illustrates

the effectiveness of the GMBM-MP algorithm in exploiting the

structured sparsity inherent in the GMBM signal vectors in highly

underdetermined GMBM system settings.

Complexity of GMBM-MP and MLMP detection: The complexity

of GMBM signal detection using GMBM-MP and MLMP as a

function of number of RF mirrors and the number of MBM-

TUs are shown in Figs. 4(a) and 4(b), respectively. In Fig. 4(a),

GMBM with nt = 6, nrf = 8, nr = 64, and 4-QAM is

considered, and the complexity of GMBM-MP and MLMP, in

number of real operations, is plotted as a function of mrf . From

this figure, it is observed that GMBM-MP has lesser complexity

compared to MLMP. A similar complexity advantage in favor

of GMBM-MP can be seen in Fig. 4(b), where the complexity

is plotted as a function of the number of MBM-TUs. Thus, the

BER and complexity results show that the proposed GMBM-MP

detection achieves good BER performance even when the system

is highly underdetermined and also that the GMBM-MP has lesser

computational complexity compared to MLMP.

V. CONCLUSIONS

We investigated two important aspects of GMBM, namely,

capacity and low-complexity signal detection. Recognizing that

GMBM uses both source and channel alphabets to convey infor-

mation, and that the capacity is achieved when the mutual infor-

mation is maximized over the source-channel product alphabet,

we derived closed-form capacity expression for GMBM. It was

shown that the GMBM capacity is achieved when the source-

channel product alphabet is Gaussian distributed, and that the
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Fig. 4: Complexity of GMBM-MP and MLMP as a function of

(a) number of RF mirrors and (b) number of MBM-TUs.

capacity depends only on the number of receive antennas and

SNR. Regarding the detection of high-rate MBM signal vectors,

we proposed a structured sparse recovery algorithm. Simulation

results showed that the proposed algorithm achieves good BER

performance at low complexity even when the system is highly

underdetermined.
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