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Abstract—In this paper, we propose a low-complexity algo-
rithm based on Markov chain Monte Carlo (MCMC) technique
for signal detection on the uplink in large scale multiuser multiple
input multiple output (MIMO) systems with tens to hundreds of
antennas at the base station (BS) and similar number of uplink
users. The algorithm employs a randomized sampling method
(which makes a probabilistic choice between Gibbs sampling and
random sampling in each iteration) for detection. The proposed
algorithm alleviates the stalling problem encountered at high
SNRs in conventional MCMC algorithm and achieves near-
optimal performance in large systems with M -QAM. A novel
ingredient in the algorithm that is responsible for achieving near-
optimal performance at low complexities is the joint use of a
randomized MCMC (R-MCMC) strategy coupled with a multiple
restart strategy with an efficient restart criterion. Near-optimal
detection performance is demonstrated for large number of BS
antennas and users (e.g., 64, 128, 256 BS antennas/users).

Index Terms – Large-scale multiuser MIMO, Markov chain
Monte Carlo technique, Gibbs sampling, detection, stalling problem,

randomized sampling, multiple restarts.

I. INTRODUCTION

Capacity of multiple-input multiple-output (MIMO) wire-
less channels is known to increase linearly with the minimum
of the number of transmit and receive antennas [1]- [5]. Large-
scale MIMO systems with tens to hundreds of antennas have
attracted much interest recently [6]- [17]. The motivation
to consider such large-scale MIMO systems is the poten-
tial to practically realize the theoretically predicted benefits
of MIMO, in terms of very high spectral efficiencies/sum
rates, increased reliability and power efficiency, through the
exploitation of large spatial dimensions. Use of large number
of antennas is getting recognized to be a good approach
to fulfill the increased throughput requirements in future
wireless systems. Particularly, large multiuser MIMO wireless
systems where the base station (BS) has tens to hundreds
of antennas and the users have one or more antennas are
widely being investigated [9], [12]- [17]. Communications
on the uplink [13], [16] as well as on the downlink [9],
[14], [15] in such large systems are of interest. Key issues
in large multiuser MIMO systems on the downlink include
low complexity precoding strategies and pilot contamination
problem encountered in using non-orthogonal pilot sequences
for channel estimation in multi-cell scenarios [14]. In large
multiuser MIMO systems on the uplink, users with one or
more antennas transmit simultaneously to the BS having large

number of antennas, and their signals are separated at the BS
using their spatial signatures towards the BS. Sophisticated
signal processing is required at the BS receiver to extract
the signal of each user from the aggregate received signal
[4]. Use of large number of BS antennas has been shown
to improve the power efficiency of uplink transmissions in
multiuser MIMO using linear receivers at the BS [16]. Linear
receivers including matched filter (MF) and minimum mean
square error (MMSE) receivers are shown to be attractive for
very large number of BS antennas [13]. Our focus in this
paper is on achieving near-optimal detection performance at
the BS in large multiuser MIMO systems on the uplink at
low complexities. The approach we adopt is the Markov chain
Monte Carlo (MCMC) approach.

The uplink multiuser MIMO architecture can be viewed
as a point-to-point MIMO system with co-located transmit
antennas with adequate separation between them (so that there
is no or negligible spatial correlation among them), and no
cooperation among these transmit antennas [4]. Because of
this, receiver algorithms for point-to-point MIMO systems are
applicable for receiving uplink multiuser MIMO signals at the
BS receiver. Recently, there has been encouraging progress
in the development of low-complexity near-optimal MIMO
receiver algorithms that can scale well for large dimensions
[8], [10], [18]- [25]. These algorithms are based on tech-
niques from local neighborhood search including tabu search
[8], [10], [18]- [21], probabilistic data association [22], and
message passing on graphical models including factor graphs
and Markov random fields [23], [24], [25].

Another interesting class of low-complexity algorithms re-
ported in the context of CDMA and MIMO detection is based
on Markov chain Monte Carlo (MCMC) simulation techniques
[26]- [33]. MCMC techniques are computational techniques
that make use of random numbers [34]. MCMC methods
have their roots in the Metropolis algorithm, an attempt by
physicists to compute complex integrals by expressing them
as expectations for some distribution and then estimating this
expectation by drawing samples from that distribution [35],
[36]. In MCMC methods, statistical inferences are devel-
oped by simulating the underlying processes through Markov
chains. By doing so, it becomes possible to reduce exponential
detection complexity to linear/polynomial complexities.

An issue with conventional MCMC based detection, how-



ever, is the stalling problem, due to which performance de-
grades at high SNRs [27]. Stalling problem arises because
transitions from some states to other states in a Markov chain
can occur with very low probability [27].

Our first contribution in this paper is that we propose an
MCMC based detection algorithm that alleviates the stalling
problem encountered in conventional MCMC and achieves
near-optimal performance in large systems. A key idea that is
instrumental in alleviating the stalling problem is a randomized
sampling strategy that makes a probabilistic choice between
Gibbs sampling and random sampling in each iteration. An ef-
ficient stopping criterion aids complexity reduction. This ran-
domized sampling strategy, referred to as ‘randomized MCMC
(R-MCMC) strategy’, is shown to achieve near-optimal per-
formance in large multiuser MIMO systems with 16 to 256 BS
antennas and same number of uplink users for 4-QAM [37].
However, we find that this randomized sampling strategy alone
is not adequate to achieve near-optimal performance at low
complexities for higher-order QAM (e.g., 16-QAM, 64-QAM).
We show that near-optimal performance is achieved in higher-
order QAM also if a multiple restart strategy is performed in
conjunction with R-MCMC. We refer to this strategy as ‘R-
MCMC with restarts’ (R-MCMC-R) strategy. Here again, an
efficient restart criterion aids complexity reduction. The joint
use of both randomized sampling as well as multiple restart
strategies is found to be crucial in achieving near-optimal
performance for higher-order QAM in large systems. To our
knowledge, the closeness to optimal performance achieved
by the proposed R-MCMC-R algorithm for tens to hundreds
of BS antennas/users with higher-order QAM has not been
reported so far using other MCMC based algorithms in the
literature.

The rest of the paper is organized as follows. The uplink
multiuser MIMO system model is presented in Section II.
The proposed R-MCMC algorithm without multiple restarts
and its performance/complexity in 4-QAM are presented in
Section III. The proposed R-MCMC algorithm that uses mul-
tiple restarts (R-MCMC-R) and its performance/complexity in
higher-order QAM are presented in Section IV. Conclusions
are presented in Section V.

II. SYSTEM MODEL

Consider a large-scale multiuser MIMO system on the
uplink consisting of a BS with N receive antennas and K
homogeneous uplink users with one transmit antenna each,
K ≤ N (Fig. 1). Extension of the wotk to a system model
with non-homogeneous users where different users can have
different number of transmit antennas is straightforward. N
and K are in the range of tens to hundreds. All users transmit
symbols from a modulation alphabet B. It is assumed that
synchronization and sampling procedures have been carried
out, and that the sampled base band signals are available
at the BS receiver. Let xk ∈ B denote the transmitted
symbol from user k. Let xc = [x1, x2, · · · , xK ]T denote the
vector comprising of the symbols transmitted simultaneously
by all users in one channel use. Let Hc ∈ CN×K , given
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Fig. 1. Large-scale multiuser MIMO system on the uplink.

by Hc = [h1,h2, · · · ,hK ], denote the channel gain matrix,
where hk = [h1k, h2k, · · · , hNk]T is the channel gain vector
from user k to BS, and hjk denotes the channel gain from kth
user to jth receive antenna at the BS. Assuming rich scattering
and adequate spatial separation between users and BS antenna
elements, hjk, ∀j are assumed to be independent Gaussian
with zero mean and σ2

k variance such that
∑

k σ2
k = K .

σ2
k models the imbalance in received powers from different

users, and σ2
k = 1 corresponds to the perfect power control

scenario. This channel gain model amounts to assuming that
the multipath fading between a user and BS is frequency
non-selective. Now, the received signal vector at the BS in
a channel use, denoted by yc ∈ CN , can be written as

yc = Hcxc + nc, (1)

where nc is the noise vector whose entries are are modeled
as i.i.d. CN (0, σ2). We will work with the real-valued system
model corresponding to (1), given by

yr = Hr xr + nr, (2)

where xr ∈ R2K , Hr ∈ R2N×2K , yr ∈ R2N , nr ∈ R2N

given by

Hr =

[

$(Hc) −&(Hc)
&(Hc) $(Hc)

]

, yr =

[

$(yc)
&(yc)

]

,

xr =

[

$(xc)
&(xc)

]

, nr =

[

$(nc)
&(nc)

]

. (3)

Dropping the subscript r in (2) for notational simplicity, the
real-valued system model is written as

y = Hx + n. (4)

For a QAM alphabet B, the elements of x will take values
from the underlying PAM alphabet A, i.e., x ∈ A2K . The
symbols from all the users are jointly detected at the BS. The
maximum likelihood (ML) decision rule is given by

xML = arg min
x∈A2K

‖y − Hx‖2 = arg min
x∈A2K

f(x), (5)



where f(x)
#
= xT HTHx − 2yT Hx is the ML cost. While

the ML detector in (5) is exponentially complex in K (which
is prohibitive for large K), the MCMC based algorithm we
propose in the next section has a per-symbol complexity that
is quadratic in K and it achieves near-ML performance as
well.

III. PROPOSED RANDOMIZED-MCMC ALGORITHM FOR

DETECTION

The ML detection problem in (5) can be solved by using
MCMC simulations [34]. We consider Gibbs sampler, which
is an MCMC method used for sampling from distributions of
multiple dimensions. In the context of MIMO detection, the
joint probability distribution of interest is given by

p(x1, · · · , x2K |y,H) ∝ exp
(

− ‖ y − Hx ‖2

σ2

)

. (6)

We assume perfect knowledge of channel gain matrix H at
the BS receiver.

A. Conventional MCMC algorithm

In conventional Gibbs sampling based detection, referred to
as conventional MCMC algorithm, the algorithm starts with
an initial symbol vector, denoted by x(t=0). In each iteration
of the algorithm, an updated symbol vector is obtained by
sampling from distributions as follows:

x
(t+1)
1 ∼ p(x1|x(t)

2 , x
(t)
3 , · · · , x

(t)
2K),

x
(t+1)
2 ∼ p(x2|x(t+1)

1 , x
(t)
3 , · · · , x

(t)
2K),

x
(t+1)
3 ∼ p(x3|x(t+1)

1 , x
(t+1)
2 , x

(t)
4 , · · · , x

(t)
2K),

...

x
(t+1)
2K ∼ p(x2K |x(t+1)

1 , x
(t+1)
2 , · · · , x

(t+1)
2K−1). (7)

The detected symbol vector in a given iteration is chosen to
be that symbol vector which has the least ML cost in all the
iterations up to that iteration.

Another MCMC algorithm that uses a temperature parame-
ter α and the following joint distribution is presented in [33]:

p(x1, · · · , x2K |y,H) ∝ exp
(

− ‖ y − Hx ‖2

α2σ2

)

. (8)

The algorithm uses a fixed value of α in all the iterations,
with the property that after the Markov chain is mixed,
the probability of encountering the optimal solution is only
polynomially small (not exponentially small). This algorithm
and the conventional MCMC algorithm (which is a special
case of α = 1) face stalling problem at high SNRs; a problem
in which the BER performance gets worse at high SNRs [27].

B. Proposed R-MCMC algorithm

It is noted that the stalling problem occurs due to MCMC
iterations getting trapped in poor local solutions, beyond which
the ML cost does not improve with increasing iterations for
a long time. Motivated by this observation, we propose a
simple, yet effective, randomization strategy to avoid such
traps. The key idea behind the proposed randomized MCMC

(R-MCMC) approach is that, in each iteration, instead of

updating x
(t)
i ’s as per the update rule in (7) with probability

1 as done in conventional MCMC, we update them as per (7)
with probability (1 − qi) and use a different update rule with
probability qi = 1

2K
. The different update rule is as follows.

Generate |A| probability values from uniform distribution as

p(x(t)
i = j) ∼ U [0, 1], ∀j ∈ A

such that
|A|
∑

j=1
p(x(t)

i = j) = 1, and sample x
(t)
i from this

generated pmf.

1) Proposed stopping criterion: A suitable termination cri-
terion is needed to stop the algorithm. A simple strategy is to
terminate the algorithm after a fixed number of iterations. But a
fixed value of number of iterations may not be appropriate for
all scenarios. Fixing a large value for the number of iterations
can yield good performance, but the complexity increases with
the number of iterations. To address this issue, we develop
a dynamic stopping criterion that yields good performance
without unduly increasing the complexity. The criterion works
as follows. A stalling is said to have occurred if the ML cost
remains unchanged in two consecutive iterations. Once such a
stalling is identified, the algorithm generates a positive integer
Θs (referred to as the stalling limit), and the iterations are
allowed to continue in stalling mode (i.e., without ML cost
change) up to a maximum of Θs iterations from the occurrence
of stalling. If a lower ML cost is encountered before Θs

iterations, the algorithm proceeds with the newly found lower
ML cost; else, the algorithm terminates. If termination does
not happen through stalling limit as above, the algorithm
terminates on completing a maximum number of iterations,
MAX-ITER.

The algorithm chooses the value of Θs depending on the
quality of the stalled ML cost, as follows. A large value for
Θs is preferred if the quality of the stalled ML cost is poor,
because of the available potential for improvement from a poor
stalled solution. On the other hand, if the stalled ML cost
quality is already good, then a small value of Θs is preferred.
The quality of a stalled solution is determined in terms of
closeness of the stalled ML cost to a value obtained using the
statistics (mean and variance) of the ML cost for the case when
x is detected error-free. Note that when x is detected error-
free, the corresponding ML cost is nothing but ‖n‖2, which
is Chi-squared distributed with 2N degrees of freedom with
mean Nσ2 and variance Nσ4. We define the quality metric to
be the difference between the ML cost of the stalled solution
and the mean of ‖n‖2, scaled by the standard deviation, i.e.,
the quality metric of vector x̂ is defined as

φ(x̂) =
‖y − Hx̂‖2 − Nσ2

√
Nσ2

. (9)

We refer to the metric in (9) as the standardized ML cost
of solution vector x̂. A small value of φ(x̂) can be viewed
as an indicator of increased closeness of x̂ to ML solution.
Therefore, from the previous discussion, it is desired to choose



the stalling limit Θs to be an increasing function of φ(x̂). For
this purpose, we choose an exponential function of the form

Θs(φ(x̂)) = c1 exp(φ(x̂)). (10)

Also, we allow a minimum number of iterations (cmin)
following a stalling. Based on the above discussion, we adopt
the following rule to compute the stalling count:

Θs(x̂) = *max (cmin, c1 exp (φ(x̂)))+ . (11)

The constant c1 is chosen depending upon the QAM size;
a larger c1 is chosen for larger QAM size. As we will
see in the performance and complexity results, the proposed
randomization in the update rule and the stopping criterion are
quite effective in achieving low complexity as well as near-
optimal performance.
2) Performance and complexity of the R-MCMC algorithm:

The simulated BER performance and complexity of the pro-
posed R-MCMC algorithm in uplink multiuser MIMO systems
with 4-QAM are shown in Figs. 2 to 5. The following R-
MCMC parameters are used in the simulations: cmin = 10,
c1 = 20, MAX-ITER = 16K . Figures 2 to 5(a) are for the case
where there is no imbalance in the received powers of all users,
i.e., σ2

k = 0 dB ∀ k. Perfect channel knowledge at the BS is
assumed. The performance of R-MCMC in multiuser MIMO
with K = N = 16 is shown in Fig. 2. The performance
of the MCMC algorithm using the distribution in (8) with
temperature parameter values α = 1, 1.5, 2, 3 are also plotted.
16K iterations are used in the MCMC algorithm with temper-
ature parameter. Sphere decoder performance is also shown for
comparison. It is seen that the performance of MCMC with
temperature parameter is very sensitive to the choice of the
value of α. For example, for α = 1, 1.5, the BER is found to
degrade at high SNRs due to stalling problem. For α = 2, the
performance is better at high SNRs but worse at low SNRs.
The proposed R-MCMC performs better than MCMC with
temperature parameter (or almost the same) at all SNRs and α
values shown. In fact, the performance of R-MCMC is almost
the same as the sphere decoder performance. The R-MCMC
complexity is, however, significantly lower than the sphere
decoding complexity. While sphere decoder gets exponentially
complex in K at low SNRs, the R-MCMC complexity (in
average number of real operations per bit) is only O(K2) as
can be seen in Fig. 3. Because of this low complexity, the
R-MCMC algorithm scales well for large-scale systems with
large values of K and N . This is illustrated in Fig. 4 and 5(a)
where performance plots for systems up to K = N = 128
and 256 are shown. While Fig. 4 shows the BER as a function
of SNR, Fig. 5(a) shows the average received SNR required
to achieve a target BER of 10−3 as a function of K = N .
Since sphere decoder complexity is prohibitive for hundreds
of dimensions, we have plotted unfaded single-input single-
output (SISO) AWGN performance as a lower bound on ML
performance for comparison. It can be seen that R-MCMC
achieves performance which is very close to SISO AWGN
performance for large K = N , e.g., close to within 0.5 dB
at 10−3 BER for K = N = 128 and 256. This illustrates
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N = 16, 4-QAM, and no power imbalance. Performance of R-MCMC is
almost the same as sphere decoder performance.

the achievability of near-optimal performance using R-MCMC
for large systems. Figure 5(b) shows the BER performance
in multiuser MIMO systems with received power imbalance
among different users. The imbalance is simulated by choosing
different σ2

k for different users, with σ2
k being uniformly

distributed between -3 dB to 3 dB. Performance in systems
with K = N = 16 and 128 are plotted with and without
power imbalance. It is seen that even with power imbalance
R-MCMC achieves almost the same performance as that of
sphere decoder for K = N = 16.
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IV. MULTI-RESTART R-MCMC ALGORITHM FOR

HIGHER-ORDER QAM

Although the R-MCMC algorithm is very attractive in terms
of both performance as well as complexity for 4-QAM, its
performance for higher-order QAM is far from optimal. This
is illustrated in Fig. 6, where R-MCMC is seen to achieve
sphere decoder performance for 4-QAM, whereas for 16-QAM
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MIMO with K = N = 8, 16, 32, 64, 128, 4-QAM and no power imbalance.

and 64-QAM it performs poorly compared to sphere decoder.
This observation motivates the need for ways to improve R-
MCMC performance in higher-order QAM. Interestingly, we
found that use of multiple restarts1 coupled with R-MCMC is
able to significantly improve performance and achieve near-
ML performance in large systems with higher-order QAM.

A. Effect of restarts in R-MCMC and conventional MCMC

In Figs. 7(a) and 7(b), we compare the effect of multiple
random restarts in R-MCMC and conventional MCMC algo-
rithms for 4-QAM and 16-QAM, respectively. For a given
realization of x,H and n, we ran both algorithms for three
different random initial vectors, and plotted the least ML cost
up to nth iteration as a function of n. We show the results
of this experiment for multiuser MIMO with K = N = 16
at 11 dB SNR for 4-QAM and 18 dB SNR for 16-QAM
(these SNRs give about 10−3 BER with sphere decoding
for 4-QAM and 16-QAM, respectively). The true ML vector
cost (obtained through sphere decoder simulation for the
same realization) is also plotted. It is seen that R-MCMC
achieves much better least ML cost compared to conventional
MCMC. This is because conventional MCMC gets locked
up in some state (with very low state transition probability)
for long time without any change in ML cost in subsequent
iterations, whereas the randomized sampling strategy in R-
MCMC is able to exit from such states quickly and give
improved ML costs in subsequent iterations. This shows that
R-MCMC is preferred over conventional MCMC. Even more
interestingly, comparing the least ML costs of 4-QAM and
16-QAM (in Figs. 7(a) and (b), respectively), we see that all
the three random initializations could converge to almost true
ML vector cost for 4-QAM within 100 iterations, whereas

1It is noted that multiple restarts, also referred to as running multiple
parallel Gibbs samplers, have been tried with conventional and other variants
of MCMC in [27], [29], [30]. But the stalling problem is not fully removed
and near-ML performance is not achieved. It turns out that restarts when
coupled with R-MCMC is very effective in achieving near-ML performance.
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imbalance with σ2

k
’s uniformly distributed between -3 dB and 3 dB.

only initial vector 3 converges to near true ML cost for 16-
QAM and initial vectors 1 and 2 do not. Since any random
initialization works well with 4-QAM, R-MCMC is able to
achieve near-ML performance without multiple restarts for
4-QAM. However, it is seen that 16-QAM performance is
more sensitive to the initialization, which explains the poor
performance of R-MCMC without restarts in higher-order
QAM. MMSE vector can be used as an initial vector, but
it is not a good initialization for all channel realizations.
This points to the possibility of achieving good initializations
through multiple restarts to improve the performance of R-
MCMC in higher-order QAM.

B. R-MCMC with multiple restarts

In R-MCMC with multiple restarts, we run the basic R-
MCMC algorithm multiple times, each time with a different
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random initial vector, and choose that vector with the least
ML cost at the end as the solution vector. Figure 8 shows
the improvement in the BER performance of R-MCMC as
the number of restarts (R) is increased in multiuser MIMO
with K = N = 16 and 16-QAM at SNR = 18 dB. 300
iterations are used in each restart. It can be observed that,
though BER improves with increasing R, much gap still
remains between sphere decoder performance and R-MCMC
performance even with R = 10. A larger R could get the R-
MCMC performance close to sphere decoder performance, but
at the cost of increased complexity. While a small R results
in poor performance, a large R results in high complexity.
So, instead of arbitrarily fixing R, there is a need for a good
restart criterion that can significantly enhance the performance
without incurring much increase in complexity. We devise one
such criterion below.

1) Proposed restart criterion: At the end of each restart,
we need to decide whether to terminate the algorithm or to go
for another restart. To do that, we propose to use

• the standardized ML costs (given by (9)) of solution
vectors, and

• the number of repetitions of the solution vectors.

Nearness of the ML costs obtained so far to the error-free
ML cost in terms of its statistics can allow the algorithm
to get near ML solution. Checking for repetitions can allow
restricting the number of restarts, and hence the complexity.
We use the minimum standardized ML cost obtained so far
and its number of repetitions to decide the credibility of the
solution. An integer threshold (P ) is defined for the best
ML cost obtained so far for the purpose of comparison with
the number of repetitions. In Fig 9, we plot histograms of
the standardized ML cost of correct and incorrect solution
vectors at the output of R-MCMC with restarts in multiuser
MIMO with K = N = 8 and 4-/16-QAM. We judge the
correctness of the obtained solution vector from R-MCMC
output by running sphere decoder simulation for the same
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realizations. It can be observed in Fig. 9 that the incorrect
standardized ML cost density does not stretch into negative
values. Hence, if the obtained solution vector has negative
standardized ML cost, then it can indeed be correct with high
probability. But as the standardized ML cost increases in the
positive domain, the reliability of that vector decreases and
hence it would require more number of repetitions for it to be
trusted as the final solution vector. It can also be observed from
Fig. 9 that the incorrect density in case of 16-QAM is much
more than that of 4-QAM for the same SNR. So it is desired
that, for a standardized ML cost in the positive domain, the
number of repetitions needed to declare as the final solution
should increase with the QAM size. Accordingly, the number
of repetitions needed for termination (P , the integer threshold)
is chosen as per the following expression:

P = ,max (0, c2φ(x̃))- + 1, (12)

where x̃ is the solution vector with minimum ML cost so far.
Now, denoting Rmax to be the maximum number for restarts,
the proposed R-MCMC with restarts algorithm (we refer to
this as the R-MCMC-R algorithm) can be stated as follows.

• Step 1: Choose an initial vector.
• Step 2: Run the basic R-MCMC algorithm in Sec. III-B.
• Step 3: Check if Rmax number of restarts are completed.

If yes, go to Step 5; else go to Step 4.
• Step 4: For the solution vector with minimum ML cost

obtained so far, find the required number of repetitions
needed using (12). Check if the number of repetitions of
this solution vector so far is less than the required number
of repetitions computed in Step 4. If yes, go to Step 1,
else go to Step 5.

• Step 5: Output the solution vector with the minimum ML
cost so far as the final solution.

C. Performance and complexity of the R-MCMC-R Algorithm

The BER performance and complexity of the R-MCMC-
R algorithm are evaluated through simulations. The following
parameters are used in the simulations of R-MCMC and R-
MCMC-R: cmin = 10, c1 = 10 log2 M (i.e., c2 = 20, 40, 60
for 4-/16-/64-QAM, respectively), MAX-ITER = 8K

√
M ,

Rmax = 50, and c2 = 0.5 log2 M . In Fig. 10, we compare
the BER performance of conventional MCMC, R-MCMC, R-
MCMC-R and sphere decoder in multiuser MIMO with K =
N = 16 and 16-QAM. In the first restart, MMSE solution
vector is used as the initial vector. In the subsequent restarts,
random initial vectors are used. For 64-QAM, the randomized
sampling is applied only to the one-symbol away neighbors of
the previous iteration index; this helps to reduce complexity
in 64-QAM. From Fig. 10, it is seen that the performance of
conventional MCMC, either without or with restarts, is quite
poor. That is, using restarts in conventional MCMC is not of
much help. This shows the persistence of the stalling problem.
The performance of R-MCMC (without restarts) is better
than conventional MCMC with and without restarts, but its
performance still is far from sphere decoder performance. This
shows that R-MCMC alone (without restarts) is inadequate the
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Fig. 9. Histograms of standardized ML costs of correct and incorrect outputs
from R-MCMC with restarts in multiuser MIMO with K = N = 8 and 4-
/16-QAM.

alleviate the stalling problem in higher-order QAM. However,
the randomized sampling in R-MCMC when used along with
restarts (i.e., R-MCMC-R) gives strikingly improved perfor-
mance. In fact, the proposed R-MCMC-R algorithm achieves
almost sphere decoder performance (close to within 0.4 dB
at 10−3 BER). This points to the important observations that
application of any one of the two features, namely, randomized
sampling and restarts, to the conventional MCMC algorithm is
not adequate, and that simultaneous application of both these
features is needed to alleviate the stalling problem and achieve
near-ML performance in higher-order QAM.

Figure 11(a) shows that the R-MCMC-R algorithm is able
to achieve almost sphere decoder performance for 4-/16-/64-
QAM in multiuser MIMO with K = N = 16. Similar
performance plots for 4-/16-/64-QAM for K = N = 32 are
shown in Fig. 11(b), where the performance of R-MCMC-R
algorithm is seen to be quite close to unfaded SISO-AWGN
performance, which is a lower bound on true ML performance.

1) Performance/complexity comparison with other detec-

tors: In Table-I, we present a comparison of the BER perfor-
mance and complexity of the proposed R-MCMC-R algorithm
with those of other detectors in the literature. Comparisons
are made for systems with K = N = 16, 32 and 4-/16-
/64-QAM. Detectors considered for comparison include: i)
random-restart reactive tabu search (R3TS) algorithm reported
in [21], which is a local neighborhood search based algorithm,
and ii) fixed-complexity sphere decoder (FSD) reported in
[38], which is a sub-optimal variant of sphere decoder whose
complexity is fixed regardless of the operating SNR. Table-
I shows the complexity measured in average number of real
operations at a BER of 10−2 and the SNR required to achieve
10−2 BER for the above three detection algorithms. It can
be seen that both R-MCMC-R and R3TS perform better
than FSD. Also, R-MCMC-R achieves the best performance
at the lowest complexity compared to R3TS and FSD for
K = N = 16 with 16-QAM and 64-QAM. In 4-QAM and
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in K = N = 32, R-MCMC-R achieves same or slightly
better performance than R3TS at some increased complexity
compared to R3TS.

V. CONCLUSION

We proposed a novel MCMC based detection algorithm that
achieved near-optimal performance on the uplink in large-
scale multiuser MIMO systems. The proposed R-MCMC-R
algorithm was shown to alleviate the stalling problem and
achieve near-ML performance in large systems with tens to
hundreds of antennas and higher-order QAM. Key ideas that
enabled such attractive performance and complexity include
i) a randomized sampling strategy that gave the algorithm
opportunities to quickly exit from stalled solutions and move
to better solutions, and ii) multiple random restarts that facili-
tated the algorithm to seek good solutions in different parts of
the solution space. Multiple restarts alone (without randomized
sampling) could not achieve near-ML performance at low
complexity. Randomized sampling alone (without multiple
restarts) could achieve near-ML performance at low complex-
ity in the case of 4-QAM. But for higher-order QAM (16-/64-
QAM) randomized sampling alone was not adequate. Joint
use of both randomized sampling as well as multiple restarts
was found to be crucial to achieve near-ML performance for
16-/64-QAM. While simulations were used to establish the
attractiveness of the algorithm in performance and complexity,
a theoretical analysis that could explain its good performance
is important and challenging, which is a topic for future work.
We have considered perfect synchronization and single-cell
scenario in this paper. Other system level issues including
uplink synchronization and multi-cell operation in large-scale
MIMO systems can be considered as future work.
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