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Abstract—In this paper, we deal with low-complexity near-op-
timal detection/equalization in large-dimension multiple-input
multiple-output inter-symbol interference (MIMO-ISI) channels
using message passing on graphical models. A key contribution in
the paper is the demonstration that near-optimal performance in
MIMO-ISI channels with large dimensions can be achieved at low
complexities through simple yet effective simplifications/approxi-
mations, although the graphical models that represent MIMO-ISI
channels are fully/densely connected (loopy graphs). These include
1) use of Markov random field (MRF)-based graphical model with
pairwise interaction, in conjunction with message damping, and
2) use of factor graph (FG)-based graphical model with Gaussian
approximation of interference (GAI). The per-symbol complexities
are O(K?*n?) and O(Kn,) for the MRF and the FG with GAI
approaches, respectively, where K and n, denote the number
of channel uses per frame, and number of transmit antennas,
respectively. These low-complexities are quite attractive for large
dimensions, i.e., for large Kn;. From a performance perspective,
these algorithms are even more interesting in large-dimensions
since they achieve increasingly closer to optimum detection per-
formance for increasing Kn,. Also, we show that these message
passing algorithms can be used in an iterative manner with local
neighborhood search algorithms to improve the reliability/perfor-
mance of M-QAM symbol detection.

Index Terms—Factor graphs, graphical models, large di-
mensions, low-complexity detection, Markov random fields, mul-
tiple-input multiple-output inter-symbol interference (MIMO-ISI)
channels, pairwise interaction, severe delay spreads.

I. INTRODUCTION

IGNALING in large dimensions can offer attractive bene-
fits in wireless communications. For example, transmission
of signals using large spatial dimensions in multiple-input mul-
tiple-output (MIMO) systems with large number of transmit/re-
ceive antennas can offer increased spectral efficiencies [1]-[3].
The spectral efficiency in a V-BLAST (spatial multiplexing)
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MIMO system is n; symbols per channel use, where 7, is the
number of transmit antennas [3]. Severely delay-spread inter-
symbol interference (ISI) channels can offer opportunities to
harness rich diversity benefits [4]. In an L-length ISI channel,
each symbol in a frame is interfered by its previous L — 1 sym-
bols. However, the availability of L copies of the transmitted
signal in ISI channels can be exploited to achieve Lth-order di-
versity. A way to achieve this diversity is to organize data into
frames, where each frame consists of K channel uses (i.e., K
dimensions in time), K > L, and carry out joint detection/
equalization over the entire frame at the receiver. A MIMO-ISI
channel with large Kn; and L (referred to as large-dimension
MIMO-ISI channel) is of interest because of its potential to offer
high spectral efficiencies (in large n.;) and diversity orders (in
large L!). A major challenge, however, is detection complexity.
The complexity of optimum detection is exponential in number
of dimensions, which is prohibitive for large number of dimen-
sions. Our focus in this paper is to achieve near-optimal detec-
tion performance in large dimensions at low complexities. A
powerful approach to realize this goal, which we investigate in
this paper, is message passing on graphical models.

Graphical models are graphs that indicate inter-dependencies
between random variables [10]. Well-known graphical models
include Bayesian belief networks, factor graphs, and Markov
random fields [11]. Belief propagation (BP) is a technique that
solves inference problems using graphical models [11]. BP is
a simple, yet highly effective, technique that has been success-
fully employed in a variety of applications including computa-
tional biology, statistical signal/image processing, data mining,
etc. BP is well suited in several communication problems as well
[10]; e.g., decoding of turbo codes and LDPC codes [12], [13],
multiuser detection in CDMA [14]-[16], and MIMO detection
[17]-[20].

Turbo equalization which performs detection/equalization
and decoding in an iterative manner in coded data transmission
over ISI channels have been widely studied [21]-[23]. More
recently, message passing on factor graphs-based graphical
models [24] have been studied for detection/equalization on ISI
channels [25]-[30]. In [27], it has been shown through simula-
tions that application of sum-product algorithm to factor graphs
in IST channels converges to a good approximation of the exact

I A practical example of severely delay-spread ISI channel with large L is an
ultra wideband (UWB) channel [5]. UWB channels are highly frequency-selec-
tive, and are characterized by severe ISI due to large delay spreads [6]-[9]. The
number of multipath components (MPC) in such channels in indoor/industrial
environments has been observed to be of the order of several tens to hundreds;
number of MPCs ranging from 12 to 120 are common in UWB channel models

(61, [9].
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a posteriori probability (APP) of the transmitted symbols. In
[28], the problem of finding the linear minimum mean square
error (LMMSE) estimate of the transmitted symbol sequence is
addressed by employing a factor graph framework. Equaliza-
tion in MIMO-ISI channels using factor graphs are investigated
in [29] and [30]. In [29], variable nodes of the factor graph
correspond to the transmitted symbols, and each channel use
corresponds to a function node. Since the received signal at any
channel use depends on the past L symbols transmitted from
every transmit antenna, every function node is connected to Ln,
variable nodes. Near-maximum a posteriori probability (MAP)
performance was shown through simulations for n, = 2 sys-
tems. However, the complexities involved in the computation
of messages at the variable and function nodes are exponential
in Lny, which are prohibitive for large spatial dimensions and
delay spreads.

Our key contribution in this paper is the demonstration that
graphical models can be effectively used to achieve near-
optimal detection/equalization performance in large-dimension
MIMO-ISI channels at low complexities. The achieved perfor-
mance is good because detection is performed jointly over the
entire frame of data; i.e., over the full Kn; x 1 data vector. While
simple approximations/simplifications resulted in low complex-
ities, the large-dimension behavior? natural in message passing
algorithms contributed to the near-optimal performance in large
dimensions. The graphical models we consider in this paper
are Markov random fields (MRFs) and factor graphs (FGs). We
show that these graphical models based algorithms perform
increasingly closer to the optimum performance for increasing
n and increasing values of K and I, keeping /K fixed.

In the case of MRF BP approach (Section III-A), we show
that the use of damping of messages, where messages are com-
puted as a weighted average of the messages in the previous
iteration and the current iteration (details and associated ref-
erences given in Section III-A4), is instrumental in achieving
good performance. Simulation results show that the MRF BP
approach exhibits large-dimension behavior, and that damping
significantly improves the bit error performance (details given
in Section III-C1). For example, the MRF BP algorithm with
message damping achieves close to unfaded single-input single-
output (SISO) AWGN performance (which is a lower bound on
the optimum detector performance) within 0.25 dB at 10~ bit
error rate (BER) in a MIMO-ISI channel with n;, = n, = 4,
K = 100 channel uses per frame (i.e., problem size is Kn; =
400 dimensions), and L. = 20 equal-energy multipath compo-
nents (MPC). Similar performances are shown for large-MIMO
systems with n; = n,, = 16, 32 and K = 64 (problem size
Kn; = 1024 and 2048 dimensions). The per-symbol com-
plexity of the MRF BP approach is O(K?2n?) (details given in
Section III-AS5).

In the case of FG BP approach (Section III-B), the Gaussian
approximation of interference (GAI) we adopt is found
to be effective to further reduce the complexity by an order
(Section III-B1); i.e., the per-symbol complexity of our FG-GAI

2We say that an algorithm exhibits “large-dimension behavior” if its bit error
performance improves with increasing number of dimensions. The fact that
turbo codes with BP decoding achieve near-capacity performance only when
the frame sizes are large is an instance of large-dimension behavior.
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BP approach is just O(Kn;), which is one order less than that
of the MRF BP approach. We note that several Gaussian
approximation based approaches are known in the literature
in the context of multiuser detection in CDMA and MIMO
detection [14], [30]-[34]. For example, MIMO detection algo-
rithms based on probabilistic data association (PDA) principle
are studied in [32], [33]. These algorithms approximate the
interference-plus-noise vector as a Gaussian vector, and re-
quire inversion of the covariance matrix resulting in O(n?)
per-symbol complexity. The way we do the approximation is
different. At each receive node, we approximate the interference
(from all other antennas)-plus-noise scalar as a Gaussian r.v.
which requires the computation of only the mean and variance
in closed-form. These approximated Gaussian statistics (mean
and variance) are updated in each iteration. Because of the
scalar Gaussian approximation, the per-symbol complexity of
our algorithm is just linear in n;. In addition, the algorithm
exhibits large-system behavior and near-optimal performance
in large dimensions. We note that the algorithm in [34] also
uses scalar Gaussian approximation of interference which is
different from ours on two major counts. First, the algorithm
in [34] parametrizes the number of interference terms in the
Gaussian approximation; at each receive node, only n, — dy,
1 < dy < ny, weakest interfering terms are approximated as
Gaussian, and dy strongest terms are marginalized through
message passing. The implication of this difference is that the
complexity of the algorithm in [34] is exponential in dy, i.e.,
O(2%r). Performance gets better for increasing d s, making it
prohibitive for large dimensions. The second difference is that
the mean and variance in the approximation in [34] are kept
fixed and are not updated from iteration to iteration, whereas
we update these statistics in each iteration. A performance
comparison with the algorithm in [34] shows that our algorithm
performs better (Section III-C2). The algorithm in [30] also
uses a Gaussian approximation that scales well for detection
in large MIMO-ISI channels, but this algorithm exhibits high
error floors, whereas our FG-GAI BP approach is seen to avoid
flooring and perform significantly better (Fig. 14). We further
show that the proposed FG-GAI BP algorithm can be used in
an iterative manner with local neighborhood search algorithms,
like the reactive tabu search (RTS) algorithm in [35], to improve
the performance of M-QAM detection (Section IV).

The proposed algorithms can be extended to coded systems
as well, through turbo equalization [21]-[23] (Receiver C in
[23, Fig. 1]) or through joint processing of the entire coded
frame using low-complexity graphical models (low-complexity
approximations of Receiver A in [23, Fig. 1]). In [19], we
have investigated a scheme with separate MRF BP detection
followed by decoding (Receiver B in [23, Fig. 1]) in a 24 x
24 V-BLAST MIMO system, and showed that a coded BER
performance close to within 2.5 dB of the theoretical ergodic
MIMO capacity is achieved. MIMO space-time coding schemes
that can achieve separability of detection and decoding without
loss of optimality [36] are interesting because they avoid the
need for joint processing for optimal detection and decoding. If
such detection-decoding separable space—time codes become
available for large dimensions, the proposed algorithms can be
applicable in their detection/equalization.
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Fig. 1. MIMO-ISI channel model.

The rest of the paper is organized as follows. In Section II, we
present the considered MIMO system model in frequency-se-
lective fading. In Section III, we present the proposed detection
algorithms based on belief propagation on MRF and FG of the
MIMO system. In Section IV, the proposed hybrid RTS-BP al-
gorithm for detection of M-QAM signals and its performance
are presented. Conclusions are presented in Section V.

II. SYSTEM MODEL

We consider MIMO systems with cyclic prefixed single-car-
rier (CPSC) signaling, where the overall MIMO channel in-
cludes a Fourier transform (FFT) operation so that the trans-
mitted symbols are estimated from the received frequency-do-
main signal [37]-[39]. Consider a frequency-selective MIMO
channel with n; transmit and n, receive antennas as shown
in Fig. 1. Let L denote the number of multipath components
(MPC). Data is transmitted in frames, where each frame has
K’ channel uses, out of which data symbol vectors are sent in
K channel uses K > L. These K channel uses are preceded
by a cyclic prefix (CP) of length L — 1 channel uses so that
K’ = K + L — 1. In each channel use, an n;-length data
symbol vector is transmitted using spatial multiplexing on n;
transmit antennas. Let x, € {£1}"™ denote the data symbol
vector transmitted in the qth channel use, g = 0,1,---, K — 1.
Though the symbol alphabet used here is BPSK, extensions to
higher-order alphabet are possible and some are discussed later
in the paper. While CP avoids inter-frame interference, there
will be IST within the frame. The received signal vector at time
g can be written as

L—-1

yq:ZHqufl"i'wm q:07"'7K_1 (D
=0

where y, € C", H; € C"*"¢ is the channel gain matrix for
the [th MPC such that H j(ll) denotes the entry on the jth row

and 7th column of the H; matrix, i.e., H J(lq) is the channel from
ith transmit antenna to the jth receive antenna on the /th MPC.
The entries of H; are assumed to be independent and identi-
cally distributed (i.i.d.) CN(0, 1). It is further assumed that Hy,
l =0,---,L — 1 remain constant for one frame duration, and
vary i.i.d. from one frame to the other. w, € C"~ is the ad-
ditive white Gaussian noise vector at time ¢, whose entries are
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independent, each with variance 0% =n,LE, /7, where 7 is the
average received SNR per received antenna. The CP will render
the linearly convolving channel to a circularly convolving one,
and so the channel will be multiplicative in frequency domain.
Because of the CP, the received signal in frequency domain, for
the ith frequency index (0 < ¢ < K — 1), can be written as

r, =G +v; 2
where r; = (1/\/?) Zgz—ol 6727rjqi/qu,
u; - (1/VE) Y Fe2miai/ Ky,
vi = (VE) T,y e 20/ K w,,
G, = EIL:_OI e~2mli/KH,; and j = +/—1. Stacking
the K vectorsr;, 7 = 0,---, K — 1, we write

r= GF Xeff + Veff 3)
SH,
where
Go
[ 1o 0
ry G
r—= . s G=
LT 1 0
Gr-1
[ Xp Vo
X1 Vi1
Xeff=| . | Vefsr=
LXK -1 VK-1
Po,oIni pl,OInt ' pK—l,OIni
- 1 | poiln, p1,11n, - pr—1,11n,

VK

po,k—1In, p1,x—1In, -+ pr—1,x-11n,

1
:—DK ® I’n,t

VK

where pg; = e~ 2mi4i/K D, is the K-point DFT matrix and ®
denotes the Kronecker product. Equation (3) can be written in
an equivalent linear vector channel model of the form

r=Hx+v 4

where H = H.¢¢, X = Xc¢f, and v = v.55. Note that the well
known MIMO system model for flat fading can be obtained as
a special case in the above system model with L = K = 1.

We further note that, in the considered system, signaling is
done along K dimensions in time and n; dimensions in space,
so that the total number of dimensions involved is Kn;. We are
interested in low-complexity detection/equalization in large di-
mensions (i.e., for large Kn.) using graphical models. The goal
is to obtain an estimate of vector x, given r and the knowledge
of H. The optimal maximum a posteriori probability (MAP) de-
tector takes the joint posterior distribution

p(x|r,H) o p(r|x, H)p(x) ®)
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and marginalizes out each variable as p(z;|r,H) =
>, p(x|r,H), where z_; stands for all entries of x ex-
cept ;. The MAP estimate of the bit z;, ¢ = 1,---, Kny, is
then given by

arg max

e Pl = alr ) ©®)

T, =
whose complexity is exponential in Kn,. In the following sec-
tions, we present low-complexity detection algorithms based on
graphical models suited for the system model in (4) with large
dimensions, i.e., for large K, L, ny, keeping L./ K fixed.

III. DETECTION USING BELIEF PROPAGATION
ON MRFs AND FGs

In this section, we present detection algorithms based on mes-
sage passing on graphical models of the MIMO system in (4).
In general, joint distribution of random variables can be repre-
sented as graphical models, where nodes represent the variables
and edges represent the dependencies among the variables. Mes-
sage passing can be carried out on these graphs to make infer-
ences [11]. In our MIMO detection problem, the variables of in-
terest are the transmitted symbols z;’s, the joint distribution of
interest is given by (5), and as an inference problem we seek to
obtain an estimate of the solution given by (6) through message
passing. Specifically, we consider message passing on Markov
random field (MRF) and factor graph (FG) graphical models of
the MIMO system characterized by (5) [20], [40].

A. Detection Using BP on MRFs

1) MRFs: An undirected graph is given by G = (V, F),
where V is the set of nodes and £ C {(7,7) : i,5 € V,i # j}
is the set of undirected edges. An MRF is an undirected graph
whose vertices are random variables [10], [41]. The statistical
dependency among the variables are such that any variable is
independent of all the other variables, given its neighbors. Usu-
ally, the variables in an MRF are constrained by a compatibility
function, also known as a clique potential in literature. A clique
of an MREF is a fully connected sub-graph, i.e., it is a subset
C C V such that (i,5) € E foralli,j € C. A clique is max-
imal if it is not a strict subset of another clique. Therefore, a
maximal clique does not remain fully connected if any addi-
tional vertex of the MRF is included in it. For example, in the
MREF shown in Fig. 2, {21, 22, 23, x4} and {3, x4, x5} are two
maximal cliques.

Let there be /N, maximal cliques in the MRF, and x; be the
variables in maximal clique j. Let 1,(x;) be the clique potential
of clique j. Then the joint distribution of the variables is given
by Hammersley—Clifford theorem [42]

1 X
p(x) = - [T #i(xp) 7
j=1

where Z is a constant, also known as partition function, chosen
to ensure the distribution is normalized. In Fig. 2, with two
maximal cliques in the MRF, namely, {z1,%2,%3,24} and
{x3, 24,25}, the joint probability distribution is given by

1
p(x) = 71/’1($17$273737904)1/12(37379047%5)- ¥
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Fig. 3. Fully connected MRF of 8 x 8 MIMO system.

Pairwise MRF: An MRF is called a pairwise MREF if all the
maximal cliques in the MRF are of size two. In this case, the
clique potentials are all functions of two variables. The joint
distribution in such a case takes the form [11]

p(x) o | I (i ;) (H¢i($i)) €))
(4,4) i

where ;_;(z;, z;) is the clique potential between nodes z; and
x; denoting the statistical dependence between them, and ¢; (2;)
is the self potential of node z;.

2) MRF of MIMO System: The MRF of a MIMO system is a
fully connected graph. Fig. 3 shows the MRF for a 8 x 8 MIMO
system. We get the MRF potentials for the MIMO system where
the posterior probability function of the random vector x, given
r and H, is of the form3

plxle, H) o exp (%nr - Hx||2) exp (In p(x))
— oxp (-217@ ~Hx)"(r - Hx))

. Hexp (In p(x;)) (10)

3In our detection problem, relative values of the distribution for various pos-
sibilities of x are adequate. So, we can omit the normalization constant Z which
is independent of x, and replace the equality with proportionality in the distri-
bution.
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1
x exp (_F (x"H"Hx — 2§R{XHHHI'})>

-Hexp(lnp(xi)). (11)

Now, defining R £ (1/02)H¥Hand z 2 (1/02)HH

write (11) as

r, we can

- Rzl Rija;}

i<j

- exp (Z R {xfz&) Hexp (lnp(z;)) (12)

p(x|r, H) o exp

[T exp (—ziR{Ri;}x;)

i<j

. <H exp (z;R{z;} + hlp(‘“)))

where z; and R;; are the elements of z and R, respectively.
Comparing (14) and (9), we see that the MRF of the MIMO
system has only pairwise interactions with the following
potentials:

Vi j(xi,xj) = exp (—z:R{Rij} ),
¢i(x;) = exp (z;R{zi} + Inp(z;)).

3) Message Passing: The values of 1 and ¢ given by (14) and
(15) define, respectively, the edge and self potentials of an undi-
rected graphical model to which message passing algorithms,
such as belief propagation, can be applied to compute the mar-
ginal probabilities of the variables. BP attempts to estimate the
marginal probabilities of all the variables by way of passing
messages between the local nodes.

A message from node j to node 7 is denoted as m; ;(x;), and
belief at node ¢ is denoted as b;(x;), z; € {£1}. The b;(z;)
is proportional to how likely z; was transmitted. On the other
hand, m;(z;) is proportional to how likely node j thinks z;
was transmitted. The belief at node ¢ is

bi(zi) o pilas) [ miji(a:)

JEN ()

13)

(14)
15)

(16)

where N (i) denotes the neighboring nodes of node i, and the
messages are defined as [11]
H M, ().

Z¢J £y djjz Lj, 371 17
kEN (5)\i

mjl xz

Equation (17) actually constitutes an iteration, as the message
is defined in terms of the other messages. So, BP essentially
involves computing the outgoing messages from a node to each
of its neighbors using the local joint compatibility function and
the incoming messages and transmitting them. The algorithm
terminates after a fixed number of iterations.

4) Improvement Through Damping: In systems character-
ized by fully/highly connected graphical models, BP-based al-
gorithms may fail to converge, and if they do converge, the es-
timated marginals may be far from exact [43], [44]. It may be
expected that BP might perform poorly in MIMO graphs due
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TABLE 1
PROPOSED MRF-BASED BP DETECTOR/EQUALIZER ALGORITHM

Initialization

1. mIO])( i) = 0.5,

plz;=1)=plx; =-1)=0.5, Vi,j=1,--- , Kmn
<0])( ) =05, Vi,j=1,---,Kng
Gl HN r;, R=2%L 1 HUH

2.7
3.z
4. fori=1to Kn;
5. ¢i(w;) = exp (xR {z:} + In(p(z;)))
6. end for
7. fori=1to Kn;
8 forj=1to Kngy, j#1i
9. (i, x;) = exp( —zR{R;;}x;)
10. end for
11. end for

Iterative Update of Messages
12. for t = 1 to num_iter

Damped Message Calculation

13. fori=1to Kn,
14. forj=1to Kny, j#1

15 i) o Yo, di@i)vi (@i, ;)
( —
Tken Fi)\G Mhe,i (f )

16. mit;(;rj) = am m( 1)(7:J) +(1- am)m (EJ)
17.  end for

18. end for

19. end for; End of for loop starting at line 12

Belief Calculation
20. fori =1 to Kny

21 bi(xi) o< 6ilwi) [Teps mys ™" (x:)

22. end for
Detection of Data Bits
23.%; = if%g‘;"}‘ by (z;), Yi=1,---,Kn,

24. Terminate

to the high density of connections. However, several methods
are known in the literature, including double loop methods [45],
[46] and damping [47]-[49], which can be applied to improve
things if BP does not converge (or converges too slowly). In this
paper, we consider damping method.

Message Damped BP: In message damping, at each step
of the algorithm, the evaluation of messages is taken to be
a weighted average between the old estimate and the new
estimate [47]. Denoting m( )(3:]) as the updated message in
iteration ¢ obtained by message passing, the new message
from node ¢ to node j in iteration ¢, denoted by m,gt])-(zj), is
computed as a convex combination of the old messagé and the
updated message as

m qu @) i (@i, x;5) H m(f 1) (z;), (18)
keN (i)\j
mE,?-(a:j) :amm&‘”(xn + (1= )iy () (19)

where a,, € [0,1) is referred as the message damping factor.
The proposed MRF BP algorithm employing message damping
is listed in Table 1.

5) Computation Complexity: The per-symbol complexity
of calculating the messages in a single MRF BP iteration is
O(K?n?) and the per-symbol complexity of calculating the
beliefs is O(Kn;). Likewise, the per-symbol complexities of
computing ¢ and 1 are O(1) and O(Kn;), respectively. The
computation of z can be carried out with O(Kn,.) per-symbol
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@ pt A =f{plhi £

Eqn. (24),(22),(23)
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T

(a)
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Fig. 4. Message passing between variable nodes and observation nodes in FG-GAI BP algorithm.

complexity. The computation of R involves computation of
HHYH, which involves three operations: 1) computation of G;
2) calculation of G G; and 3) multiplication of F# and F with
GH G. The computation 1) involves K -point FFT of matrices
H;,l=0,---,L—1,each H; of dimension n,. x n;. The com-
plexity associated with this operation is O(n;n,. K log, K). The
total number of symbols transmitted is K 7. So, the per-symbol
complexity is O(n, log, K). The computation 2) involves the
calculation of GEG, fori = 0,---, K — 1. The computation
of each GE G, has complexity O(n?). Due to block-diagonal
structure of G, K such computations can be done in O(Kn})
complexity, leading to a per-symbol complexity of O(n?).
Likewise, due to the block-symmetric structure of F, the
per-symbol complexity corresponding to computation 3) is
O(Kn?). Since the number of BP iterations is much less than
Kny, the overall per-symbol complexity is of the proposed
MRF BP detection algorithm is given by O(K?2n?), which
scales well for large Kn,.

The simulated BER performance of the MRF BP detection
algorithm is presented in Section III-C1.

B. Detection Using BP on FGs With GAI

We next propose a FG-based detection approach with
Gaussian approximation of interference. Consider the MIMO
system model in (4). We will treat each entry of the observation
vector r as a function node (observation node) in a factor graph,
and each transmitted symbol as a variable node. The received

signal ; can be written as
Kn;y

T, = E hijxj-l-’ui
=1

Kny
=h;prr + E hij.’lij +;.
Jj=1,7#k

(20)

Interference
When computing the message from the sth observation node
to the kth variable node, we make the following Gaussian ap-
proximation of the interference:
Kn,
r; = hipxr + Z hijoi + v
i=1i#k

'g

21

/

A
=Zik

where the interference plus noise term, z;x, is modeled as
CN (pz,,, 02, ) with

Kny

> hiE(z;),

=Lk

Kny

2o= > |hiPVar(z)) +0”.
i=Li#k

Pz = (22)

(23)

Q
|

For BPSK signaling, the log-likelihood ratio (LLR) of the
symbol z;, € {+1,—1} at observation node i, denoted by A¥,
can be written as

p(ri|H,z, = 1) 4

Aqk :10 =
O (i H, = —1)

R (b, (ri = p=i1)) -
(24)
The LLR values computed at the observation nodes are
passed to the variable nodes [Fig. 4(a)]. Using these LLRs, the
variable nodes compute the probabilities

2
0%k

4 A
pit Spi(er = +1]r)
Kn,
exp (21:1,1# Af)
= o
I +exp (Zl:q,l;éi Af)

(25)

and pass them back to the observation nodes [Fig. 4(b)]. This
message passing is carried out for a certain number of iterations.
Messages can be damped as described in Section III-A4 and
then passed. Finally, x, is detected as

Kn,
T = sgn <Z Af) .
i=1

The algorithm listing is given in Table II. Note that approxi-
mating the interference as Gaussian greatly simplifies the com-
putation of messages (as can be seen from the complexity dis-
cussion in the following subsection).

1) Computation Complexity: The computation complexity
of the FG-GAI BP algorithm in the above involves 1) LLR
calculations at the observation nodes as per (24), which has
O(K?nn,) complexity, and 2) calculation of probabilities at
variable nodes as per (25), which also requires O(K?2nn,)

(26)
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TABLE II
PROPOSED FG-GAI-BASED BP DETECTOR/EQUALIZER ALGORITHM

Initialization
1. AF =0, pft = 0.5, 550 =0,
Kz = O'ik =su., =0,
So2 =0, Vi=1,---  Kn, Vk=1,--- Kn;
2. fort=1to num_iter
Computation of LLRs at observation nodes
fori =1 to Kn,

3

4 Spz; :Z,?:n]t h’ij (2pg+ - 1)

5. so2 = 40 hylPplT (1 - plT)

6. for k =1 to Kn,

T e =S, — ha (205 1)

< — 4lhik Pl (1= pEF) + 02
9 Af = p}—k (il;k(ri - l‘zu))

10.  end for

11. end for

Computation of probabilities at variable nodes
12. for k=1 to Kn;

2 _g
Oz = 5”'2)7,
4

13, spe = [ AR
14. fori=1to Kn,
c exp(s,p—AF
N v
16.  end for
17. end for
18. end for; End of for loop starting at line 2

Detection of data bits
19. for k =1 to Kny
20. @ = sgn( Efiﬁr AF)
21. end for
22. Terminate

complexity.# Hence, the overall complexity of the algorithm
is O(K2n4n,.) for detecting Kn; transmitted symbols. So the
per-symbol complexity is just O(Kn;) for n; = n,.. Note that
this complexity is one order less than that of the MRF BP ap-
proach in the previous section. Because of its linear complexity
in K and ny, the proposed FG approach with GAI is quite at-
tractive for detection in large-dimension MIMO-ISI channels.
In addition, the BER performance achieved by the algorithm
in large dimensions is very good (as shown in the BER perfor-
mance results in the Section III-C2).

C. Simulation Results

We now present the simulated BER performance of the pro-
posed MRF BP and FG-GAI BP algorithms. In the simulations,
i.i.d. Rayleigh fading channel realizations are generated for dif-
ferent data frames, and channel gains are held constant over
one data frame of K channel uses. In all the simulations of
MIMO-ISI channels, we have taken uniform power delay profile

4A naive implementation of (24) would require a summation over Kn, — 1
variable nodes for each message, amounting to a complexity of order
O(K3n2n,.). However, the summation over K'n; — 1 variables in (22) can be
written in the form J’.(:”lf hi;E(x;) — hi,E(z), where the computation of
the full summation from j = 1 to K'n; (which is independent of the variable
index k) requires K n; — 1 additions. In addition, one subtraction operation for
each k is required. The makes the complexity order for computing (22) to be
only O(K?nn,). A similar argument holds for computation of the variance
in (23), and hence the complexity of computing the LLR in (24) becomes
O(K?nyn,). Likewise, a similar rewriting of the summation in (25) leads to
a complexity of O(K?nn,.).
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Fig. 5. BER performance of the MRF BP algorithm as a function of message
damping factor, «,,, in V-BLAST MIMO with n, = n, = 16,24 on flat
fading (L = K = 1) at 8-dB SNR. # MRF BP iterations = 5.

(i.e., all the L paths have equal energy). Also, perfect channel
knowledge is assumed at the receiver.

1) Performance of MRF BP Algorithm in Section III-A: Per-
formance in Flat-Fading With Large ny: In Fig. 5, we illustrate
the effect of damping and the large-dimension behavior of the
MREF BP algorithm for large number (tens) of transmit and re-
ceive antennas with BPSK modulation on flat fading channels
(i.e., L = K = 1). The number of MRF BP iterations is 5.
Fig. 5 shows the variation of the achieved BER as a function
of the message damping factor, «,,, in 16 x 16 and 24 x 24
V-BLAST MIMO systems at an average received SNR per re-
ceive antenna, v, of 8 dB. Note that a,,, = 0 corresponds to
the case of undamped BP. In Fig. 5, we have also plotted the
ZF and MMSE performances for comparison. In addition, max-
imum-likelihood (ML) performance evaluated through sphere
decoding simulation are also plotted. It can be observed from
Fig. 5 that, depending on the choice of the value of a,,, mes-
sage damping can significantly improve the BER performance
of the MRF BP algorithm. There is an optimum value of .,
at which the BER improvement over no damping case is max-
imum. For the chosen set of system parameters in Fig. 5, the
optimum value of «,, is observed to be about 0.2. For this op-
timum value of «,, = 0.2, it is observed that about an order
of BER improvement is achieved with message damping com-
pared to that without damping. As can also be seen, this perfor-
mance is significantly better than ZF/MMSE performance and
close to ML performance. It can be further seen that the perfor-
mance improves for increasing n, = n, (i.e., performance of
the ny = n, = 24 system is better that of the n, = n, = 16
system).

In Fig. 6, we plot the BER performance of MRF BP
in V-BLAST MIMO as a function of SNR for different
ny = n, = 4,8,16,24,32 for o, = 0.2. MMSE and ML
performance are plotted for comparison. While MMSE perfor-
mance remains poor for large n;, MRF BP performance shows
large-dimension behavior whereby the performance improves
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Fig. 6. BER performance of the MRF BP algorithm as a function of SNR in
V-BLAST MIMO for different n, = n,. on flat fading (L = K = 1) with
message damping o, = 0.2 and # MRF BP iterations = 5.

and moves closer to unfaded SISO AWGN performance for
increasing n.. It is seen that for 32 x 32 V-BLAST MIMO, the
MRF BP performance is close to ML performance predicted
by sphere decoding simulation. For more than 32 dimensions,
sphere decoder simulation is prohibitively complex. In such
cases, unfaded SISO AWGN performance can serve as a lower
bound on ML performance.5 The nearness to sphere decoder
and SISO AWGN performances shown in Figs. 5 and 6 il-
lustrates the near-optimal performance of MRF BP in large
dimensions.

Performance in MIMO-ISI Channels With Large Kn;: In
Fig. 7, we explore the effect of message damping on the BER
performance of the MRF BP detector/equalizer in MIMO-ISI
channels. Fig. 7 shows the variation of the achieved BER as a
function of the message damping factor, «,, for ny = n, = 4,
BPSK, [. = 10,K = 50], at an average received SNR of
6 dB. The number of dimensions Kn; is 200. The number of
MREF BP iterations used is 7. From Fig. 7, it is can be seen that
damping can significantly improve the BER performance of the
MREF BP algorithm. For the chosen set of system parameters in
Fig. 7, the optimum value of ., is observed to be about 0.45,
which gives about an order of BER improvement. This point
of the damping benefit in terms of BER performance (and also
in terms of convergence) is even more clearly brought out in
Fig. 8, where we have compared the BER performance without
damping («,, = 0) and with damping («,,, = 0.45) in severely
delay-spread MIMO-ISI channel with [L = 20, K = 100],
ny = n,. = 4 (number of dimensions = 400) at an SNR of
7 dB as a function of the number of MRF BP iterations. It is
interesting to see that without damping (i.e., with «,,, = 0),
the algorithm indeed shows “divergence” behavior, i.e., BER
increases as number of iterations is increased beyond 4. Such
divergence behavior is effectively removed by damping, as can

SHenceforth, since sphere decoding is prohibitive for more than 32 dimen-
sions, for performances in more than 32 dimensions we will give SISO AWGN
performance as a lower bound on ML performance.
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Fig. 7. BER performance of the MRF BP algorithm as a function of the mes-
sage damping factor, «,,, in MIMO-ISI channels. n; = n, = 4, [L =
10, K = 50], uniform power delay profile, average received SNR = 6 dB,
# MRF BP iterations = 7.
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Fig. 8. Comparison of the BER performance of message damped and un-
damped MRF BP detector/equalizer as a function of number of BP iterations
in MIMO-ISI channels. n; = n, = 4,[L = 20,K = 100], uniform
power delay profile, average received SNR = 7 dB, «,,, = 0 (undamped),
@, = 0.45 (damped).

be seen from the BER performance achieved with a,,, = 0.45.
Indeed, the algorithm with damping («,,, = 0.45) is seen to con-
verge smoothly. It is also interesting to note that the algorithm
converges to a BER which is quite close to the unfaded SISO
AWGN BER; BER on SISO AWGN channel at 7-dB SNR is
about 7.8 x 10~ and the converged BER using damped MRF
BP is about 1 x 1073, It is noted that damping [as per (19)] does
not increase the order of complexity of the algorithm without
damping, and that the order of complexity without and with
damping remains the same.

Comparison With MIMO-OFDM Performance: In Fig. 9,
we present a performance comparison between the considered
MIMO-CPSC scheme and a MIMO-OFDM scheme for the
same system/channel parameters in both cases; forn; = n,. = 4
and following combinations of L and K: [L = 5, K = 25],
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Fig. 9. BER performance of message damped MRF BP detector/equalizer as a
function of average received SNR in MIMO-ISI channels with n, = n, = 4
for different values of L and K keeping L/ K constant: [L = 5, K = 25],
[L =10,K = 50],and [L = 20, K = 100]. Uniform power delay profile.
# MRF BP iterations = 10, a,, = 0.45.

[L =10, K = 50], [L = 20, K = 100]. For MIMO-CPSC, two
detection schemes are considered: frequency-domain MMSE
(FD-MMSE) and proposed MRF BP. For the MRF BP, number
of BP iterations used is 10 and the value of «,,, used is 0.45. For
MIMO-OFDM, two detection schemes, namely, MMSE and
ML detection on each subcarrier are considered. We have also
plotted the unfaded SISO AWGN performance that serves as a
lower bound on the optimum detection performance. The fol-
lowing observations can be made from Fig. 9: 1) MIMO-OFDM
with MMSE detection performs the worst among all the con-
sidered system/detection configurations; 2) MIMO-CPSC with
FD-MMSE performs better than MIMO-OFDM with MMSE
(this better performance in CPSC is in line with other reported
comparisons between OFDM and CPSC, e.g., [37]-[39]); 3) at
the expense of increased detection complexity, MIMO-OFDM
with ML detection performs better than both MIMO-OFDM
with MMSE and MIMO-CPSC with FD-MMSE; and 4) more
interestingly, MIMO-CPSC with the proposed low-complexity
MRF BP detection significantly outperforms MIMO-OFDM
even with ML detection. Indeed, the performance of the
MIMO-CPSC with MRF BP detection gets increasingly closer
to the SISO AWGN performance for increasing L, K, keeping
L/K constant. For example, the gap between the MRF BP
performance and the SISO AWGN performance is only about
0.25 dB for L = 20 at a BER of 10~2. This illustrates the ability
of the MRF BP algorithm to achieve near-optimal performance
for severely delay spread MIMO-ISI channels (i.e., large L) as
witnessed in UWB systems.

A comparison of the turbo coded BER performance of
MIMO-CPSC with MRF BP detection and MIMO-OFDM
with ML detection is shown in Fig. 10 for n, = n; = 4,
[L. = 10,K = 50], and BPSK. Rate-1/2 and rate-3/4 turbo
codes are considered. In Fig. 10, we observe that the turbo coded
BER of MIMO-CPSC with MRF-BP is significantly better than
that of MIMO-OFDM with ML. At a coded BER of 1073,
MIMO-CPSC with MRF-BP outperforms MIMO-OFDM with
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Fig. 11. BER performance of the FG-GAI BP algorithm in V-BLAST
MIMO systems with n, = n,, = 8,16,32 on flat fading (L = K = 1).
# FG-GAI BP iterations = 10, a,, = 0.4.

ML by about 2.3 dB for rate-1/2 coding and by about 4.6 dB
for rate-3/4 coding.

2) Performance of FG-GAI BP Algorithm in Section III-B:
Fig. 11 shows the simulated BER performance of the FG-GAI
BP algorithm in n; X n, V-BLAST MIMO with n; = n, =
8,16, 32 and BPSK on flat fading (L. = K = 1). The number
of FG-GAI BP iterations and message damping factor used are
10 and 0.4, respectively. We observe that, like the MRF BP
approach, the FG-GAI BP approach also exhibits large-dimen-
sion behavior. For example, in 32 x 32 V-BLAST MIMO, the
FG-GAI BP performance is close to sphere decoding perfor-
mance showing FG-GAI BP’s near-optimality in large dimen-
sions. Fig. 11 also shows the performance of the edge-based
regular-d¢ (EBRDF) algorithm in [34], which used a different
Gaussian approximation as described in Section I. BER plots of
EBRDF for 8 x 8 V-BLAST MIMO with d¢ = 7 and 5 are
shown. It is seen that FG-GAI BP performance is better than
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Fig. 13. Comparison of the BER performances of the MRF BP and FG-GAI
BP algorithms in MIMO-ISI channels with n; = n, = 4, [L = 5, K = 25],
[L = 20, K = 100], uniform power delay profile.

EBRDF performance. In addition, the complexity of FG-GAI
BP is linear in n;, whereas EBRDF complexity is exponential
in dy making EBRDF not attractive for large dimensions.
Next, in Fig. 12, we plot the performance of FG-GAI BP
in MIMO-ISI channel with L = 6 and K = 64 for n; =
n, = 4,8,16. Since the number of dimensions Kn; here is
more than 32 (Kn, = 256,512,1024), we plot SISO AWGN
performance for comparison instead of sphere decoding perfor-
mance. It can be seen that the performance is quite close to SISO
AWGN performance illustrating FG-GAI BP’s near-optimality
in MIMO-ISI channels with large dimensions. Fig. 13 presents
a comparison of the performances achieved by the MRF BP
and FG-GAI BP approaches for the following system settings:
ng=mn, =4,[L =5 K = 25],and [L = 20, K = 100]. It
can be seen that, for these system settings, the FG-GAI BP ap-
proach performs almost the same as the MRF BP approach, at
one order lesser complexity than that of the MRF BP approach.
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Fig. 14. Comparison of the BER performances of the FG-GAI BP scheme and
the scheme in [30] in MIMO-ISI channels with n; = n, = 4,[L = 4, K =
400], uniform power delay profile.

Fig. 14 presents a comparison of the performances achieved
by the proposed FG-GAI BP scheme and the scheme in [30]
for ny = n, = 4and [L = 4, K = 400]. It can be seen that
while the scheme in [30] exhibits an error floor, the proposed
FG-GAI BP avoids flooring and achieves much better perfor-
mance. Such good performance is achieved because equaliza-
tion is done jointly on all the Kn; symbols in a frame. The com-
plexity of the scheme in [30] is O( Ln; ), whereas the complexity
of the proposed scheme is O(Kn;). Though K > L, the linear
complexity of the proposed scheme in K is still very attractive.
Also, as in the case of MRF BP, MIMO-CPSC with FG-GAI
BP detection performs significantly better than MIMO-OFDM
with ML detection.

IV. HYBRID ALGORITHMS USING BP AND LOCAL
NEIGHBORHOOD SEARCH FOR M-QAM

The MRF and FG-GAI BP algorithms proposed in the
previous section work well for BPSK modulation, i.e., for
x € {£1}%" They can work for 4-QAM also by viewing the
transmit symbol vector to be in {41}25" Low-complexity al-
gorithms for detection/equalization for higher-order M-QAM,
M > 4, over large dimension MIMO-ISI channels are of
interest. A BP-based algorithm that is suited for higher order
QAM in MIMO has been reported recently in [50], which uses
a Gaussian tree approximation (GTA) to convert the fully-con-
nected graph representing the MIMO system into a tree and
carries out BP on the resultant approximate tree. We refer to this
algorithm in [50] as the GTA algorithm. In this section, we take
an alternate hybrid approach for efficient detection of M-QAM
signals, where the proposed FG-GAI BP algorithm for BPSK
is used to improve the M-QAM detection performance of
local neighborhood search algorithms, including tabu search
algorithm [51], [52].

Local Neighborhood Search-Based Detection: Low-com-
plexity search algorithms that attempt to minimize the ML cost
|lr — Hx||?, by limiting the search space to local neighbor-
hood have been proposed for detection of M-QAM signals
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in MIMO—e.g., tabu search (TS) algorithm [35]. Such
local neighborhood search algorithms have the advantage of
low-complexity (e.g., TS algorithms, like the proposed MRF
BP algorithm, has quadratic complexity in Kn;), making
them suited for large dimensions. However, their higher-order
QAM performance is away from optimal performance. Here,
we propose to improve the M-QAM performance of these
search algorithms through the application of the proposed BP
algorithms on the search algorithm outputs. This approach es-
sentially improves the reliability of the output symbols from the
local neighborhood search, thereby improving the overall BER
performance. We apply this hybrid approach to the reactive tabu
search (RTS) algorithm in [35]. Though other low-complexity
search algorithms can be considered as a preprocessor, we
chose RTS algorithm as the preprocessor because of its better
performance than other local search algorithms with same order
of complexity (e.g., LAS algorithm in [53] and [54]).

Hybrid RTS-BP Approach: In the following subsections, we
first present a brief summary of the RTS algorithm in [35] and
the motivation behind the proposed hybrid approach. Next, we
present the proposed hybrid RTS-BP algorithm [55] and its BER
performance. Finally, we present a method to reduce complexity
based on the knowledge of the simulated probability density
function (pdf) of the RTS algorithm output.

A. Reactive Tabu Search (RTS) Algorithm

Here, we present a brief summary of the RTS algorithm in
[35]. The RTS algorithm starts with an initial solution vector,
defines a neighborhood around it (i.e., defines a set of neigh-
boring vectors based on a neighborhood criteria), and moves to
the best vector among the neighboring vectors (even if the best
neighboring vector is worse, in terms of ML cost ||r — Hx||?,
than the current solution vector); this allows the algorithm to es-
cape from local minima. This process is continued for a certain
number of iterations, after which the algorithm is terminated and
the best among the solution vectors in all the iterations is de-
clared as the final solution vector. In defining the neighborhood
of the solution vector in a given iteration, the algorithm attempts
to avoid cycling by making the moves to solution vectors of the
past few iterations as “tabu” (i.e., prohibits these moves), which
ensures efficient search of the solution space. The number of
these past iterations is parametrized as the “tabu period,” which
is dynamically changed depending on the number of repetitions
of the solution vectors that are observed in the search path (e.g.,
increase the tabu period if more repetitions are observed). The
per-symbol complexity of the RTS algorithm is quadratic in
Kny for ny = n,.

B. Motivation for Hybrid RTS-BP Algorithm

The proposed hybrid RTS-BP approach is motivated by the
following two observations we made in our BER simulations of
the RTS algorithm: 1) the RTS algorithm performed very close
to optimum performance in large dimensions for 4-QAM; how-
ever, its higher order QAM performance is far from optimal,
and 2) at moderate to high SNRs, when an RTS output vector
is in error, the least significant bits (LSB) of the data symbols
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are more likely to be in error than other bits. An analytical rea-
soning for the second observation can be given as follows.

Let the transmitted symbols take values from M-QAM al-
phabet A, so that x € A™ is the transmitted vector. Consider
the real-valued system model corresponding to (4), given by

r =Hx +v (27)
where
(_ [ R(H) —S(H) s _ | R(r)
o= S w7 (8]
r_ | R(x) i [ R(v)
<= [5a) v =150)]
x' is a 2Kn; x 1 vector; [z, -+, 2%, | can be viewed

to be from an underlying M-PAM signal set, and so is
[Thn, 110" Togen,]- Let B = {ay1,az,--,am,} denote the
M-PAM alphabet that 2 takes its value from.

Let X’ denote the detected output vector from the RTS algo-
rithm corresponding to the transmitted vector x’. Consider the
expansion of the M-PAM symbols in terms of £+1’s, where we
can write the value of each entry of X’ as a linear combination
of £1’s as

N-1
7 = 221'55377 i=1,--,2Kn, (28)
7=0

where N = log, M and ?)\,Ej) € {+£1}. We note that the RTS
algorithm outputs a local minima as the solution vector. So, X/,
being a local minima, satisfies the following conditions:

I — B < | —H'(& + \e) ||, Vi=1,...,2Kn,

(29)

where \; = (aq — 7%), ¢ = 1,---, M, and e; denotes the ith

column of the identity matrix. Defining F’ 2 H'TH and de-

noting the 4th column of H' as h;, the conditions in (29) reduce
to

20,0 Th; < 20 (H'R) hy + A2 fi; (30)

where f;; denotes the (¢, j)th element of F’. Substituting for

r’ in the above equation, and ignoring noise under moderate to
high SNR conditions, (30) can be written as

2Xi(x — %) TE < A2y 31
where f; denotes the ith column of F/. If \; > 0
2(x' — %) < Aifui (32)
IfA <0
2(x' = %)f > Aifu (33)
Combining the above two equations, we can write
2(x' — %) fisgn(A;) < Aifasgn(As). (34)
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Fig. 15. Hybrid RTS-BP algorithm.

For Rayleigh fading, f;; is chi-square distributed with 2K n, de-
grees of freedom with mean K n;. Approximating the distribu-
tion of f;; to be normal with mean zero and variance Kn, /4 for
i # j by central limit theorem, we can drop the sgn(A;) in (34).
Using the fact that the minimum value of |)\;] is 2, (34) can be
simplified as

Z Ajfi; < fii (35)
! £z

where A; = =z, — 7% Also, if 2} = 77, by the normal approxi-

mation in the above

Z Ajfij ~N 07% Z A%

’ AI ’ A/
z 7517]. z #mj

(36)

The LHS of (35) is normal with variance proportional to AJZ,
and the RHS is positive. If A; increases, then the variance of
the LHS of (35) increases, and hence the probability that LHS
< RHS decreases. Then, for the inequality in (35), A; takes
smaller values with higher probability. Hence, the symbols of X’
are nearest Euclidean neighbors of their corresponding symbols
of the transmitted vector with high probability.® Now, because of
the symbol-to-bit mapping in (28), Z} will differ from its nearest
Euclidean neighbors certainly in the LSB position, and may or
may not differ in other bit positions. Consequently, the LSBs of
the symbols in the RTS output X’ are least reliable.

The above observation then led us to consider improving the
reliability of the LSBs of the RTS output using the proposed
FG-GAI BP algorithm presented in Section III-B, and iterate
between RTS and FG-GAI BP as follows.

C. Proposed Hybrid RTS-BP Algorithm

Fig. 15 shows the block schematic of the proposed hybrid
RTS-BP algorithm. The following four steps constitute the pro-
posed algorithm.
* Step I: Obtain X’ using the RTS algorithm. Obtain the
outputbitsgl(-]),i =1,--,2Kn;,5=0,---,N — 1, from
x’ and (28). '

e Step 2: Using the ?)\EJ )°s from Step 1, reconstruct the inter-
ference from all bits other than the LSBs (i.e., interference
from all bits other than ’b\go) ’s) as

N-—1
=) 2HbY (37)
Jj=1

6Because x}’s and 77 ’s take values from M -PAM alphabet, 7} is said to be
the Euclidean nearest neighbor of x; if |} — &| = 2.
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in MIMO-ISI channel with L = 6, ' = 64, uniform power-delay profile.

~

where b0 = [\ 30 bgjl)(m] . Cancel the recon-
structed interference in (37) from r as

¥=r-1 (38)
* Step 3: Run the FG-GAI BP algorithm in Section III-B on

the vector ¥ in Step 2, and obtain an estimate of the LSBs.
=(0)

Denote this L%l? output vector from FG-GAI BP as b
=(0 ~ .
Now, using b from the BP output, and the b)), J =
1,---, N — 1 from the RTS output in Step 1, reconstruct

the symbol vector as

a0 N
b+ > 2/bY).
j=1

-~
=
X/:

(39)

» Step 4: Repeat Steps 1 to 3 using §I as the initial vector to
the RTS algorithm.

The algorithm is stopped after a certain number of iterations
between RTS and BP. Our simulations showed that two itera-
tions between RTS and BP are adequate to achieve good im-
provement; more than two iterations resulted in only marginal
improvement for the system parameters considered in the simu-
lations. Since the complexity of BP part of RTS-BP is less than
that of the RTS part, the order of complexity of RT'S-BP is same
as that of RTS, O(K?n?).

D. Simulation Results

Fig. 16 shows the BER performance of the proposed hybrid
RTS-BP algorithm in 16 x 16 V-BLAST MIMO with 16-QAM
on a frequency-selective fading channel with L. = 6 equal
energy multipath components and K = 64 data vectors per
frame. Two iterations between RTS and FG-GAI BP are used.
For comparison, we plot SISO AWGN performance, MMSE
performance, and performance of the GTA algorithm in [50].
Though the GTA algorithm in [50] scales well for large dimen-
sions, its performance is near to MMSE performance and is far
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Fig. 17. Simulated pdfs of the ML cost of the RTS output vector (A7) in a 32
X 32 V-BLAST MIMO system with 64-QAM and SNR = 30 dB on flat fading
(L=K =1).

from SISO AWGN performance. On the other hand, the pro-
posed hybrid RTS-BP algorithm performs much closer to SISO
AWGN performance. This is because of the improvement in the
reliability of LSBs due to FG-GAI BP algorithm run on them.
We also show the performance of a hybrid algorithm using RTS
and GTA (termed as hybrid RTS-GTA), where RTS is used as
a preprocessor to generate priors for GTA (instead of uniform
priors used in [50]) and multiple iterations between RTS and
GTA are carried out. Two iterations between RTS and GTA
are used in the simulations. It can be seen that the RTS-GTA
performs better than both RTS and GTA, and RTS-BP performs
better than RTS-GTA.

E. Complexity Reduction Using Selective BP

In the proposed RTS-BP algorithm, the use of BP at the RTS
output was done unconditionally. Whereas the use of BP can
improve performance only when the RTS output is erroneous.
So, the additional complexity due to BP can be avoided if BP is
not carried out whenever the RTS output is error-free. To decide
whether to use BP or not, we can use the knowledge of the simu-
lated pdf of the ML cost of the RTS output vector, i.e., the pdf of
M, 2 ||lr" — H'X'||. Fig. 17 shows the simulated pdf of M; for
a 32 x 32 V-BLAST MIMO system with 64-QAM at an SNR
of 30 dB on flat fading (L = K = 1). From Fig. 17, it is seen
that a comparison of the value of M; with a suitable threshold
can give an indication of the reliability of the RTS output. For
example, the output is more likely to be erroneous if M; > 12
in Fig. 17.

Based on the above observation, we modify the RTS-BP al-
gorithm as follows. If M; > 6, only then BP algorithm is
used; otherwise, the RTS output is taken as the final output. The
threshold 6 has to be carefully chosen to achieve good perfor-
mance. It is seen that § = 0 corresponds to the case of uncon-
ditional RTS-BP, and § = oo corresponds to the case of RTS
without BP. For # = oo, there is no additional complexity due
to BP, but there is no performance gain compared to RTS. For
f = 0, performance gain is possible compared to RTS, but BP
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complexity will be there for all realizations. So there exits a
performance-complexity tradeoff as a function of . We illus-
trate this tradeoff in Fig. 18 for a 32 x 32 V-BLAST MIMO
system with 64-QAM in flat fading. For this purpose, we define
“SNR gain” in dB for a given threshold 6 as the improvement
in SNR achieved by RTS with selective BP using threshold 6
to achieve an uncoded BER of 10~2 compared to RTS without
BP. Likewise, we define “complexity gain” for a given 6 as
101log;, (), where (3 is the ratio of the average number of com-
putations required to achieve 10~2 uncoded BER in uncondi-
tional RTS-BP and that in RTS with selective BP using threshold
6. In Fig. 18, we plot these two gains on the y-axis as a function
of the threshold 6. From this figure, we can observe that for
values less than 4, there is not much complexity gain since such
small threshold values invoke BP more often (i.e., the system be-
haves more like unconditional RTS-BP). Similarly, for 6 values
greater than 14, the system behaves more like RTS without BP;
i.e., the complexity gain is maximum but there is no SNR gain.
Interestingly, for § values in the range 4 to 14, maximum SNR
gain is retained while achieving significant complexity gain as
well.

V. CONCLUSION

In this paper, we demonstrated that belief propagation on
graphical models including Markov random fields and factor
graphs can be efficiently used to achieve near-optimal detection
in large-dimension MIMO-ISI channels at quadratic and linear
complexities in Kn;. It was shown through simulations that
damping of messages in the MRF BP algorithm can significantly
improve the BER performance and convergence behavior. The
Gaussian approximation of interference we adopted in the factor
graph approach is novel, which offered the attractive linear com-
plexity in number of dimensions while achieving near-optimal
performance in large dimensions. In higher order QAM, itera-
tions between a tabu search algorithm and the proposed FG-GAI
BP algorithm was shown to improve the bit error performance
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of the basic tabu search algorithm. Although we have demon-
strated the proposed algorithms in uncoded systems, they can be
extended to coded systems as well, using either turbo equaliza-
tion or joint processing of the entire coded symbol frame based
on low-complexity graphical models. Finally, a theoretical anal-
ysis of the convergence behavior and the bit error performance
of the proposed BP algorithms is challenging, and remains to be
studied.
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