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Abstract—In this paper, we present a low-complexity, near maxi-
mum-likelihood (ML) performance achieving detector for large
MIMO systems having tens of transmit and receive antennas.
Such large MIMO systems are of interest because of the high
spectral efficiencies possible in such systems. The proposed de-
tection algorithm, termed as multistage likelihood-ascent search
(M-LAS) algorithm, is rooted in Hopfield neural networks, and
is shown to possess excellent performance as well as complex-
ity attributes. In terms of performance, in a 64 × 64 V-BLAST
system with 4-QAM, the proposed algorithm achieves an un-
coded BER of 10−3 at an SNR of just about 1 dB away from
AWGN-only SISO performance given by Q(

√
SNR). In terms

of coded BER, with a rate-3/4 turbo code at a spectral efficiency
of 96 bps/Hz the algorithm performs close to within about 4.5 dB
from theoretical capacity, which is remarkable in terms of both
high spectral efficiency as well as nearness to theoretical capac-
ity. Our simulation results show that the above performance is
achieved with a complexity of just O(NtNr) per symbol, where
Nt andNr denote the number of transmit and receive antennas.

I. INTRODUCTION
MIMO techniques have become popular in realizing spatial
diversity and high data rates through the use of multiple trans-
mit antennas [1]. We consider large MIMO systems with
tens of transmit and receive antennas, which are of interest
due to the high spectral efficiencies possible in such systems.
The key issues in realizing large MIMO systems include low-
complexity detection, channel estimation, and communica-
tion terminal size to accommodate large number of anten-
nas. We address the issue of low-complexity detection in
large MIMO systems here. More recent approaches to low-
complexity multiuser detection and MIMO detection involve
application of techniques from belief propagation [2], neu-
ral networks [3],[4], Markov chain Monte-Carlo methods [5],
probabilistic data association [6], etc. Detectors based on
these techniques have been shown to achieve an average per-
bit complexity linear in number of users, while achieving
near-optimal performance in large multiuser CDMA system
settings. These powerful techniques are increasingly being
adopted in MIMO detection. In [4], we presented a Hopfield
neural network based likelihood ascent search (LAS) algo-
rithm for large MIMO detection; we showed that the LAS
detector achieves near-AWGN SISO performance in a large
MIMO setting with hundreds of antennas, while performing
close to within 4.6 dB from theoretical capacity.
Our present work here on multistage LAS (M-LAS) detector
differs from that in [4] in two key aspects, namely, i) while
the LAS algorithm in [4] operates only on 1-symbol updates
in each search step, in the present M-LAS algorithm we de-
vise a low-complexity multiple symbol update strategy that
results in improved performance compared to that of LAS in
[4] with a small increase in complexity, and ii) in addition,
we present a method to generate soft bit values from the M-

LAS output vector to be fed as input to the turbo decoder; soft
bit values generation method is not available in [4]. Our sim-
ulation results show that the M-LAS detector achieves near
AWGN SISO performance even with tens of antennas, while
the LAS needed hundreds of antennas to achieve near AWGN
performance. This performance advantage of M-LAS over
LAS in the regime of tens of antennas has interesting prac-
tical implications, as tens of antennas can be easily placed
in moderately sized communication terminals (e.g., laptops)
enabling large MIMO systems to be viable in practice. With
an outer turbo code, the M-LAS is shown to perform close to
within about 4.5 dB from theoretical capacity.

II. SYSTEM MODEL
Consider a V-BLAST system with Nt transmit antennas and
Nr receive antennas, Nt ≤ Nr, where Nt symbols are trans-
mitted from Nt transmit antennas simultaneously. Let xc ∈
CNt×1 be the symbol vector transmitted. Each element of
xc is an M -PAM or M -QAM symbol. M -PAM symbols
take discrete values from {Am, m = 1, 2, · · · , M}, where
Am = (2m − 1 − M), and M -QAM is nothing but two
PAMs in quadrature. Let Hc ∈ CNr×Nt be the channel gain
matrix, such that the (p, q)th entry hp,q is the complex chan-
nel gain from the qth transmit antenna to the pth receive an-
tenna. Assuming rich scattering, we model the entries of Hc

as i.i.d CN (0, 1). Let yc ∈ CNr×1 and nc ∈ CNr×1 denote
the received signal vector and the noise vector, respectively,
at the receiver, where the entries of nc are modeled as i.i.d
CN (0, σ2). The received signal vector can then be written as

yc = Hcxc + nc. (1)
Let yc, Hc, xc, and nc be decomposed into real and imagi-
nary parts as follows:

yc = yI + jyQ, xc = xI + jxQ,

nc = nI + jnQ, Hc = HI + jHQ. (2)

Further, we define Hr ∈ R2Nr×2Nt , yr ∈ R2Nr×1, xr ∈
R

2Nt×1, and nr ∈ R
2Nr×1 as

Hr =

(
HI −HQ

HQ HI

)
,

yr = [yT
I yT

Q]T , xr = [xT
I xT

Q]T , nr = [nT
I nT

Q]T . (3)

Now, (1) can be written as
yr = Hrxr + nr. (4)

Henceforth, we shall work with the real-valued system in (4).
For notational simplicity, we drop subscripts r in (4) andwrite

y = Hx + n, (5)
whereH = Hr ∈ R2Nr×2Nt , y = yr ∈ R2Nr×1, x = xr ∈
R

2Nt×1 and n = nr ∈ R
2Nr×1. With the above real-valued
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system model, the real-part of the original complex data sym-
bols will be mapped to [x1, · · · , xNt ] and the imaginary-part of
these symbols will be mapped to [xNt+1, · · · , x2Nt ]. For M -
PAM, [xNt+1, · · · , x2Nt ] will be zeros sinceM -PAM symbols
take only real values. In the case of M -QAM, [x1, · · · , xNt ]

can viewed to be from an underlyingM -PAM signal set and
so is [xNt+1, · · · , x2Nt

]. Let Ai denote the M -PAM signal
set from which xi takes values, i = 1, 2, · · · , 2Nt. For ex-
ample, for 4-PAM, Ai = {−3,−1, 1, 3} for i = 1, 2, · · · , Nt

and Ai = {0} for i = Nt+1, · · · , 2Nt. Similarly, for 4-QAM,
after transforming the system into an equivalent real-valued
system, Ai = {1,−1} for i = 1, 2, · · · , 2Nt. Now, define a
2Nt-dimensional signal space S to be the Cartesian product
of A1 to A2Nt

. The ML solution vector, dML, is given by

dML =
arg min
d ∈ S

‖y − Hd‖2 =
arg min
d ∈ S

d
T
H

T
Hd − 2yT

Hd, (6)

whose complexity is exponential in Nt. We present a low-
complexity high-performance detection algorithm next.

III. PROPOSED M-LAS DETECTOR
The proposed M-LAS algorithm essentially consists of a se-
quence of likelihood-ascent search stages, where the likeli-
hood increases monotonically with every search stage. Each
search stage consists of several iterations, where we update
one symbol per iteration such that the likelihood monoton-
ically increases from one iteration to the next until a local
minima is reached. Upon reaching this local minima, we try
a 2-symbol and/or a 3-symbol update in order to further in-
crease the likelihood. If this likelihood increase happens, we
initiate the next search stage starting from this new point. The
algorithm terminates at the stage from where further likeli-
hood increase does not happen.
The M-LAS algorithm starts with an initial solution d(0),
given by d(0) = By, where B is the initial solution filter,
which can be a matched filter (MF) or zero-forcing (ZF) filter
or MMSE filter. The index m in d(m) denotes the iteration
number in a given search stage. The ML cost function after
the kth iteration in a given search stage is given by

C(k) = d(k)T

HT Hd(k) − 2yTHd(k). (7)

Each search stage would involve a sequence of 1-symbol up-
dates followed by a 2 and/or a 3 symbol update.

A. One-Symbol Update
Let us assume that we update the pth symbol in the (k + 1)th
iteration; p can take value from 1, · · · , Nt for M -PAM and
1, · · · , 2Nt forM -QAM. The update rule can be written as

d(k+1) = d(k) + λ(k)
p ep, (8)

where ep denotes the unit vectorwith its pth entry only as one,
and all other entries as zero. Also, for any iteration k, d(k)

should belong to the space S, and therefore λ
(k)
p can take only

certain integer values. For example, in case of 4-PAM or 16-
QAM

(
both have the same signal set Ap = {−3,−1, 1, 3}

)
,

λ
(k)
p can take values only from {−6,−4,−2, 0, 2, 4, 6}. Us-
ing (7) and (8), and defining a matrixG as

G
�
= HTH, (9)

we can write the cost difference ΔCk+1
p

�

= C(k+1) − C(k) as

ΔCk+1
p = λ(k)2

p (G)p,p − 2λ(k)
p z(k)

p ,

where hp is the pth column ofH, z(k) = HT (y−Hd(k)), z(k)
p

is the pth entry of the z(k) vector, and (G)p,p is the (p, p)th
entry of theG matrix. Also, let us define ap and l

(k)
p as

ap = (G)p,p, l(k)
p = |λ(k)

p |. (10)
With the above variables defined, we can rewrite (10) as

ΔCk+1
p = l(k)2

p ap − 2l(k)
p |z(k)

p | sgn(λ(k)
p ) sgn(z(k)

p ), (11)

where sgn(.) denotes the signum function. For the ML cost
function to reduce from the kth to the (k + 1)th iteration, the
cost difference should be negative. Using this fact and that ap

and l
(k)
p are non-negative quantities, we can conclude from

(11) that the sign of λ(k)
p must satisfy

sgn(λ(k)
p ) = sgn(z(k)

p ). (12)

Using (12) in (11), the ML cost difference can be rewritten as

F(l(k)
p )

�
= ΔCk+1

p = l(k)2

p ap − 2l(k)
p |z(k)

p |. (13)

For F(l
(k)
p ) to be non-positive, the necessary and sufficient

condition from (13) is that

l(k)
p <

2|z(k)
p |

ap

. (14)

However, we can find the value of l(k)
p which satisfies (14) and

at the same time gives the largest descent in the ML cost func-
tion from the kth to the (k + 1)th iteration (when symbol p is
updated). Also, l(k)

p is constrained to take only certain integer
values, and therefore the brute-force way to get optimum l

(k)
p

is to evaluate F(l
(k)
p ) at all possible values of l(k)

p . This would
become computationally expensive as the constellation size
M increases. However, for the case of 1-symbol update, we
could obtain a closed-form expression for the optimum l

(k)
p

that minimizes F(l
(k)
p ), which is given by

l
(k)
p,opt = 2

$
|z(k)

p |
2ap

’
, (15)

where �.� denotes the rounding operation. If the pth symbol
in d(k), i.e., d(k)

p , were indeed updated, then the new value of
the symbol would be given by

d̃(k+1)
p = d(k)

p + l(k)
p sgn(z(k)

p ). (16)

However, d̃(k+1)
p can take values only in the setAp, and there-

fore we need to check for the possibility of d̃
(k+1)
p being

greater than (M − 1) or less than −(M − 1). If d̃
(k+1)
p >

(M − 1), then l
(k)
p is adjusted so that the new value of d̃(k+1)

p

with the adjusted value of l(k)
p (using (16)) is (M − 1). Sim-

ilarly, if d̃
(k+1)
p < −(M − 1), then l

(k)
p is adjusted so that

the new value of d̃
(k+1)
p is −(M − 1). That is, if d̃

(k+1)
p >

(M − 1), the adjustment equation is

l(k)
p = l(k)

p − sgn(z(k)
p )

(
d̃(k+1)

p − (M − 1)
)
, (17)

and if d̃(k+1)
p < −(M − 1), the adjustment equation is

l(k)
p = l(k)

p − sgn(z(k)
p )

(
d̃(k+1)

p + (M − 1)
)
. (18)

ISIT 2008, Toronto, Canada, July 6 - 11, 2008

2013



Let l̃
(k)
p,opt be obtained from l

(k)
p,opt by using the adjustment

equations (17) and (18). It can be shown that if F(l
(k)
p,opt) is

non-positive, then F(l̃
(k)
p,opt) is also non-positive. We compute

F(l̃
(k)
p,opt), ∀ p = 1, · · · , 2Nt, Now, given F(l̃

(k)
p,opt), ∀ p, let

s =
arg min

p
F(l̃

(k)
p,opt). (19)

If F(l̃
(k)
s,opt) < 0, the update for the (k + 1)th iteration is

d(k+1) = d(k) + l
(k)
s,opt sgn(z(k)

s ) es, (20)

z(k+1) = z(k) − l
(k)
s,opt sgn(z

(k)
s )gs. (21)

where gs is the sth column ofG. The update in (21) follows
from the definition of z(k) in (10). If F(l̃

(k)
s,opt) ≥ 0, then

the 1-symbol update search terminates. The data vector at
this point is referred to as ‘1-symbol update local minima’.
After reaching the 1-symbol update local minima, we look for
a further decrease in the cost function by updating multiple
symbols simultaneously.

B. Why Multiple Symbol Updates?
The motivation for trying out multiple symbol updates can
be explained as follows. Let LK ⊆ S denote the set of data
vectors such that for any d ∈ LK , if a K-symbol update is
performed on d resulting in a vector d′, then ||y −Hd′|| ≥
||y −Hd||. We note that dML ∈ LK , ∀K = 1, 2, · · · , 2Nt,
because any number of symbol updates on dML will not de-
crease the cost function. We define another setMK =

⋂K

j=1 Lj .
Note that dML ∈ MK , ∀K = 1, 2, · · · , 2Nt, and M2Nt

=
{dML}, i.e., M2Nt

is a singleton set with dML as the only
element. Also, |MK+1| ≤ |MK |, K = 1, 2, · · · , 2Nt − 1.
For any d ∈ MK , K = 1, 2, · · · , 2Nt and d 	= dML, it can
be seen that d and dML will differ in K + 1 or more loca-
tions. Since dML ∈ MK , and |MK | decreases monotonically
with increasing K , there will be lesser non-ML data vectors
to which the algorithm can converge to for increasing K . In
addition, at moderate to high SNRs, dML = x with high
probability. Therefore, the separation between any d ∈ MK

and x will monotonically increase with increasing K with
high probability. Therefore, the probability of the noise vec-
tor n inducing an error would decrease with increasing K .
This indicates thatK-symbol updates with largeK could get
near to ML performance. However, the overall complexity
with up to K-symbol simultaneous updates allowed would
be of order O(NK

t ). So, in order to limit the complexity to
O(N2

t ) per symbol, we restrict the updates to K = 3. Since
only up to 3-symbol updates are considered in the proposed
algorithm, it follows that the algorithm would always con-
verge to a data vector in M3.

C. Two-Symbol Update
Let us consider 2-symbol update in this subsection. Let us
assume that we update the pth and qth symbols in the (k +
1)th iteration; p and q can take values from 1, · · · , Nt forM -
PAM and 1, · · · , 2Nt for M -QAM. The update rule for the
2-symbol update can be written as

d(k+1) = d(k) + λ(k)
p ep + λ(k)

q eq. (22)

For any iteration k, d(k) should belong to the space S, and
therefore λ

(k)
p and λ

(k)
q can take only certain integer values.

In particular, λ(k)
p ∈ A

(k)
p , and λ

(k)
q ∈ A

(k)
q . If Ap is the M -

PAM signal set, then A
(k)
p

�
= {x|(x + d

(k)
p ) ∈ Ap, x 	= 0},

and so is the definition for A
(k)
q . Here, d(k)

p refers to the pth
symbol in the data vector d(k). For example, both 4-PAM
and 16-QAM will have the same set Ap = {−3,−1, 1, 3},
and d

(k)
p is -1, then A

(k)
p = {−2, 2, 4}. Similar definitions can

be obtained for non-squareM -QAM signal sets as well.
If the symbols were updated as given by (22), then using (7),
we can write the cost difference functionΔCk+1

p,q (λ
(k)
p , λ

(k)
q )

�

=

C(k+1) − C(k) as
ΔCk+1

p,q (λ(k)
p , λ(k)

q ) = λ(k)2

p (G)p,p + λ(k)2

q (G)q,q

+ 2λ(k)
p λ(k)

q (G)p,q − 2λ(k)
p z(k)

p − 2λ(k)
q z(k)

q , (23)

where λ
(k)
p ∈ A

(k)
p and λ

(k)
q ∈ A

(k)
q . We can write this com-

pactly as (λ
(k)
p , λ

(k)
q ) ∈ A

(k)
p,q , whereA

(k)
p,q denotes the Cartesian

product of A
(k)
p and A

(k)
q . For a given p and q, in order to de-

crease the ML cost function, we would like to choose a pair
(λ

(k)
p , λ

(k)
q ) such thatΔCk+1

p,q given by (23) is negative. If mul-
tiple pairs exist for which ΔCk+1

p,q is negative, we choose the
pair which results in the most negative value of ΔCk+1

p,q .
Unlike 1-symbol update, for 2-symbol updateΔCk+1

p,q (λ
(k)
p , λ

(k)
q )

in (23) is a function of two discrete valued variables, and so we
do not have a closed-form expression for (λ(k)

p,opt, λ
(k)
q,opt). Con-

sequently, a brute-forcemethod is to evaluateΔCk+1
p,q (λ

(k)
p , λ

(k)
q )

over all possible values of (λ(k)
p , λ

(k)
q ), i.e.,

(λ
(k)
p,opt, λ

(k)
q,opt) =

arg min
(λ

(k)
p , λ

(k)
q ) ∈ A

(k)
p,q

ΔCk+1
p,q (λ(k)

p , λ(k)
q ). (24)

We denote the minimum value of theΔCk+1
p,q (λ

(k)
p , λ

(k)
q ) ob-

tained from the above minimization as

ΔCk+1
p,q,opt

�
= ΔCk+1

p,q (λ
(k)
p,opt, λ

(k)
q,opt). (25)

The computational complexity in (24) O(M2) for M -PAM
andO(M) forM -QAM.Approximatemethods can be adopted
to solve (24) using lesser complexity. One suchmethodwhich
can give closed-form expression for the solution is as follows.
The cost difference function in (23) can be rewritten as

ΔCk+1
p,q (λ(k)

p , λ(k)
q ) = Λ(k)T

p,q Fp,q Λ(k)
p,q − 2Λ(k)T

p,q z(k)
p,q , (26)

where Λ
(k)
p,q

�

= [λ
(k)
p λ

(k)
q ]T and z

(k)
p,q

�

= [z
(k)
p z

(k)
q ]T . Also, Fp,q ∈

R2×2 is the 2 × 2 sub-matrix of G containing only the el-
ements in the pth and qth rows and columns. Therefore,
(Fp,q)1,1

�

= (G)p,p, (Fp,q)1,2
�

= (G)p,q , (Fp,q)2,1
�

= (G)q,p,
and (Fp,q)2,2

�

= (G)q,q . Since ΔCk+1
p,q (λ

(k)
p , λ

(k)
q ) is a strictly

convex quadratic function (the Hessian Fp,q is always posi-
tive definite), a unique global minima exists, and is given by

Λ̃(k)
p,q = F−1

p,q z(k)
p,q . (27)

However, the solution given by (27) need not lie in A
(k)
p,q , and,

therefore, we first round-off the solution to the nearest ele-
ments in Ap,q, where Ap,q is the Cartesian product of Ap and
Aq. We do the rounding as follows

Λ̂(k)
p,q = 2

⌊
0.5Λ̃(k)

p,q

⌉
. (28)

In (28), the operation is done element-wise since Λ̃
(k)
p,q is a

vector. Further, let bΛ(k)
p,q

�

= [bλ(k)
p

bλ(k)
q ]T . It is possible that
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the solution Λ̂
(k)
p,q in (28) need not lie in A

(k)
p,q . This would

result in d
(k+1)
p /∈ Ap. For example, if Ap is M -PAM, then

d
(k+1)
p /∈ Ap if d

(k)
p + bλ(k)

p > (M − 1). In such cases, we
propose the following adjustment to λ̂

(k)
p :

bλ(k)
p =

(
(M − 1) − d

(k)
p , when bλ(k)

p + d
(k)
p > (M − 1)

−(M − 1) − d
(k)
p ,when bλ(k)

p + d
(k)
p < −(M − 1).

(29)

Similar adjustment is done for λ̂
(k)
q also. After these adjust-

ments, we are guaranteed that bΛ(k)
p,q ∈ A

(k)
p,q . We can therefore

evaluate the cost difference function value asΔCk+1
p,q (bλ(k)

p , bλ(k)
q ).

It is noted that the complexity of this approximate method
does not depend on the size of the setA(k)

p,q , i.e., it has constant
complexity. Through simulations, we have observed that this
approximation results in a performance close to that of the
brute-force method.
We define the optimum pairs, (r, s) from the brute-forcemethod
and (r̂, ŝ) from the approximate method, respectively, as

(r, s) =
arg min
(p, q)

ΔCk+1
p,q,opt, (30)

and
(r̂, ŝ) =

arg min
(p, q)

ΔCk+1
p,q (λ̂(k)

p , λ̂(k)
q ). (31)

The corresponding minimum values of the cost difference
functions are given by

ΔCk+1
opt

�
= ΔCk+1

r,s,opt, (32)
and

ΔĈk+1
opt

�
= ΔCk+1

r̂,ŝ (λ̂
(k)
r̂ , λ̂

(k)
ŝ ). (33)

The update rule for the z(k) vector is given by

z(k+1) = z(k) − (λ
(k)
r,optgr + λ

(k)
s,optgs) (34)

d(k+1) = d(k) + λ
(k)
r,opter + λ

(k)
s,optes (35)

for the brute-force method, and
z(k+1) = z(k) − (λ̂

(k)
r̂ gr̂ + λ̂

(k)
ŝ gŝ) (36)

d(k+1) = d(k) + (λ̂
(k)
r̂ er̂ + λ̂

(k)
ŝ eŝ) (37)

for the approximate method. A similar procedure can be de-
vised for the 3-symbol update also. The complexity of the
M-LAS algorithm can be shown to be O(NtNr) per symbol
(we do not present the details of the 3-symbol update and the
complexity analysis here due to page limit).

IV. BER PERFORMANCE OF THE M-LAS DETECTOR

A. Uncoded M-LAS Performance
Performance as a function of increasing Nt=Nr: In Fig. 1,
we present the uncoded BER performance of the proposed
M-LAS detector for different values of Nt = Nr and 4-QAM
obtained through simulations. MMSE filter is used as the
initial filter. We label the M-LAS detector with MMSE ini-
tial filter as ‘MMSE-MLAS’ in all the figures. MMSE filter
(without M-LAS) performance as well as AWGN-only SISO
performance are also plotted for comparison. In generating
the plots in Figs. 1 and 2, perfect channel knowledge is as-
sumed at the receiver. From Fig. 1, it can be observed that the
performance of the proposed MMSE-MLAS improves with
increasing Nt = Nr, such that forNt = Nr = 64 it achieves
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Fig. 1. Uncoded BER performance of the proposed M-LAS detector for
different values of Nt = Nr . MMSE initial filter. 4-QAM. BER improves
with increasing Nt = Nr .
an uncoded BER of 10−3 at just 1 dB away from the AWGN-
only SISO performance. With Nt = Nr = 128 and 256, the
MMSE-MLAS performancemoves even closer to the AWGN
performance (to within 0.5 dB). This is an impressive result
which illustrates the ability of the proposedMMSE-MLAS to
achieve single-antenna AWGN performance even in a large
multi-antenna setting, essentially removing ‘almost’ all the
spatial interference from other antennas.
M-LAS versus LAS: We further point out that the LAS de-
tector we presented in [4] also achieves near-AWGN perfor-
mance, but only when the number of antennas are very large
(of the order of several hundreds). Whereas, a key advantage
of the present M-LAS detector is that it is able to achieve
near-AWGN performance even with tens of antennas (e.g.,
Nt = Nr = 64). This observation is illustrated in Fig. 2,
where we compare the performance of the MMSE-MLAS
with that of the MMSE-LAS in [4] (i.e., LAS with MMSE
initial filter), for Nt = Nr = 64, 32 and 4-QAM. It can
be seen that MMSE-MLAS outperforms MMSE-LAS. This
performance improvement is due to the 2- and 3-symbol up-
dates performed in M-LAS, in addition to the 1-symbol up-
dates performed in LAS. As pointed out earlier, the 2- and 3-
symbol updates inM-LAS increase the complexity a little, but
the average per-symbol complexity (defined as total complex-
ity divided by the total number of symbols, Nt) still remains
as O(NtNr). The performance advantage of M-LAS over
LAS in the regime of tens of antennas has interesting prac-
tical implications, as tens of antennas can be easily placed
in moderately sized communication terminals (e.g., laptops)
enabling large MIMO systems to be viable in practice.

B. Turbo Coded M-LAS Performance
We evaluated the coded BER performance of the M-LAS de-
tector without and with channel estimation errors. In [4], hard
decision data output from the LAS detector (i.e., ±1 valued
data output vector) was fed to the turbo decoder. However,
performance can be improved if soft output values can be
generated and used instead. Consequently, here we propose a
method for generating soft output from M-LAS.
Soft Bit Values Generation: We generate soft values at the
M-LAS output for all the individual bits that constitute the
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modulation symbols (M -PAM/M -QAM) mounted on all the
transmit antennas as follows. These soft output values are fed
as inputs to the turbo decoder. Let d = [bx1, bx2, · · · , bx2Nt ], x̂i ∈
Ai denote the detected output vector from the M-LAS algo-
rithm. Let x̂i map to the bit vector bi = [bi,1, bi,2, · · · , bi,Ki

]T ,
where Ki = log2 |Ai|, and bi,j ∈ {+1,−1}, i = 1, 2, · · · , 2Nt

and j = 1, 2, · · · , Ki. Let b̃i,j ∈ R denote the soft value
for the jth bit of the ith symbol. Given d, we need to find
b̃i,j , ∀ (i, j).
Now, define vectors b

j+
i and b

j−

i to be the bi vector with its
jth entry forced to +1 and -1, respectively. Let bj+

i and b
j−
i

demap to xj+
i and xj−

i , respectively, where xj+
i , xj−

i ∈ Ai.
Also, define vectors d

j+
i and d

j−
i to be the d vector with its

ith entry forced to xj+
i and xj−

i , respectively. Using the above
definitions, we obtain the soft output value for the jth bit of
the ith symbol as

b̃i,j =
‖y − Hd

j−

i ‖2 − ‖y − Hd
j+
i ‖2

‖hi‖2
. (38)

The RHS of the above equation can be efficiently computed
in terms of the known variables z and G as follows. Since
d

j+
i and d

j−
i differ only in the ith entry, we can write

d
j−
i = d

j+
i + λi,jei. (39)

Since we know d
j−
i and d

j+
i , we know λi,j from (39). Sub-

stituting (39) in (38), we can write
b̃i,j ‖hi‖2 = ‖y − Hd

j+
i − λi,jhi‖2 − ‖y − Hd

j+
i ‖2

= λ
2

i,j‖hi‖2 − 2λi,jh
T
i (y − Hd

j+
i ) (40)

= −λ
2

i,j‖hi‖2 − 2λi,jh
T
i (y −Hd

j−
i ). (41)

If bi,j = 1, then d
j+
i = d and substituting this in (40) and

dividing by ‖hi‖2, we get

b̃i,j = λ
2

i,j − 2λi,j

zi

(G)i,i

. (42)

On the other hand, if bi,j = −1, then d
j−
i = d and substitut-

ing this in (41) and dividing by ‖hi‖2, we get

b̃i,j = −λ
2

i,j − 2λi,j

zi

(G)i,i

. (43)

It is noted that z and G are already available upon the termi-
nation of the M-LAS algorithm, and hence the complexity of
computing b̃i,j in (42) and (43) is constant. Hence, the over-
all complexity in computing the soft values for all the bits is
O(Nt log2 M). We also see from (42) and (43) that the magni-
tude of b̃i,j depends upon λi,j . For large size signal sets, the
possible values of λi,j will also be large in magnitude. We
therefore have to normalize b̃i,j for the turbo decoder to func-
tion properly. It has been observed through simulations that
normalizing b̃i,j by

(λi,j

2

)2 resulted in good performance.
Coded BER Results: Figure 3 shows the rate-3/4 turbo coded
BER of the M-LAS detector forNt = Nr = 64, 128, 4-QAM
and MMSE initial vector. We have also shown the minimum
SNR required to achieve theoretical capacity for aMIMO sys-
tem with perfect CSI at the receiver, given by [1]

C = E
h
log det

“
INr + (γ/Nt)HH

H
”i

, (44)

where γ is the average SNR per receive antenna. With soft
decision inputs to the turbo decoder, the performance im-
proves by about 1 dB compared to hard decision inputs. With
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Fig. 2. Comparison of M-LAS and LAS performance in the tens of anten-
nas regime. Nt = Nr = 64, 32. MMSE initial filter. 4-QAM. M-LAS
outperforms LAS.
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Fig. 3. Turbo coded BER performance of the proposed M-LAS detector for
Nt = Nr = 64 and 128. MMSE initial filter. 4-QAM. Rate-3/4 turbo code.
M-LAS detector performs to within about 4.5 dB from theoretical capacity.

perfect channel knowledge, the M-LAS performs close to
within about 4.5 dB from theoretical capacity. With a Gaus-
sian channel estimation error model, the performance loss in-
curred is only less than a dB for 2% estimation error variance.
We note that we have also adopted the M-LAS algorithm to
decode full-rate non-orthogonal STBCs from division alge-
bras [7], achieving near-capacity performance [4].
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