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lishes that issues related to placement of many antennas and
RF/IF chains can be solved in large aperture communication
terminals like set-top boxes/laptops), large non-orthogonal
STBCs (e.g., 16 x 16 STBC from CDA) in combination with
large dimension near-MAP decoding using PDA can enable
communications at increased spectral efficiencies ofthe order
of tens of bps/Hz (note that current standards achieve only
< 10 bps/Hz using only up to 4 transmit antennas).

PDA, originally developed for target tracking, is widely used
in digital communications [5]-[10]. Particularly, PDA algo
rithm is a reduced complexity alternative to the a posteriori
probability (APP) decoder/detector/equalizer. Near-optimal
performance has been demonstrated for PDA-based multiuser
detection in CDMA systems [5]-[7]. PDA has been used in
the detection of V-BLAST signals with small number of di
mensions [8]-[10]. To our knowledge, PDA has not been re
ported for decoding non-orthogonal STBes with hundreds of
dimensions so far. Our new contributions in this paper are:

• We adapt the PDA algorithm for decoding non-orthogo
nal STBCs with large dimensions. With i.i.d fading and
perfect channel channel state information at the receiver
(CSIR), the algorithm achieves near-SISO AWGN un
coded BER and near-capacity coded BER (within 5 dB
ofthe theoretical capacity) for 12 x 12 STBC from CDA,
4-QAM, rate-3/4 turbo code, and 18 bps/Hz.

• Relaxing the perfect CSIR assumption, we report results
with a training based iterative PDA decoding/channel es
timation scheme. The iterative scheme is shown to be
effective with large coherence times.

• Relaxing the i.i.d fading assumption by adopting a spa
tially correlated MIMO channel model (proposed by Ges
bert et al in [11]), we show that the performance loss due
to spatial correlation is alleviated by using more receive
spatial dimensions for a fixed receiver aperture.

• Finally, the performance of the PDA algorithm is com
pared with that of the likelihood ascent search (LAS)
algorithm we recently presented in [12]-[14]. The PDA
algorithm is shown to perform better than the LAS al
gorithm at low SNRs for higher-order QAM (e.g., 16
QAM), and in the presence of spatial correlation.

II. SYSTEM MODEL

Consider a STBC MIMO system with multiple transmit and
receive antennas. An (n,p, k) STBC is represented by a ma
trix X, E Cn x p

, where nand p denote the number of transmit
antennas and number of time slots, respectively, and k de
notes the number of complex data symbols sent in one STBC
matrix. The (i, j)th entry in X, represents the complex num
ber transmitted from the ith transmit antenna in the jth time
slot. The rate of an STBC is k. Let N; and N, == n denote

p
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I. INTRODUCTION

Multiple-input multiple-output (MIMO) systems that employ
non-orthogonal space-time block codes (STBC) from cyclic
division algebras (CDA) for arbitrary number of transmit an
tennas, Ni, are quite attractive because they can simultane
ously provide both full-rate (i.e., N, complex symbols per
channel use, which is same as in V-BLAST) as well as full
transmit diversity [1]. The 2 x 2 Golden code is a well known
non-orthogonal STBC from CDA for 2 transmit antennas [2].
High spectral efficiencies of the order of tens of bps/Hz can
be achieved using large non-orthogonal STBCs. For exam
ple, a 16 x 16 STBC from CDA has 256 complex symbols
in it with 512 real dimensions; with 16-QAM and rate-3/4
turbo code, this system offers a high spectral efficiency of 48
bps/Hz. Decoding of non-orthogonal STBCs with such large
dimensions, however, has been a challenge. Sphere decoder
and its low-complexity variants are prohibitively complex for
decoding such STBCs with hundreds of dimensions.

In this paper, we present a probabilistic data association (PDA)
based algorithm for decoding large non-orthogonal STBCs
from CDA. Key attractive features of this algorithm are its
low-complexity and near-MAP performance in systems with
large dimensions (e.g., hundreds of dimensions). While cre
ating hundreds ofdimensions in space alone (e.g., V-BLAST)
requires hundreds of antennas, use ofnon-orthogonal STBCs
from CDA can create hundreds of dimensions with just tens
of antennas (space) and tens of channel uses (time). Given
that 802.11 smart WiFi products with 12 transmit antennas at
2.5 GHz are now commercially available [4]1 (which estab-

112 antennas in these products are now used only for beamfonning.
Single-beam multi-antenna approaches can offer range increase and inter
ference avoidance, but not spectral efficiency increase.
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Abstract-Non-orthogonal space-time block codes (STBC) from
cyclic division algebras (CDA) are attractive because they can si
multaneously achieve both high spectral efficiencies (same spec
tral efficiency as in V-BLAST for a given number of transmit
antennas) as well as full transmit diversity. Decoding of non
orthogonal STBCs with hundreds of dimensions has been a chal
lenge. In this paper, we present a probabilistic data associa
tion (PDA) based algorithm for decoding non-orthogonal STBCs
with large dimensions. Our simulation results show that the
proposed PDA-based algorithm achieves near SISO AWGN un
coded BER as well as near-capacity coded BER (within 5 dB of
the theoretical capacity) for large non-orthogonal STBCs from
CDA. We study the effect of spatial correlation on the BER, and
show that the performance loss due to spatial correlation can be
alleviated by providing more receive spatial dimensions. We re
port good BER performance when a training-based iterative de
coding/channel estimation is used (instead of assuming perfect
channel knowledge) in channels with large coherence times. A
comparison of the performances of the PDA algorithm and the
likelihood ascent search (LAS) algorithm (reported in our recent
work) is also presented.
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Henceforth, we work with the real-valued system in (7). For
notational simplicity, we drop subscripts r in (7) and write

where H' = H, E IR 2 N
r P X 2 k , Y = Yr E IR 2 N

r P X \ X = x- E

A2 k X l, and n = n- E IR 2 N
r p X l . We assume that the channel

gains are known at the receiver but not at the transmitter.

transmit antennas n is given by the matrix in Eqn.(9.a) given
at the bottom of this column. In (9.a), W n = ej~Ti, j = H,
and du,v, 0 :s; u, v :s; n - 1 are the n 2 data symbols from

a QAM alphabet. When 8 == eV5 j and t == ej , the STBC
in (9.a) achieves full transmit diversity (under ML decoding)
as well as information-Iosslcssness [1]. When 8 == t == 1,
the code ceases to be of full-diversity (FD), but continues to
be information-lossless (ILL). High spectral efficiencies with
large n can be achieved using this code construction. How
ever, since these STBCs are non-orthogonal, MAP/ML detec
tion gets increasingly impractical for large n. Consequently, a
key challenge in realizing the benefits ofthese large STBCs in
practice is that of achieving near-MAP/ML performance for
large n at low decoding complexities. The PDA-based decod
ing algorithm we present in the following section essentially
addresses this challenge.

III. PROPOSED PDA-BASED DECODING
In this section, we present the proposed PDA-based decod
ing algorithm for square QAM. The applicability of the al
gorithm to rectangular QAM is straightforward. In the real
valued system model in (8), each entry of x belongs to a
VM-PAM constellation, where M is the size of the original
square QAM constellation. Let b~O), b~l), ... , b~q-l) denote

the q == log2 (VM) constituent bits of the ith entry Xi of x.
We can write the value of each entry of x as a linear combi
nation of its constituent bits as

q-l

Xi L2jb~j), i==O,1,···,2k-1. (9)
j=O

Let b E {+1, -1 }2qkX 1, defined as

b ~ [b(O) ... b(q-l) b(O) ... b(q-l) ... b(O) ... b(q-l)] T (10)
- 0 0 1 1 2k-l 2k-l'

denote the transmitted bit vector. Defining c ~ [20 21
... 2q

-
1

],

we can write x as
x (12k Q9c)b. (11)

Using (11), we can rewrite (8) as

Y H'(12k Q9 c) b + ll, (12)
'-v--"

~H
where H E IR.2N r p x 2qk is the effective channel matrix. The
MAP estimate of bit b~j) is given by

b~j) arg max (b~j) == a I H) (13)
1, a E {±1} P 1, Y"

whose computational complexity is exponential in k. Our
goal is to obtain b, an estimate of b, at low complexities. For
this, we iteratively update the statistics of each bit of b, as
described in the following subsection, for a certain number of
iterations, and hard decisions are made on the final statistics
to get b.

A. Iterative Procedure

The algorithm is iterative in nature, where 2qk statistic up
dates, one for each of the constituent bits, are performed in
each iteration. We start the algorithm by initializing the

(3)

(6)

(8)

(5)

(7)

H'X+ll,Y

Yr

where Ye E ce N r P X 1 == vee (Y,'), He E ce N r P X Ntp == (Ip Q9

He), r, is p X P identity matrix, a~i) E ce N t p xl == vee (A~i) ),
n., E ce N r P X 1 == vee (N e), x., E ce k x 1 whose ith entry is

the data symbol x~i), and He E ceNrpxk whose ith column

is He a~i), i == 1,2,··· , k. Each element of x., is an M
PAMIM-QAM symbol. M-PAM symbols take discrete val-

6.
ues from A = {a q , q = 1,··· ,M}, where aq == (2q -1- M),
and M -QAM is nothing but two PAMs in quadrature. Let Ye,
He, x.; n., be decomposed into real and imaginary parts as:

Yc=YI+jYQ, Xc=XI+jXQ,

n., = n r + jnQ, H; = HI + jHQ. (4)

Further, we define H, E IR.2N r P X 2k , Yr E IR.2N r P X 1, x., E
A 2k x 1, and n; E IR.2N r P X 1 as

rr, == (HI - H Q
) s- == [yf y~]T,

H Q HI '

[ T T]T [T T]Tx., == X I XQ ' n; == II I llQ .

Now, (3) can be written as

the number of receive and transmit antennas, respectively.
Let He E ceNrXNt denote the channel gain matrix, where
the (i, j)th entry in He is the complex channel gain from the
jth transmit antenna to the ith receive antenna. We assume
that the channel gains remain constant over one STBC ma
trix duration. Assuming rich scattering, we model the entries
of He as CN(O,1). The received space-time signal matrix,
Y, E C N r X P , can be written as

Y, == HeXe + N e, (1)

where NeE ceNr xp is the noise matrix at the receiver and
its entries are modeled as i.i.d CN(O, (J"2 == N~Es), where E;
is the average energy of the transmitted symbols, and I is the
average received SNR per receive antenna [3], and the (i, j )th
entry in Y, is the received signal at the ith receive antenna in
the jth time-slot. Consider linear dispersion STBCs, where
X, can be written in the form [3]

k

x, L X~i) A~i) , (2)
i=l

where x~i) is the ith complex data symbol, and A~i) E ceNt xp

is its corresponding weight matrix. The received signal model
in (1) can be written in an equivalent V-BLAST form as

k
'"'" (i)....... (i) ~Yc = L...JXc (Hcac )+nc = Hcxc+nc,
i=l

L~==-Ol do,i t
i

L~==-Ol dl,i t
i

L~==-Ol d2,i t
i

A. High-rate Non-orthogonal STBCsfrom CDA

We focus on the detection of square (i.e., n == p == Nt), full
rate (i.e., k == pn == Nl), circulant (where the weight ma-

trices A~i) 's are permutation type), non-orthogonal STBCs
L~==-Ol d n - 2 , i t

i

from CDA [1], whose construction for arbitrary number of L~==-Ol dn-l,i t i

1999

s L~==-Ol dn-l,i w~ t
i

L~==-Ol do,i w~, t
i

L~==-Ol dl, i w~ t i

L~==-Ol d n-3,i w~ t
i

L~==-Ol d n - 2 , i W~t t
i

s L:~Ol dl,i w~n-l)i t'i

s L~==-Ol d2,i w~n-l)i t i

s L~==-Ol d3,i w~n-l)i t i

(9.a)
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(24)

where j+ ( j+) j+ ( j+)
TJ 4Pi 1 - Pi - 4Pi,old 1 - Pi,old' (25)

where p{+ and P{~ld are the new (i.e., after the update in

(22)) and old (before the update) values, respectively. It can
be seen that both the numerator and denominator in the 2nd
term on the RHS of (24) can be computed in O(N;p2) com
plexity. Therefore, the computation ofthe new D-1 using the
old D-1 can be done in O(N;p2) complexity.

Computation of(C{)-l: Using (23) and (19), we can write
C{ in terms of D as

j j+ j+ TC i D - 4Pi (1 - Pi ) hqi+j hqi+j . (26)

We can compute (C{)-l from D-1 at a reduced complexity
using the matrix inversion lemma, which states that

2k-l q-l

D ~ a2I2NrP +L L hql+mh~+m4p;n+(1 - p;n+). (23)
l=O m=O

At the start of the algorithm, with p{+ and p~j) initialized to
0.5 for all i, j, D becomes (J2I 2N r p + HHT .

Computation ofD-1: We note that when the statistics of b~j)
is updated using (22), the D matrix in (23) also changes. A
straightforward inversion of this updated D matrix would re
quire O(N~p3) complexity. However, we can obtain the D-1

from the previously available D-1 in O(N;p2) complexity as

follows. Since the statistics ofonly b~j) is updated, the new D
matrix is just a rank one update of the old D matrix. There
fore, using the matrix inversion lemma, the new D-1 can be
obtained from the old D-1 as

This completes one iteration of the algorithm; i.e., each it
eration involves the computation of a~j) and equations (16),
(17), (19), (21), (14), and (22) for all i, j. The updated val-
ues of P(b~j) == + 11y) and P(b~j) == -lly) in (22) for all
i, j are fed back as a priori probabilities to the next iteration 2 .

The algorithm terminates after a certain number of such iter
ations. At the end of the last iteration, hard decision is made
on the final statistics to obtain the bit estimate b~j) as + 1 if

A~j) 2:: 1, and -1 otherwise. In coded systems, A~j) 's are fed
as soft inputs to the decoder.

B. Complexity Reduction

The most computationally expensive operation in computing
f3~j) is the evaluation of the inverse of the covariance matrix,
C{, of size 2NrP x 2NrP which requires O(N~p3) complexity,
which can be reduced as follows. Define matrix D as

f3i = e-((Y-J1{+)T(c{)-l(Y-J1{+)-(Y-J1{-)T(c{)-l(Y-J1{-)). (21)

Using a~j) and /3;j), A~j) is computed using (14). Now, using

the value of A~j), the statistics of b~j) is updated as follows.

and Using P(b~j) == +lly) + P(b~j) == -lly) == 1, we have

. A(j). 1
P(b~J) = +lly) = i. P(b~J) = -lly) = .. (22)

z 1 + A~J) 'z 1 + A~J )
z z

2The computation of the statistics of a current bit in an iteration makes
use of the newly computed statistics of its previous bits (as per the ordered
sequence of statistic updates) in the same iteration and the statistics of its
next bits available from the previous iteration.

2000

(16)

(14)

P(Ylb~j) == ±1)

y

2k-l q-l

[n+L L h q1+m(b;m)-2P;"++1)r}· (18)
l=O 7n=O

m=f-q(i-l)+j

Assuming independence among the constituent bits, we can
simplify C{ in (18) as

2k-l q-l

C{ = a2I2NrP + L L h ql+m h~+m 4p;n+(1 - p;n+). (19)
l=O 7n=O

m=f-q(i-l)+j

Using the above mean and covariance expressions, we can
write the distribution of y given b~j) == ±1 as

e: (y-J-t{±)T (c{) -1 (y-J-t{±)
(20)

(21r)Nr PIC{ I ~

Using (20), /31 can be written as

2k-l q-l

h qi+j + L L h ql+m (2p;n+ - 1).
l=O 7n=O

m=f-q(i-l)+j

Similarly, we can write J-t{- as
2k-l q-l

JL{- = -hqi+j +L L h ql+m(2p;n+ - 1) = JL{+ - 2h qi+j . (17)
l=O 7n=O

m=f-q(i-l)+j

.6.~
=n

where Ii E IR2N
r P X 1 is the interference plus noise vector.

To calculate /3;j), we approximate the distribution of Ii to be

Gaussian, and hence y is Gaussian conditioned on b~j). Since
there are 2qk - 1 terms in the double summation in (15), this
Gaussian approximation gets increasingly accurate for large
N, (note that k == Nl). Since a Gaussian distribution is fully
characterized by its mean and covariance, we evaluate the
mean and covariance of y given b~j) == + 1 and b~j) == -1.

For notational simplicity, let us define p{+ ~ P(b~j) == + 1)

andp{- ~ P(b~j) == -1). It is clear that p{+ + p{- == 1.

Let J-t{+ ~ IE(Ylb~j) == +1) and J-t{- ~ IE(Ylb~j) == -1),
where IE(.) denotes the expectation operator. Now, from (15),
we can write J-t{+ as

a priori probabilities as P(b~j) = +1) = P(b~j) = -1) = 0.5,
Vi == 0,· .. ,2k -1 andj == 0,· .. ,q -1. In an iteration, the
statistics of the bits are updated sequentially, i.e., the ordered
sequence ofupdates in an iteration is {b6°) , ,b6q

-
1

) , ,

b~~_l , ... b~~-=-12}. The steps involved in each iteration of the
algorithm are derived as follows. The likelihood ratio of bit
b~j) in an iteration, denoted by A~j), is

AU) f'.. P(ylb~j) = +1) P(b~j) = +1)
z P(ylb~j) = -1) P(b~j) = -1) .

, J "'--v--""

~ f3;j) ~ Q~j)

Denoting the tth column ofH by h., we can write (12) as
2k-l q-l

hqi+j b~j) + L L hql+m bjm) + n, (15)
l=O 7n=O

m#q(i-l)+j

Next, the 2NrP x 2NrP covariance matrix C{ ofy given b{ is

lE{ [n ~I:l ~ hq1+m(b;m) - 2p;"+ + 1)]
l=O 7n=O

m=f-q(i-l)+j
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Fig, 2, Comparison of uncoded BER ofPDA and LAS algorithms in decod
ing 4 x 4, 8 x 8, 16 x 16 ILL STBCs. N t = N r , 16-QAM. With I6-QAM,
PDA performs beller than LAS at low SNRs.

Fig. I . Comparison of uncodcd BER ofPDA and LAS algorithms in dccod
ing 4 x 4,8 x 8, 16 x 16 ILL STBCs. N , = N«, 4-QAM. BER improves
for increasing STBC sizes. With 4-QAM, PDA and LAS algorithms achieve
almost same performance.

from S1S0 AWGN performance is achieved at 10- 3 un
coded BER in decoding 16 x 16 STBC from CDA having
512 real dimensions, and this illustrates the ability of the
PDA algorithm to achieve excellent performance at low
complexities in large non-orthogonal STBC MIMO.

• with 4-QAM, PDA and LAS algorithms achieve almost
the same performance.

PDA versus LAS performance with 16-QAM: Fig. 2 presents
an uncoded BER comparison between PDA and LAS algo
rithms in decoding ILL STBCs from CDA with N, = N r
and 16-QAM under perfect CSIR and LLd fading. It can be
seen that the PDA algorithm performs better at low SNRs than
the LAS algorithm. For example , with 8 x 8 and 16 x 16
STBCs, at low SNRs (e.g., < 25 dB for 16 x 16 STBC), PDA
algorithm performs better by about 1 dB compared to LAS
algorithm at 10- 2 uncoded BER.

Turbo coded BER performance of PDA: Figure 3 shows the
rate-3/4 turbo coded BER ofthe PDA algorithm under perfect
CSIR and LLdfading for 12 x 12 ILL STBC with N, = N; = 12
and 4-QAM, which corresponds to a spectral efficiency of 18

2001

(29)

30 ur simulation results showed that the performance of FD-ILL (8 =

eV5j , t = e- j ) and ILL (8 = t = 1) STBCs with PDA decoding were
almost the same. Here, we present the performance of ILL STBCs.

(P + QRS)-l = p - l _ P -lQ(R- 1 + Sp- lQ) - ISp- l . (27)

Substituting P2 N rPX2 N rp = D, Q2N rPXl = hqi+j , R 1X1 =

- 4P:{+ (1 - p:{+), and S lX2N ,p = h~+j in (27), we get

D -1h · · h T . D - 1
(Cj)-l = D - 1 _ qt +J qt+J (28)

t h T D r ' h l '
qi+j qi+j - 4p; +(1 -p{+)

which can be computed in O(N;p2 ) complexity.

Computation ofJ.L;+and J.L;-: Computation of f3;j ) involves

the computation of J.L;+and J.Lt also. From (17), it is clear
that J.Lt can be computed from J.L;+ with a computational
overhead ofonly O(NrP). From (16), it can be seen that com
puting J.L;+would require O(qNrpk) complexity. However,
this complexity can be reduced as follows. Define vector u as

2k -l q-l

U ~ L L hql+m(2Pr'+ - 1).
l=O m =O

Using (16) and (29), we can write

"+ ( "+)J.Li u + 2 1 - Pi hqi+j . (30)

u can be computed iteratively at O(NrP) complexity as fol

lows. When the statistics of b1j
) is updated, we can obtain the

new u from the old u as

( '+ "+ )u f- U + 2 Pi - Pi,old hni+j, (31)

whose complexity is O(NrP). Hence, the computation of
J.L;+and J.Lt needs O(NrP) complexity.

C. Overall Complexity

We need to compute HHT at the start of the algorithm. This
requires O(qkN;p2) complexity. So the computation of the
initial D - 1 requires O(qkN ;p2) + O(N;p3). Based on the
complexity reduction in Sec. lII-B, the complexity in updat
ing the statistics of one constituent bit is O(N;p2 ) . So, the
complexity for the update of all the 2qk constituent bits in
an iteration is O(qkN;p2). Since the number of iterations is
fixed, the overall complexity ofthe algorithm is O(qkN;p2)+
O(N ;p3). For N, = N», since there are k symbols per STBC
and q bits per symbol, the overall complexity per bit is O(p2 N f).

IV. R ES ULTS A ND DISC USSIONS

In this section, we present the simulated uncodedlcoded BER
performance ofthe PDA algorithm in decoding non-orthogonal
STBCs from CDA3 . Number of iterations in the PDA algo
rithm is set to m = 10 in all the simulations.

PDA versus LAS performance with 4-QAM: In Fig. 1, we
plot the uncoded BER of the PDA algorithm as a function
of average received SNR per receive antenna, "Y, in decoding
4 x 4, 8 x 8, 16 x 16 ILL STBCs from CDA with N t = N r

and 4-QAM. Perfect CSIR and i.i.d fading are assumed. For
the same settings, the performance of the LAS algorithm in
[12]-[14] with MMSE initial vector are also plotted for com
parison. From Fig. 1, it is seen that

• the BER performance of PDA algorithm improves and
approaches SISO AWGN performance as N, = N; is
increased; e.g., performance close to within about 1 dB
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Fig. 3. Turbo coded BER of the PDA algorithm in decoding 12 x 12 ILL
STBC with N , = N; = 12, 4-QAM, rate-3/4 turbo code , 18 bps/Hz and
m = 10 for i) perfect CS IR, and ii) estimated CSIR using 2 iterations be
tween PDA decoding/channel estim ation. With perfect CSIR, PDA performs
close to within 5 dB f rom capacity. With estimated CSIR, performance ap
proaches to that with perfect CSIR with increas ing coherence times.

bps/Hz. The theoretical minimum SNR required to achieve
18 bps/Hz spectral efficiency on a N t =Nr =1 2 MIMO channel
with perfect CSIR and i.i.d fading is 4.3 dB (obtained through
simulation of the ergodic capacity formula [3]). From Fig. 3,
it is seen that the PDA algorithm is able to achieve vertical fall
in coded BER within about 5 dB from theoretical minimum
SNR, which is a good nearness to capacity performance.

Iterative Decoding/Channel Estimation: We relax the perfect
CSIR assumption by considering a training based iterative
PDA decod ing/channel estimation scheme. Transmission is
carried out in frames, where one N, x N, pilot matrix (for
trainin g purposes) followed by Nd data STBC matric es are
sent in each frame. One frame length , T, (taken to be the
channel coherence time) is T = (Nd + l) N t channel uses.
The propos ed scheme works as follows : i) obtain an MMS E
estimate of the channel matrix during the pilot phase, ii) use
the estimated channel matrix to decode the data STBC ma
trices using PDA algorithm, and iii) iterate between chan
nel estimation and PDA decoding for a certain number of
times. For the 12 x 12 ILL STBC from CDA, in addition
to perfect CSIR performance, Fig. 3 also shows the perfor
mance with CSIR estimated using the propo sed iterative de
coding/channel estimation scheme for Nd = 1 and Nd = 8.
Two iterations between decod ing and channel estimation are
used. With Nd = 8 (which corresponds to large coherence
times, i.e., slow fading) the BER and bps/Hz with estimated
CSIR get closer to those with perfect CSIR.

Effect of Spatial MIMO Correlation: In Figs. 1 to 3, we as
sumed i.i.d fading . But spatial correlation at transmi t/receive
antennas and the structure of scattering and propagation en
vironm ent can affect the rank structure ofthe MIMO channel
resulting in degraded performance. We relaxed the i.i.d, fad
ing assumption by considering the correlated MIMO chan
nel model in [11], which takes into account carrier frequency
(fc ), spacing between antenna elements (dt , dr), distance be
tween transmit and receive antenna s (R) , and scattering envi-

Fig. 4. Effect of spatial correlation on the performance ofP DA in decod ing
12 x 12 ILL STBC from CDA Nt = 12, n; = 12,18, 16-QAM, rate
3/4 turbo code, 36 bps/Hz. Correlated chann el parameters: Ie = 5 GHz,
R = 500 m, S = 30, D t = D r = 20 m, (h = Or = 90° , N i.d: = 72
cm, dt = d-, Spatial correlation degrades performance; using N; > N;
alleviates the this performance loss.

ronment. In Fig. 4, we plot the BER of the PDA algorithm
in decoding 12 x 12 ILL STBC from CDA with perfect CSIR
in i) LLd. fading, and ii ) correlated MIMO fading model in
[11]. It is seen that , compared to i.i.d fading, there is a loss in
diversity order in spatial correlation for N, = N; = 12; further,
use of more receive antennas (N; = 18, N, = 12) alleviates
this loss in performance. The proposed PDA algorithm can
be used to decode perf ect codes of large dimen sions as well.
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