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Abstract—Generalized spatial modulation (GSM) is a relatively
new modulation scheme for multi-antenna wireless communica-
tions. It is quite attractive because of its ability to work with less
number of transmit RF chains compared to traditional spatial
multiplexing (V-BLAST system). In this paper, we show that,
by using an optimum combination of number of transmit an-
tennas (Nt) and number of transmit RF chains (Nrf ), GSM can
achieve better throughput and/or bit error rate (BER) than spa-
tial multiplexing. First, we quantify the percentage savings in
the number of transmit RF chains as well as the percentage in-
crease in the rate achieved in GSM compared to spatial multi-
plexing; 18.75% savings in number of RF chains and 9.375%
increase in rate are possible with 16 transmit antennas and 4-
QAM modulation. A bottleneck, however, is the complexity of
maximum-likelihood (ML) detection of GSM signals, particu-
larly in large MIMO systems where the number of antennas is
large. We address this detection complexity issue next. Specif-
ically, we propose a Gibbs sampling based algorithm suited to
detect GSM signals. The proposed algorithm yields impressive
BER performance and complexity results. For the same spec-
tral efficiency and number of transmit RF chains, GSM with the
proposed detection algorithm achieves better performance than
spatial multiplexing with ML detection.

Keywords – Generalized spatial modulation, RF chain savings, detection,

Gibbs sampling.

I. INTRODUCTION

Multi-antenna wireless communication systems have become

popular due to their advantages of high throughput and en-

hanced reliability. Practical multi-antenna systems are faced

with the problem of maintaining multiple radio frequency (RF)

chains at the transmitter and receiver, and the associated cost,

hardware complexity and inter-antenna synchronization is-

sues [1]. Multiple RF chains are, in general, expensive. Spa-

tial modulation (SM) is a relatively new modulation tech-

nique which can resolve these issues by using only one trans-

mit RF chain and choosing one antenna element in a multiple

transmit antenna array and sending the information symbol

through the chosen antenna [2],[3]. The SM schemes pro-

posed in [3]-[5] use the index of active antenna in the array

as well as the symbol transmitted by that antenna to convey

the information bits. That is, log2 Nt bits and log2 M bits

are simultaneously carried in the antenna index and the M -

ary modulation symbol, respectively, where Nt is the total

number of transmit antenna elements. Therefore, the spectral

efficiency of SM is given by is (log2 Nt+log2 M) bpcu. The

detector at the receiver in SM has to identify the transmit an-

tenna index through which the symbol was transmitted jointly

with the symbol. SM enjoys the advantages of complete re-

moval of inter-channel interference and reduced hardware re-

quirement.

A drawback in SM is its low spectral efficiency. A recently

proposed extension (or generalization) of SM, termed gen-

eralized spatial modulation (GSM), allows multiple transmit

antennas to be active simultaneously [6]-[8]. By choosing

a combination of total number of transmit antenna elements

and number of transmit RF chains, GSM can achieve higher

spectral efficiencies than SM. We present the GSM system

model in Section II. We present the maximum achievable

rate and transmit RF chain saving in GSM compared to spa-

tial multiplexing, by selecting optimum combination of to-

tal number of transmit antenna elements (Nt) and number of

transmit RF chains (Nrf ). We present the optimum (Nt, Nrf )
combination, and quantify the percentage savings in the num-

ber of transmit RF chains as well as the percentage increase

in the rate achieved in GSM compared to spatial multiplexing

– about 18.75% savings in number of RF chains and 9.375%

increase in rate are possible with 4-QAM. The achievable rate

and RF chain saving results are presented in Section III.

A challenge that arises in GSM with high rate is in the detec-

tion of the transmitted signal. For large number of transmit

antenna elements, maximum-likelihood (ML) detection be-

comes computationally infeasible. Hence, there is a need for

low complexity detection schemes with good performance for

GSM with large number of transmit antenna elements. Low-

complexity detection strategies used in the MIMO detection

literature can not be directly used in GSM signal detection

due to the special nature of GSM transmit vector having a

fixed number of non-zero elements. Detection problem in

sparse multiuser scenario is similar in nature to this problem,

as, in both cases, the receiver has to detect a signal vector that

has some zero entries [9]. But the difference lies in the fact

that in sparse multiuser case the number of non-zero elements

is variable and unknown to the receiver. Hence the detector

tries to find a solution vector as sparse as possible, and thus

the scaled zeroth norm of the test vector is added to the cost

function to be minimized. But in GSM all possible trans-

mitted vectors have same level of sparsity which makes the

detection strategies used in sparse multiuser detection not di-

rectly applicable in GSM. To address this issue, we propose a

low complexity detection scheme based on Gibbs sampling

approach suited for GSM signal detection. The proposed

Gibbs sampling based GSM detection algorithm, its BER per-

formance and complexity results are presented in Section IV.

For the same spectral efficiency and number of transmit RF

chains, GSM with the proposed detection algorithm performs

better than spatial multiplexing with ML detection.

Notations: Bold lowercase and uppercase letters denote col-

umn vectors and matrices, respectively. For a vector r, rj
denotes its jth coordinate. The entry in ith row and jth col-

umn is of a matrix R is denoted by ri,j . ‖r‖p denotes the

p-norm of vector r.
(
.
.

)
denotes the binomial coefficient. ⌊x⌋
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denotes the largest integer less than equal to x. |A| denotes

the cardinality of set A. [x]A denotes the element-wise quan-

tization of x to its nearest point in A. (.)H and (.)T denote

Hermitian and transpose operations, respectively.

II. SYSTEM MODEL

Consider a multi-antenna system with Nt transmit antennas

and Nr receive antennas. The transmitter has Nrf RF chains

and a Nrf × Nt switch that connects the RF chains to the

transmitting antennas. Let us denote the Nt × 1-sized trans-

mitted vector as x. Nrf active transmit antennas are chosen

among the Nt antennas, and information symbols are loaded

on these chosen antennas and the other Nt − Nrf antennas

remain silent. Therefore, ‖x‖0 = Nrf . Let k
△
= ⌊log2

(
Nt

Nrf

)
⌋

and K
△
= 2k. Let A denote the modulation alphabet from

which information symbols are chosen, and M
△
= |A| and

m
△
= log2 M . Let us denote the ath element in alphabet A

as A
a. Average symbol energy for this alphabet is denoted

by Es. We consider standard alphabets like PAM, QAM,

PSK, which do not include zero, in order to avoid the confu-

sion between an antenna transmitting an information symbol

zero and it being inactive (i.e., remaining silent). We denote

A0 = A∪ 0. In this GSM system, we can transmit k+mNrf

information bits per channel use (bpcu). Let R
△
= k+mNrf .

Out of the total R information bits, k bits are used as con-

trol bits in the switch to choose a particular combination of

Nrf active antennas out of Nt available ones. The remaining

mNrf bits are divided into Nrf groups, where each group of

m bits is converted into a symbol from alphabet A. Note that

K <
(
Nt

Nrf

)
, and so, in general, not all antenna activity pat-

terns are valid. Let the set of valid antenna activity patterns

with cardinality K be denoted by S. For a transmit vector

x, let the corresponding antenna activity pattern vector be de-

noted by tx, where txj = 1, iff xj 6= 0 , ∀j = 1, 2, · · · , Nt.

S and mapping between elements of S and k-length control

bit sequences are known at both transmitter and receiver.

As an example, consider Nt = 4, Nrf = 2, and 4-QAM al-

phabet. Here, k = 2 and R = 6. We take S =
{
[1, 1, 0, 0]T ,

[1, 0, 1, 0]T , [0, 1, 0, 1]T , [0, 0, 1, 1]T
}

1. For an information

bit sequence [0, 1, 0, 0, 1, 1], the first 2 bits are used to choose

the activity pattern, and the two 4-QAM symbols are gener-

ated by combining the third & fourth bits and fifth & sixth

bits, respectively. Using the usual Gray mapping the trans-

mitted vector becomes [1 +
√
−1, 0,−1−

√
−1, 0]T .

The Nr×Nt channel matrix is denoted by H. We assume rich

scattering environment. Hence, the entries of H are modeled

as circularly symmetric complex Gaussian with zero mean

and unit variance. hi,j denotes the channel gain from jth

transmit antenna to ith receive antenna. Let us denote the

Nr × 1-sized received vector as y, which is given by

y = Hx+ n, (1)

1Here, we could have used any 4 out of
(4
2

)
= 6 possible activity patterns.

where n is the Nr × 1-sized additive white Gaussian noise

vector at the receiver. We assume ni ∼ CN (0, σ2), ∀i =

1, 2, · · · , Nr. The average received SNR is 10 log10
NrfEs

σ2 .

We assume that the receiver has perfect knowledge of H and

σ2. The ML detection output can be written as

xML = argmin
x̂∈U

‖y −Hx̂‖2, (2)

where U = {x|x ∈ A0
Nt×1, ‖x‖0 = Nrf , t

x ∈ S} is the set

of all possible transmitted vectors. Note that, |U| = 2R. For

small Nt and Nrf , the set U may be completely tabulated and

ML detection is possible. But for large Nt and Nrf , this brute

force computation of xML in (2) becomes computationally

infeasible.

III. ACHIEVABLE RATES IN GSM

The rate R (bpcu) achieved in GSM with Nt transmit anten-

nas, Nrf transmit RF chains, and M -QAM is given by

R =

⌊
log2

(
Nt!

Nrf !(Nt −Nrf )!

)⌋
+mNrf , (3)

where the first and second terms on the RHS correspond to

number of control bits and number of modulation bits, re-

spectively. Let us examine how R varies as a function of its

variables. Figure 1 shows the variation of R as a function

of Nrf for different values of Nt = 4, 8, 12, 16, 22, 32 and 4-

QAM. The figure shows that for each Nt, there is an optimum

Nrf that maximizes the achievable rate R. Note that the last

x-axis value for each plot corresponds to Nrf = Nt. Also

note that the traditional spatial multiplexing MIMO system

(i.e., V-BLAST system) operates with Nrf = Nt, i.e., with

equal number of transmit antennas and transmit RF chains.

It is interesting to see that the maximum R does not occur

at Nrf = Nt, but at some Nrf < Nt for Nt ≥ 8. This

brings the following interesting observations to the fore: i)
by choosing the optimum (Nt, Nrf ) combination (i.e., using

less RF chains than transmit antennas, Nrf < Nt), GSM can

achieve a higher rate than that of traditional spatial multiplex-

ing MIMO (i.e., V-BLAST system with Nrf = Nt), and ii)
one can operate GSM at the same rate as that of spatial mul-

tiplexing MIMO but with even lesser number of RF chains.

This reason for this behavior can be explained as follows. The

first term in (3) increases from Nrf = 0 to Nrf = ⌊Nt

2 ⌋ and

decreases then onwards, whereas the second term increases

linearly with Nrf . Hence, intuitively the optimum value of

Nrf for which R attains maximum should be somewhere be-

tween ⌊Nt

2 ⌋ and Nt, and it should achieve R = mNt at a

lesser value than this optimum. Note that, the first term in

(3) is independent of m and the second term is directly pro-

portional to it. Hence, as we increase m, the second term will

dominate and the maximum rate will shift towards Nrf = Nt,

thus reducing the advantages of GSM. Let the value of Nrf

for which GSM achieves maximum rate be defined as N
opt
rf

and the value of Nrf for which GSM achieves R = mNt be

defined as Nmid
rf . In Table I, we show the percentage saving in
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Fig. 1. Achievable rate R using GSM as a function of Nrf for different
values of Nt and 4-QAM.

% saving in
# RF chains
for R = mNt

% increase
in rate for
R = Ropt

% saving in
# RF chains
for R = Ropt

m Nt=16 Nt=32 Nt=16 Nt=32 Nt=16 Nt=32

1 68.75 71.88 43.75 46.88 31.25 40.63

2 37.5 43.75 9.385 10.94 18.75 25

3 18.75 21.88 2.08 3.13 6.25 12.5

4 6.25 9.38 0 .78 6.25 3.13

TABLE I

% SAVING IN RF CHAINS AND % INCREASE IN RATE FOR

m = 1, 2, 3, 4, Nt = 16 AND 32.

RF chains and percentage increase in rate for m = 1, 2, 3, 4,

Nt = 16 and 32.

In Figs. 2 and 3, we show the variation in rate gains and RF

savings with increasing number of transmit antennas. In Fig.

2, we see that the percentage increase in rate over V-BLAST

system shows an increasing a trend with increasing Nt. The

zigzag nature of the curves is due to the flooring operation in

the first term in (3). Similarly, in Fig. 3, we observe the vari-

ation in percentage saving in RF chains to achieve R = Ropt

and R = mNt with increasing Nt. From Table-I and Figs. 2

and 3, we note that the gains from GSM become less promi-

nent as m increases, which is expected. With m = 1, i.e.,

BPSK modulation, one does not effectively use the complex

plane, resulting in good potential for increased throughput in

GSM.

In the next section, we present a low complexity detection

algorithm for GSM. The BER results we present in the next

section using this algorithm is for m = 2 (4-QAM), where

GSM has good gains in rate and RF saving. The algorithm,

however, is valid for any m.

IV. PROPOSED GIBBS SAMPLING BASED ALGORITHM

FOR GSM DETECTION

The GSM detection algorithm presented in this section is bas-

ed on Gibbs sampling based approach, where a Markov chain

is formed with all possible transmitted vectors as states. As

the total number of non-zero entries in the solution vector has
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Fig. 2. Variation of percentage increase in rate compared to V-BLAST
system as a function of Nt for different values of m = 1, 2, 3, 4.
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Fig. 3. Variation of percentage saving in RF chains compared to V-BLAST
system as a function of Nt to achieve R = Ropt and R = mNt, for
m = 1, 2.

to equal to Nrf , one can not sample each coordinate indi-

vidually as in the case of conventional MIMO detection. To

solve this problem, we propose the following approach: sam-

ple two coordinates at a time jointly, keeping other (Nt − 2)
coordinates fixed which contain (Nrf − 1) non-zero entries.

For any vector x(t) ∈ A
Nt

0 , ‖x(t)‖0 = Nrf , where the t

in the superscript of x(t) refers to the iteration index in the

algorithm. Let i1, i2, · · · , iNrf
denote the locations of non-

zero entries and j1, j2, · · · , j(Nt−Nrf ) denote the locations

of zero entries in x(t). We will sample x
(t)
il

and x
(t)
jk

jointly,

keeping other coordinates fixed, where l = 1, 2, · · · , Nrf and

k = 1, 2, · · · , (Nt −Nrf ). As any possible transmitted vector

can have only Nrf non-zero entries, the next possible state

x(t+1) can only be any one of the following 2|A| candidate

vectors denoted by {zw, w = 1, 2, · · · , 2|A|}, which can be

partitioned into two sets. In the first set corresponding to w =
1, 2, · · · , |A|, we enlist the vectors which has the same activ-

ity pattern as x(t). Hence, zwil = A
w, zwjk = 0, zq = x

(t)
q , q =

1, 2, · · · , Nt, q 6= ij , jk, ∀w = 1, 2, · · · , |A|. For w = |A| +
1, |A|+2, · · · , 2|A|, we enlist the vectors whose activity pat-

tern differs from that of x(t) in locations jk and il. Hence,

zwjk = A
(w−|A|), zwil = 0, zq = x

(t)
q , q = 1, 2, · · · , Nt, q 6=
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ij , jk, ∀w = |A|+ 1, |A|+ 2, · · · , 2|A|.
To simplify the sampling process, we calculate the best vec-

tors from the two sets corresponding to not swapping and

swapping the zero and non-zero locations, and choose among

these two vectors. Let xNS denote the best vector from the

first set corresponding to no swap. We set xNS = x(t)+λeil
and minimize ‖y −HxNS‖2 over λ. For this, we have

‖y −HxNS‖2 = ‖y −H(x(t) + λeil)‖2

= yHy − 2ℜ
(
yMFx(t)

)
+ x(t)HRx(t)

− 2ℜ
(
λyMF eil

)
+ 2ℜ

(
λx(t)HReil

)
+ |λ|2Ril,il , (4)

where yMF = yHH and R = HHH. Differentiating (4)

w.r.t λ and equating it to zero, we get

λopt =

(
yMF
il

− x(t)Hril

)H

Ril,il

, (5)

where ril is the ilth column vector of R. We obtain xNS =
[x(t)+λopteil ]A. Similarly we obtain xS , the best vector from

the second set corresponding to swap. The next state x(t+1)

is chosen between xS and xNS with probability pS and pNS ,

respectively, where pS = αp̃S + 1−α
2 , pNS = 1− pS , and

p̃S =
exp(−‖y−HxS‖2−‖y−HxNS‖2

σ2 )

1 + exp(−‖y−HxS‖2−‖y−HxNS‖2

σ2 )
. (6)

Here, α gives the probability of mixing between Gibbs sam-

pling and sampling from uniform distribution. We use α =
1 − 1

Nt
, which is found to give very good performance. Af-

ter sampling, the best vector obtained so far is updated. The

above sampling process is repeated for all l and k. The al-

gorithm is stopped after it meets the stopping criterion or

reaches the maximum number of allowable iterations, and

outputs the best vector in terms of ML cost obtained so far.

Let us denote the best vector as z. The stopping criterion

works as follows: we compute a metric Θs(z) =
⌈

max
(

cmin,

c1 exp(φ(z))
)

⌉

, where φ(z) = ‖y−Hx̂‖2−Nrσ
2

√
Nrσ2

is the normal-

ized ML cost of z. If z has not changed for φ(z) iterations,

the iterations are stopped. This concludes one restart and z is

declared as the output of this restart. Now, we check whether

tx belongs to S or not to check its validity. Multiple such

runs starting from different initial vectors are done till the

best valid output obtained so far is satisfactory in terms of

ML cost. Let us denote the best vector among restarts as s

and the number of restarts that has given s as output as rs.

We calculate another metric Θr(s) = ⌊max (0, c2φ(s))⌋ + 1

and compare rs with this. If rs is equal to Θr(s) or maximum

number of restarts have been reached, we terminate the algo-

rithm. The pseudo-code of the proposed algorithm is given in

Algorithm 1.

A. Complexity

The complexity of the proposed Gibbs sampling based de-

tector can be separated into three parts: i) computation of

Algorithm 1 Proposed Gibbs sampling based algorithm for GSM detec-

tion

1: input: y, H, Nt, Nrf ; MAX-ITR: max. # iterations; MAX-RST: max.
# restarts;

2: r = 0, κ = 1010, α = 1− 1
Nt

;

3: Compute yMF = yHH and R = HHH;
4: φ(.): ML cost fn; Θs(.): stopping criterion fn; Θr(.): restart crite-

rion fn;
5: while r < MAX-RST do
6: x(0) : initial vector ∈ A0

Nt×1; ‖x(0)‖0 = Nrf ;

7: β = φ(x(0)); z = x(0); t = 0;
8: while t < MAX-ITR do
9: for l = 1 to Nrf do

10: for k = 1 to Nt −Nrf do
11: find il and jk indices;

12: Compute λopt from (5); compute xNS = [x(t) +
λopteil ]A;

13: set xtemp = x(t); x
temp
il

= 0;

14: xS = [x(t) +

(

yMF
jk

−x
tempH

rjk

)H

Rjk,jk

ejk ]A

15: Compute p̃S from (6);

16: Compute pS = αp̃S + 1−α
2

, pNS = 1− pS ;

17: Choose x(t+1) between xS and xNS with probability pS

& pNS ;

18: γ = φ(x(t+1));
19: if (γ ≤ β) then

20: z = x(t+1); β = γ; calculate Θs(z);
21: end if
22: t = t+ 1;

23: β
(t)
v = β;

24: end for
25: end for
26: if Θs(z) < t then

27: if β
(t)
v == β

(t−Θs(z))
v then

28: goto step 32
29: end if
30: end if
31: end while
32: r = r + 1;
33: if tz ∈ S then
34: if β < κ then
35: κ = β; rs = 1; s = z; Compute Θr(s);
36: end if
37: if β == κ then
38: rs = rs + 1;
39: end if
40: if rs == Θr(s) then
41: goto step 45
42: end if
43: end if
44: end while
45: output: s. s : output solution vector

starting vectors, ii) computation of yMF and R, and iii)

computations involved in sampling and updating process. In

our simulations, we use MMSE output as the starting vec-

tor for the first restart, and random vectors for the subse-

quent restarts.The MMSE output needs the computation of(
HHH+σ2INt

)−1
HHy, whose complexity is O(N3

t ). Note

that this operation includes the computations of yMF and

R. For the sampling and updating process, in each iteration,

i.e., for each choice of l and k, the algorithm needs to com-

pute x(t)Hril and x(t)Hrjk which requires O(Nrf ) compu-

tations. The rest of the computations are O(1). The number

of iterations before the algorithm terminates is found to be

O(Nrf (Nt − Nrf )) by computer simulations. Thus, the to-
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tal number of computations involved in iii) is O(N2
rf (Nt −

Nrf )). Hence, the total complexity of the proposed algorithm

for GSM detection is O(N3
t ) +O(N2

rf (Nt −Nrf )). Figure

4 shows the complexity comparison between the proposed al-

gorithm and brute force ML detection.
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B. Results and Discussions

In this section, we present simulation results of the uncoded

BER performance achieved by the proposed Gibbs sampling

based algorithm for detecting GSM signals. We compare this

performance with ML performance (where ever ML com-

plexity permits its simulation). We also compare the perfor-

mance of GSM with the performance of traditional spatial

multiplexing MIMO system. For notation purpose, a GSM

system with Nt transmit antennas and Nrf transmit RF chains

is referred to as “(Nt, Nrf )-GSM” system. Also, we use

the term “(Nt, Nrf )-V-BLAST” system to refer the MIMO

system with spatial multiplexing (where Nt = Nrf ). The

following parameters are used in the simulations of the pro-

posed detection algorithm: cmin = 10Nrf (Nt −Nrf ), c1 =

10mNrf (Nt−Nrf ), MAX-ITR = 8NtNrf (Nt−Nrf )
√
M ,

MAX-RST= 20, c2 = 0.5(m+ 1).
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In Fig. 5, we show the BER comparison between i) (4, 2)-
GSM with 4-QAM, ii) (4, 1)-GSM with 16-QAM, and iii)
(2, 2)-V-BLAST with 8-QAM, using Nr = 2. Note that in all

the three systems, the modulation alphabets are chosen such

that the spectral efficiency is the same 6 bps/Hz. Since the

systems are small, brute force ML detection is used. It can

be seen that (4,2)-GSM system performs better than (2,2)-

V-BLAST system. That is, for the same spectral efficiency

(6 bps/Hz) and Nrf = 2, GSM achieves better performance

than V-BLAST (about 1 dB better performance at 0.01 BER).

The additional resources used in GSM are not the transmit

RF chains (which are expensive), but only the transmit an-

tenna elements (which are not expensive). It can also be seen

that even (4,1)-GSM performs almost the same as (2,2)-V-

BLAST. This shows that GSM can save RF transmit chains

without losing much performance compared to V-BLAST.
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Fig. 6. BER comparison between different detectors for GSM – MMSE
detector, proposed detector and ML detector – in (4,3)-GSM and (8,7)-GSM
with Nr = Nt and 4-QAM.

Figure 6 shows the BER performance of different detection

schemes for GSM. (4,3)-GSM and (8,7)-GSM with Nr = Nt

and 4-QAM are considered. Note that both the Nrf choices

correspond to N
opt

rf . Three detectors, namely, MMSE detec-

tor, proposed detector and ML detector, are considered. ML

detection is done by enumerating all possible transmitted vec-

tors and comparing their ML costs. It can be seen that MMSE

detector yields very poor performance, but the proposed de-

tector yields a performance which almost matches the ML

detector performance. The proposed detector achieves this al-

most ML performance in just cubic complexity in Nt, whereas

ML detection has exponential complexity in Nt.

In Fig. 7, we compare the performance of three systems

achieving 24 bps/Hz: i) (8,8)-V-BLAST with 8-QAM and

ML detection using sphere Decoder (SD), ii) (12,8)-GSM

with 4-QAM and proposed detector, and iii) (12,12)-V-BLAST

with 4-QAM and ML detection using generalized sphere de-

coder (GSD) in [10]. All systems use Nr = 8. It can be seen

that (12,8)-GSM performs close to (12,12)-V-BLAST perfor-

mance, using much lesser transmit RF chains. It also shows

that the (12,8)-GSM with proposed detector outperforms (8,8)-

V-BLAST with SD employing same RF resources.
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Fig. 8. BER comparison between GSM and V-BLAST schemes using same

RF resources for Nrf = Nmid
rf

, and Nrf = N
opt
rf

, Nr = Nrf to achieve

32 bps/Hz and 35 bps/Hz, respectively.

Figure 8 shows the BER comparison between GSM and V-

BLAST schemes using same RF resources for Nrf = Nmid
rf ,

and Nrf = N
opt

rf , Nr = Nrf to achieve 32 bps/Hz and 35

bps/Hz, respectively. GSM scheme uses Nt = 16 and 4-

QAM whereas V-BLAST schemes use a mixture of 4-QAM,

8-QAM and 16-QAM to match the rate of GSM scheme. For

Nrf = Nmid
rf = 10, target rate of 32, V-BLAST scheme uses 4

antennas transmitting 4-QAM symbols and 6 antennas trans-

mitting 16-QAM symbols. For Nrf = N
opt

rf = 13, target

rate of 32, V-BLAST scheme uses 4 antennas transmitting

4-QAM and 9 antennas transmitting 8-QAM. GSM schemes

use the proposed detector whereas V-BLAST schemes use SD

for detection. It can be seen that for both choices of Nrf ,

GSM outperforms the corresponding V-BLAST using same

RF resources in medium to high SNR regime.

V. CONCLUSION

We made two new contributions in this paper regarding gener-

alized spatial modulation, an emerging and promising modu-

lation technique for multi-antenna communication. We first

showed that, with optimum choice of (Nt, Nrf ) combina-

tion, GSM can achieve increased rates and saving in num-

ber of transmit RF chains compared to spatial multiplexing

(V-BLAST system). The gains are high for BPSK and 4-

QAM; 9.375% gain in rate and 18.75% savings in RF chains

are possible with Nt = 16 and 4-QAM. These gains dimin-

ish as the modulation order is increased. Then, motivated

by the complexity involved in ML detection of GSM signals

in large MIMO systems with large number of antennas, we

proposed a Gibbs sampling based low complexity algorithm

suited for GSM signal detection. The proposed algorithm was

shown to yield impressive BER performance and complexity

results. For the same spectral efficiency, and number of trans-

mit RF chains, GSM with the proposed detector was shown

to achieve better performance than spatial multiplexing with

ML detection.
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