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Abstract—In this paper, we propose a multiple-input mul-
tiple-output (MIMO) receiver algorithm that exploits channel
hardening that occurs in large MIMO channels. Channel hard-
ening refers to the phenomenon where the off-diagonal terms of
the matrix become increasingly weaker compared to the
diagonal terms as the size of the channel gain matrix increases.
Specifically, we propose a message passing detection (MPD)
algorithm which works with the real-valued matched filtered
received vector (whose signal term becomes , where is
the transmitted vector), and uses a Gaussian approximation on the
off-diagonal terms of the matrix. We also propose a simple
estimation scheme which directly obtains an estimate of
(instead of an estimate of ), which is used as an effective channel
estimate in the MPD algorithm. We refer to this receiver as the
channel hardening-exploiting message passing (CHEMP) receiver.
The proposed CHEMP receiver achieves very good performance
in large-scaleMIMO systems (e.g., in systems with 16 to 128 uplink
users and 128 base station antennas). For the considered large
MIMO settings, the complexity of the proposed MPD algorithm is
almost the same as or less than that of the minimum mean square
error (MMSE) detection. This is because the MPD algorithm does
not need a matrix inversion. It also achieves a significantly better
performance compared to MMSE and other message passing
detection algorithms using MMSE estimate of . Further, we
design optimized irregular low density parity check (LDPC) codes
specific to the considered large MIMO channel and the CHEMP
receiver through EXIT chart matching. The LDPC codes thus
obtained achieve improved coded bit error rate performance
compared to off-the-shelf irregular LDPC codes.

Index Terms—Channel estimation, channel hardening, de-
coding, detection, large-scale MIMO systems, message passing.

I. INTRODUCTION

W IRELESS communication systems using mul-
tiple-input multiple-output (MIMO) configurations

with a large number of antennas have attracted a lot of research
attention [1]–[4]. These systems can achieve high spectral and
power efficiencies. An emerging architecture for large-scale
multiuser MIMO communications is one where each base
station (BS) is equipped with a large number of antennas and
the user terminals are equipped with one antenna each. A
key requirement on the uplink (user terminal to BS link) in
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such large-scale MIMO systems is to achieve reduced channel
estimation, detection and decoding complexities at the BS
receiver to enable practical implementation, while maintaining
good performance. When the number of BS antennas is much
larger than the number of uplink users (i.e., low system loading
factors), linear detectors like the minimum mean square error
(MMSE) detector are good in terms of both complexity and
performance [5]. In the recent years, several low complexity
detection algorithms which achieve near-optimal performance
in large dimensions using complexities comparable to that
of MMSE detection have been proposed [1], [2], [6]–[16].
These algorithms are based on local search (e.g., likelihood
ascent search (LAS) algorithm and variants in [1], [2], [6], [7]),
meta-heuristics (e.g., reactive tabu search (RTS) and variants
in [8], [9]), message passing techniques (e.g., belief propa-
gation (BP) based algorithms in [11], [12]), lattice reduction
techniques (e.g., lattice reduction (LR) aided detectors in [13],
[14]), and Monte-Carlo sampling techniques (e.g., Markov
chain Monte Carlo (MCMC) algorithms in [15]). Issues related
to channel estimation and low density parity check codes for
large-scale MIMO systems are also being addressed [17], [18].
Message passing on graphical models is a promising low-

complexity high-performance approach for signal processing
in large dimensions [19]. Decoding of turbo codes and LDPC
codes, and equalization/detection [20]–[22] are popular exam-
ples of the use of message passing algorithms in communica-
tions. In [11], a MIMO detection algorithm based on approxi-
mate message passing on a factor graph is presented. The mes-
sage passing algorithm in [12] uses a different approach. It ob-
tains a tree that approximates the fully-connected MIMO graph
and performs message passing on this tree.
In this paper, we propose a promising low-complexity re-

ceiver for large-scale MIMO systems. The receiver is based on
message passing. The novelty in the proposed receiver lies in
the exploitation of the ‘channel hardening’ phenomenon that
occurs in large MIMO channels [23]–[26]. Channel hardening
refers to the phenomenon where the off-diagonal terms of the

matrix become increasingly weaker compared to the di-
agonal terms as the size of the channel gain matrix increases.
We exploit this for the purposes of detection and channel esti-
mation. The proposed receiver, referred to as the channel hard-
ening-exploiting message passing (CHEMP) receiver, consists
of two components; a message passing detection (MPD) algo-
rithm and an estimation scheme to obtain an estimate of .
The highlights of our contributions in this paper can be summa-
rized as follows:
• proposal of the MPD algorithm which works with the
real-valued matched filtered received vector, and uses a
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Fig. 1. Large-scale multiuser MIMO system model on the uplink.

Gaussian approximation on the off-diagonal terms of the
matrix.

• proposal of a simple estimation scheme which directly ob-
tains an estimate of (instead of an estimate of ),
which is used as an effective channel estimate in the MPD
algorithm.

• less than the MMSE detection complexity (because matrix
inversion is not needed in the MPD algorithm).

• significantly better performance compared to MMSE and
other message passing detection algorithms which use
MMSE estimate of .

• analysis of themean square difference of the log-likelihood
ratios (LLRs) in the proposed receiver with perfect and
estimated channel state information (CSI).

• design of optimized irregular LDPC codes specific to the
considered large MIMO channel and the CHEMP receiver
through EXIT chart matching.

The rest of the paper is organized as follows. The system
model and the channel hardening phenomenon are described in
Section II. The proposed CHEMP receiver, and its performance
and complexity are presented in Section III. An analysis of the
CHEMP receiver is presented in Section IV. Section V presents
an extension to higher-order QAM. The design and performance
of LDPC codes matched to the large MIMO channel and the
CHEMP receiver are presented in Section VI. Conclusions are
presented in Section VII.

II. SYSTEM MODEL

Consider a large-scale multiuser MIMO system where up-
link users, each transmitting with a single antenna, communi-
cate with a BS having a large number of receive antennas. Let
denote the number of BS antennas; is in the range of tens

to hundreds. The ratio is the system loading factor.
We consider (i.e., ). The system model is illus-
trated in Fig. 1. Each user encodes a sequence of information
bits to a sequence of coded symbols using an LDPC code of

code rate . The encoded bits are modulated and trans-
mitted. Let denote the modulation alphabet. The transmission
of one LDPC code block requires channel uses.
Let denote the channel gain matrix in the th

channel use and denote the complex channel gain from the
th user to the th BS antenna. The channel gains are as-
sumed to be independent Gaussian with zero mean and vari-
ance , such that . The models the imbalance
in the received power from user due to path loss etc., and

corresponds to the case of perfect power control. Let

denote the modulated symbol vector transmitted in
the th channel use, where the th element of denotes the
modulation symbol transmitted by the th user. Assuming per-
fect synchronization, the received vector at the BS in the th
channel use, , is given by

(1)

where is the noise vector. Dropping the channel use index
for convenience, (1) can be written in the real domain as

(2)

where

and denote the real and imaginary parts, respectively.
Note that , , , and .
For a QAM alphabet , the elements of will take values from
the underlying PAM alphabet , i.e., . The elements
of are modeled as i.i.d. . The average received SNR
per receive antenna is given by , where is the
average energy of the transmitted symbols. For the real-valued
system model in (2), the maximum-likelihood (ML) detection
rule is given by

(3)

When the transmitted bits are equally likely, then the ML de-
cision rule is same as the maximum a posteriori probability
(MAP) decision rule, given by

(4)

The exact computation of (3) and (4) requires exponential
complexity in . Message passing algorithms can provide ap-
proximate marginalization of the joint distribution in (4) at low
complexities. In Section III, we propose such a message passing
algorithm, whose novelty lies in exploiting the channel hard-
ening phenomenon that happens in large MIMO channels. The
channel hardening effect in large MIMO channels is described
in the following subsection.
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A. Channel Hardening in Large MIMO Channels

Channel hardening refers to the phenomenon where the vari-
ance of the mutual information of the MIMO channel grows
very slowly relative to its mean or even shrink as the number of
antennas grows [23]. Consider a MIMO channel. As
and are increased keeping their ratio fixed, the distribution of
the singular values of the MIMO channel matrix becomes less
sensitive to the actual distribution of the entries of the channel
matrix (as long as the entries are i.i.d.) [24]. This is a result of
the Marcenko-Pastur law [25], which states that if the entries
of a matrix are zero mean i.i.d. with variance ,
then the empirical distribution of the eigenvalues of con-
verges almost surely, as with , to a
density function [26]

(5)

where , , and
An effect of the Marcenko-Pastur law is that very tall or very
wide matrices1 are very well conditioned. The law also implies
that the channel “hardens”, i.e., the eigenvalue histogram of a
single realization converges to the average asymptotic eigen-
value distribution.
Channel hardening can bring in several advantages in large

dimensional signal processing. For example, linear detection in
large systems will require inversion of large matrices. Inversion
of large random matrices can be done fast using series expan-
sion techniques [27]–[29]. Because of channel hardening, ap-
proximate matrix inversions using series expansion and deter-
ministic approximations from limiting distribution become ef-
fective in large dimensions.
An interesting aspect in channel hardening is that as the size

of increases, the off-diagonal terms of the matrix be-
come increasingly weaker compared to the diagonal terms, i.e.,

for with . This
phenomenon is pictorially illustrated in Fig. 2, where we have
plotted for the real-valued channel model in (2) for 8 8,
32 32, 64 64, and 128 128 channels. In proposing the new
receiver algorithm in the next section, we will work with ap-
proximations to the off-diagonal terms of the matrix and
estimates of , which are found to achieve very good per-
formance in large dimensions at low complexities.

III. THE PROPOSED CHEMP RECEIVER

In this section, we present the proposed CHEMP receiver.
The proposed CHEMP receiver has two main components: 1) a
message passing based detection (MPD) algorithm, and 2) a
scheme to estimate . The proposed MPD algorithm works
with the real-valued matched filtered received vector (whose
signal term becomes ), and uses a Gaussian approxima-
tion on the off-diagonal terms of the matrix.
Before we describe the proposed MPD algorithm, we state

the following lemma which will be used in the development and
analysis of the detection algorithm.

1In practice, the channel matrix in a multiuser system with tens of single-
antenna users and hundreds of BS antennas will become a very tall matrix on
the uplink, and a very wide matrix on the downlink.

Fig. 2. Magnitude plots of for 8 8, 32 32, 64 64, and 128 128
MIMO channels.

Lemma 1: Let and be Gaussian random variables with
zero mean and variance and , respectively. Let
and .
• When and are independent, and

. Then by central limit theorem, for
large , . When and are i.i.d.,

.
• When , is a random variable of degree .

and .

A. Proposed MPD Algorithm

Consider the real-valued system model in (2). We consider
4-QAM modulation in this Section, I.e., . We will
extend the algorithm to higher-order QAM in Section V. Per-
forming matched filter operation on , we have

(6)

From (6), we write the following:

(7)

where

(8)

The th element of can be written as

(9)
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where is the element in the th row and th column of ,
is the th element of , and

(10)

is the th element of , where is the th element of .
Note that the variable defined in (9) denotes the interference-
plus-noise term, which involves the off-diagonal elements of

(i.e., , ). We approximate the term to have
a Gaussian distribution with mean and variance , i.e., the
distribution of is approximated as . By central limit
theorem, this approximation is accurate for large , . The
mean and variance in this approximation are given by

(11)

(12)

Denoting the probability of the symbol as , we have

(13)

Also, note that by Lemma 1, . Because of the
above Gaussian approximation, the a posteriori probability
(APP) of the symbol can be written as

(14)

From (14), the log-likelihood ratio (LLR) of , denoted by ,
can be written as

(15)

From (15), the probability of symbol , can be written as

(16)

Message passing: The system is modeled as a fully-con-
nected graph, where the data symbols in represent the nodes.
There are nodes in the graph corresponding to the
elements in the vector . The th node uses the knowledge of
, and the incoming APPs
to obtain a soft estimate of the interference to symbol , and
computes its APP, . That is, each node is an approximate APP
processor for its associated symbol, and message passing refers
to the exchange of APP values computed at each iteration.
Fig. 3 illustrates the above message passing schedule. Note
that the computation of the message in (16) requires the
computation of (11), (12) and (15). The algorithm is initialized
with , , and message passing is carried out for a
certain number of iterations, after which the algorithm stops.
The values of at the end are taken as the soft values of .
These soft values can be directly fed to the channel decoder in

Fig. 3. Message passing in the proposed MPD algorithm.

coded systems. In uncoded systems, a hard estimate of symbol
can be obtained as

if
otherwise.

(17)

B. Improving Convergence Rate

At the end of the th iteration of the detection algorithm
described above, we obtain the probability of the th user’s
information bit, . The rate of convergence of this sequence

can be improved by certain techniques.
We discuss the following two techniques that helps us to
improve the convergence.
• Aitken acceleration: Aitken’s delta-squared process is a
technique known in numerical analysis [30] for accel-
erating sequence convergence. This method is also used
in [22] to accelerate the convergence of the Gaussian
belief propagation algorithm. By this method, a linearly
converging sequence of real numbers can be accelerated
to converge quadratically. Although there is no rigorous
proof guaranteeing this rate of convergence, empirical
observations have shown that this method does accelerate
the convergence of iterative algorithms. According to
Aitken’s acceleration method, we define a sequence

(18)

This new sequence converges faster than and to the
same limit, whenever converges. After the first three
iterations, can be used as the messages in the algorithm
for faster convergence.

• Damping: Damping of messages passed in message
passing algorithms is a scheme known to improve the rate
of convergence of iterative algorithms [31]. At the th
iteration, the message is damped by obtaining a convex
combination of the message computed at the th iteration
and the message at the th iteration, with a damping
factor . Thus, if is the computed probability
at the th iteration, the message at the end of th iteration is

(19)
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TABLE I
COMPARISON BETWEEN THE COMPLEXITIES (IN NUMBER OF REAL

OPERATIONS) OF THE PROPOSED MPD, MMSE DETECTOR, AND SUMIS
DETECTOR IN [36] FOR DIFFERENT VALUES OF . NUMBER OF

ITERATIONS FOR , AND FOR SUMIS

In Section III-D, we will see the performance of these methods
in improving the rate of convergence and the optimal choice
for .
A listing of the proposed MPD algorithm with damping is

given in Algorithm 1, where and
.

Algorithm 1 Proposed MPD Algorithm

Require: , , ,

1:Initialize: ,

2:for to number_of_iterations do

3:for to do

4:

5:

6:

7:

8:end for

9:

10:end for

C. Complexity Comparison Between MPD and MMSE

The computational complexity of the MPD algorithm is as
follows. The complexity (in number of real operations) required
to compute (11), (12) and (16) is of order . The complex-
ities of computing and are of orders and ,
respectively. So, the total complexity of the proposed MPD is

, which is attractive for large-scale MIMO systems.
In Table I, we present an interesting comparison between the

complexities of MPD and MMSE detection for ,
and varied from 16 to 256. Since we have used 20 iterations
for MPD in all the BER simulations, we have taken the number
of iterations to be 20 for the calculation of the MPD complexity.
From Table I, the following interesting observations can be
made: 1) for large (e.g., ), MPD complexity is
less than MMSE complexity. This is because MPD needs only
matrix multiplication and not matrix inversion, whereas MMSE
detection needs both matrix multiplication and inversion; 2)
for , the MPD complexity for is
less than the MMSE complexity. For , the MPD
complexity is almost the same as (marginally higher than)
MMSE complexity, because the number of iterations

Fig. 4. Uncoded BER performance of the proposed MPD algorithm as a func-
tion of damping factor . , 4-QAM, .

is comparable with . Also, MPD performs better
than MMSE detection, and achieves close to optimal detection
performance for large , and different system loading
factors. We will see this performance advantage of MPD in the
following subsection.

D. BER Performance of MPD

In this subsection, we present the uncoded BER performance
of MPD obtained through simulations for different system pa-
rameter settings. We will now assume perfect knowledge .
We will relax this assumption later. First, in Fig. 4, we plot
the uncoded BER of MPD at an average SNR of 12 dB for

for various values of the damping factor .
The number of message passing iterations used is 20. From this
figure, we observe that a damping factor of is op-
timal. This value of is found to give good performance for
other values of system parameters as well. So we have used this
value of in all the simulations. Next, Fig. 5 shows the un-
coded BER of MPD as a function of iteration index with and
without Aitken acceleration for , ,
and . It can be observed that the convergence rate of
the algorithm improves with Aitken acceleration.
In Fig. 6, we plot the uncoded BER of MPD for different

values of for a system loading factor
of . Since optimal detection performance
for large-dimension systems is hard to obtain, we have plotted
single-input single-output (SISO) additive white Gaussian noise
(AWGN) channel performance as a lower bound on the op-
timum detection performance. MMSE detection performance is
also plotted for comparison. From Fig. 6, it is observed that the
performance of MPD improves for increasing , and moves
closer to the SISO-AWGN performance for large . For ex-
ample, theMPD performance for gets very close
to SISO-AWGN performance. It is also observed that MPD per-
formance is better than MMSE detection performance.
Fig. 7 shows the uncoded BER of MPD algorithm

and MMSE detector for a fixed number of receiver an-
tennas at the BS and varying number of users

, i.e., for different values of loading
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Fig. 5. Comparison of the convergence behavior of theMPD algorithmwithout
and with Aitken acceleration. , 4-QAM, .

Fig. 6. Uncoded BER performance of the MPD algorithm and the MMSE de-
tector for , 4-QAM.

factors . It is observed that the BER
performance improves considerably as the loading factor is re-
duced, which is expected. The MPD performance for different
loading factors is better than MMSE detection performance.
It can be observed that the MPD outperforms the MMSE
detection by about 1 dB at a loading factor of to
achieve a BER of . This performance advantage of MPD
over MMSE detection increases for increasing values of .
For example, the performance advantage of MPD over MMSE
detection is about 6.5 dB and 12.5 dB for and ,
respectively. The reason why MMSE detection performs quite
poorly at high loading factors is because the spatial interfer-
ence gets increased significantly at higher loading factors with
large (e.g., ) compared to lower loading
factors, and MMSE detection does not perform interference
cancellation/suppression. Whereas, the MPD is benefited by
the channel hardening effect with large . The performance
advantage of MPD becomes very attractive given that MPD
complexity is almost same or less than the MMSE detection
complexity (as discussed in Section III-C).

Fig. 7. Uncoded BER performance of the MPD algorithm and the MMSE de-
tector for different values of for a fixed ,
4-QAM.

The effect of channel hardening on the BER performance of
the MPD algorithm is further illustrated in Fig. 8. This figure
shows the SNRs required to achieve BER with MPD as
well as MMSE detection in to sys-
tems. We have also plotted the same for ML detection (using
sphere decoding) in to sys-
tems. Since ML detection is prohibitive for larger dimensions,
we have plotted the SNR required in a SISO AWGN system
as a lower bound on the ML performance. In small systems like

systems where channel hardening is not signif-
icant, bothMPD andMMSE performances are far fromML per-
formancewithMPD performing better thanMMSE—e.g.,MPD
performance is about 10 dB away fromML performance in

systems, whereas MMSE performance is about 14 to
15 dB away from ML performance in systems.
In systems with size larger than , channel hard-
ening becomes more significant and the performance of MPD
shows significant improvement compared to MMSE and gets
closer to ML performance—e.g., for system,
the MPD performance is just about 0.25 dB away from the ML
lower bound whereas the MMSE performance is away from the
ML lower bound by about 10 dB. These observations illustrate
that harder the channel gets, better is the MPD performance.

E. Channel Estimation for MPD

A key issue in large-scale MIMO systems is the estimation
of channel gains. In conventional approaches, the channel
gains in the channel matrix are estimated and used for the detec-
tion of transmitted symbols. Note that in our transformed system
model (7), the influence of the channel on vector is through

, rather than through as such.We propose to exploit this
observation on the structure of the system model (7). Specifi-
cally, we propose to directly obtain an estimate of and
use it in the MPD algorithm, rather than obtaining an estimate
of as done in conventional approaches. We note that this ap-
proach is simple and novel, and it works very well in the MPD
algorithm (as wewill see in the performance results).We present
the scheme to obtain an estimate of the matrix next.
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Fig. 8. Comparison between the average SNR required to achieve an uncoded
BER of BER in ML (sphere decoding), MPD, and MMSE detection as a
function of for (i.e., ) and 4-QAM.

Estimating the matrix:
Note that we have defined . We are interested in

obtaining , an estimate of . We assume that the channel is
slowly fading, where the channel matrix remains constant
over one frame duration (which is taken to be equal to the co-
herence time of the channel). The length of one frame is
channel uses. Each frame consists of a pilot part and a data part.
The pilot part consists of channel uses, and the data part con-
sists of channel uses.
Let denote the pilot matrix, where in the th

channel use, , user transmits a pilot tone with
amplitude and the other users remain silent. The received
pilot matrix at the BS is then given by

(20)

where , is the average symbol energy, and
is the noise matrix. Using Lemma 1, we obtain an estimate of
the matrix as

(21)

An estimate of the vector is obtained as

(22)

The estimates and are used as inputs to the MPD algorithm
in place of and .
Note on complexity:
A key advantage of the above estimation scheme is its low

complexity. The computation of and in (21) and (22) re-
quires only matrix and vector multiplications. Note that even
when perfect knowledge of or an estimate of is available,
similar computations are needed to compute and . Further
note that the additional complexity needed to obtain an estimate
of in the conventional approach is avoided in our approach.

Fig. 9. Comparison of the BER performance of the proposed CHEMP receiver
with those of 1) MMSE detector with MMSE channel estimate, and 2) FG-GAI
detector in [11] with MMSE channel estimate, for , 4-QAM.

F. BER Performance of the CHEMP Receiver

As mentioned before, we refer to the combination of pro-
posed MPD algorithm and the channel estimation scheme pro-
posed in the previous subsection as the CHEMP receiver. In this
subsection, we present the uncoded BER performance of the
CHEMP receiver. The number of iterations used in the MPD
algorithm is 20. We compare the performance of the CHEMP
receiver with two other receivers, namely, 1) MMSE detector
with MMSE channel estimate, and 2) FG-GAI (factor graph
with Gaussian approximation of interference) detector in [11]
with MMSE channel estimate. We note that the FG-GAI de-
tector in [11] is also a message passing algorithm which used
a Gaussian approximation of interference. But this approxima-
tion was done on the original systemmodel in (2), whereas in the
proposed MPD algorithm, the Gaussian approximation is done
on the matched filtered system model in (7).
In Fig. 9, we present an uncoded BER performance com-

parison between 1) proposed CHEMP receiver, 2) MMSE
detector with MMSE channel estimate, and 3) FG-GAI detector
in [11] with MMSE channel estimate. It can be seen that the
performance of the proposed CHEMP receiver is significantly
better than those of the MMSE and FG-GAI detectors with
MMSE estimate of the channel. Observe that the performances
of MPD and FG-GAI under perfect CSI conditions are al-
most the same, whereas under estimated CSI conditions, the
CHEMP receiver performs significantly better than FG-GAI
with MMSE channel estimate. An analytical reasoning for this
is presented in Section IV-A.
Fig. 10 shows the performance of the CHEMP receiver and

MMSE detector with MMSE channel estimate for different
number of users and fixed number
of BS antennas . As expected, the performance
improves for smaller values of . Also, CHEMP receiver
performs better than MMSE detector with MMSE channel
estimate. In Fig. 11, we illustrate a comparison between the
average SNR required to achieve an uncoded BER of in
1) proposed CHEMP receiver, 2) MMSE detector with MMSE
channel estimate, and 3) FG-GAI detector in [11] with MMSE
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Fig. 10. BER performance of 1) proposed CHEMP receiver and
2) MMSE detector with MMSE channel estimate, for different values of

for a fixed value of , 4-QAM.

Fig. 11. Comparison between the average SNR required to achieve an uncoded
BER of in 1) proposed CHEMP receiver, 2) MMSE detector with MMSE
channel estimate, and 3) FG-GAI detector in [11] withMMSE channel estimate,
at different loading factors with , 4-QAM.

channel estimate, at different loading factors with .
From this figure, we observe that the CHEMP receiver out-
performs the other two receivers. For example, the CHEMP
receiver outperforms the MMSE detector with MMSE channel
estimate by about 0.6 dB to 11 dB for loading factors in the
range of to . Likewise, the performance
advantage of the CHEMP receiver over FG-GAI detector with
MMSE channel estimate is about 0.6 dB to 4 dB for loading
factors in the range of to .

G. Comparison With SUMIS Detector in [36]

A subspace marginalization with interference suppression
(SUMIS) detector has been proposed recently in [36]. The
SUMIS detector uses the ideas of partial marginalization (via
a parameter ) and soft interference sup-
pression. The order of complexity of the SUMIS detector is

[36]. Here, we present a performance
and complexity comparison between the proposed MPD and

Fig. 12. BER performance of 1) proposed MPD detector and 2) SUMIS de-
tector in [36] for different values of for a fixed value of

, 4-QAM, perfect CSI.

Fig. 13. BER performance of 1) proposed CHEMP receiver and
2) SUMIS detector with MMSE channel estimate for different values of

for a fixed value of , 4-QAM.

the SUMIS detector. Fig. 12 shows the BER performance of the
proposed MPD and SUMIS detector (with ) for various
values of keeping fixed at 128, 4-QAM, and perfect CSI.
For the same system parameters, Fig. 13 shows the comparison
between the proposed CHEMP receiver and SUMIS detector
with MMSE channel estimate. These figures show that the
proposed MPD/CHEMP performs better than SUMIS/SUMIS
with MMSE channel estimate. The proposed detector achieves
better performance at less complexity than SUMIS detector.
This can be observed in Table I which presents the complexities
of MPD and SUMIS for different values of and . The
complexity advantage of the proposed MPD over SUMIS is
because MPD needs only matrix multiplication and not matrix
inversion, whereas SUMIS needs both matrix multiplication
and matrix inversion.

IV. ANALYSIS OF THE PROPOSED CHEMP RECEIVER

In this section, we carry out some analysis of the proposed
CHEMP receiver. We present an analysis of the mean square
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difference (MSD) of the LLRs computed with estimated CSI
and perfect CSI for the proposed CHEMP receiver as well as
the FG-GAI receiver (i.e., FG-GAI detector in [11] with MMSE
channel estimate).

A. Analysis of LLRs in CHEMP and FG-GAI Receivers

In Fig. 9, we observed that while the performances of MPD
and FG-GAI under perfect CSI conditions are almost the same,
under estimated CSI conditions, the CHEMP receiver performs
significantly better than FG-GAI with MMSE channel estimate.
Here, we shall present an LLR analysis that explains the reason
for this performance advantage of CHEMP receiver under esti-
mated CSI conditions.
We note that there are three different LLRs of interest here,

which we call as Type-1 LLR, Type-2 LLR, and Type-3 LLR.
Type-1 LLR is the ‘true’ LLR in the ‘exact’ MAP detector.
Type-2 LLR is an approximate LLR in a detector (e.g., MPD,
FG-GAI detectors) with perfect CSI. Type-3 LLR is an approx-
imate LLR in a detector with estimated CSI. A comparison be-
tween the Type-I LLR and Type-2 LLR ofMPD for large dimen-
sions like is infeasible because of the exponen-
tial complexity of the computation of LLRs in the exact MAP
detector. For the purpose of analytically reasoning the perfor-
mance advantage of the CHEMP receiver, we use a performance
measure which is the mean square difference (MSD) between 1)
Type-2 and Type-3 LLRs of the MPD detector, and 2) Type-2
and Type-3 LLRs of the FG-GAI detector. This MSD measure
for a given detector can be viewed as an indicator of the relative
degradation of the LLR of the detector computed under perfect
CSI to that computed under estimated CSI. In the following, we
derive upper bounds on the MSD of LLRs in CHEMP receiver
and FG-GAI with MMSE channel estimate.
The signal vector in the CHEMP receiver given by (22) can

be written as

(23)

Likewise, the matrix in the CHEMP receiver given by (21)
can be written as

(24)

Note that, as per (23), the detection of requires an estimate
of . But the CHEMP receiver uses instead. This, as per (24),
amounts to using an estimate of with an estimation error of .
Assume and are large and all the transmitted bits are

i.i.d. Let prefixed to a variable denote the difference between
the variable computed under estimated CSI (i.e., using and )
and perfect CSI (i.e., using and ). For example,

, where is obtained by substituting in place of in (11).
Likewise, , where obtained by substituting
and in place of and , respectively, in (15). Now, from (15),
we can write the LLR computed by the CHEMP receiver as

(25)

Now, is bounded above as

(26)

By Lemma 1, we can write the following:

(27)

(28)

(29)

Without loss of generality, we can assume . Therefore,
, and

(30)

Note that is the MSD between the Type-2 and Type-3
LLRs of the MPD.
Next, we do a similar analysis of the MSD of LLRs for the

FG-GAI detector. Using the definition of the LLRs in the
FG-GAI detector as given in [11], the difference in LLR in
FG-GAI computed with MMSE channel estimate and that com-
puted with perfect CSI is bounded above as

(31)

where the terms and are as defined in [11], is the
error in estimating , and, as defined before, prefixed to a
variable denotes the difference between that variable computed
under estimated CSI and perfect CSI. The error in the MMSE
channel estimate in the FG-GAI receiver is

(32)

where is the th element in matrix . The statistics
of are computed by using Lemma 1 as follows:

(33)

Without loss of generality, assume and . Now, we
have and . By Lemma 1,
we have , and

(34)
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Fig. 14. MSD of LLRs in FG-GAI and CHEMP receivers for ,
4-QAM.

The probability of the th symbol is computed using the
LLR value . Therefore, ,

, and . It is noted
that is the MSD between the Type-2 and Type-3
LLRs of the FG-GAI detector.
It can be seen from (30) and (34) that the MSD of the com-

puted LLR values in each iteration is less in the CHEMP re-
ceiver compared to that in the FG-GAI receiver. This is fur-
ther verified by simulation in Fig. 14, where it can be observed
that the simulated MSD of the LLRs in the CHEMP receiver is
less compared to that in the FG-GAI receiver. This makes the
proposed CHEMP receiver robust to channel estimation errors
when compared to the FG-GAI receiver.

V. EXTENSION TO HIGHER-ORDER QAM

In this section, we extend the MPD algorithm to higher-order
QAM. For -QAM alphabets, the elements of in (2) belong
to the underlying PAM alphabet; for example, when the trans-
mitted symbols are from 16-QAM alphabet, the elements of
are 4-PAM symbols. In such a scenario, we compute symbol-
wise probability messages in the MPD algorithm. Specifically,
in each iteration, for each element in , we compute the prob-
ability masses for all symbols in as follows. The means are
computed as

(35)

The variances are computed as

(36)

TABLE II
COMPARISON BETWEEN THE COMPLEXITIES (IN NUMBER OF REAL
OPERATIONS) OF THE PROPOSED MPD, MMSE DETECTION, AND

SUMIS DETECTION WITH FOR 16-QAM

where is as defined in Section III-A . The probability of
being is computed as

(37)

Finally, the bit probabilities are obtained as

(38)

where is the th bit in the th user’s symbol, which is detected
as 1 if and 0 otherwise. It can be noted that
the message passed by each node is a vector of length .
Complexity: The complexity of computation of and are

and , respectively. The complexity of com-
puting the messages is for a square -QAM con-
stellation. This is due to the vector nature of the messages for
-QAM alphabet as opposed to the scalar messages for

alphabet. In Table II, we present the complexity for 16-QAM
(in number of real operations) for the proposed MPD, MMSE
detector and SUMIS detector with . It can be seen that
the complexity of the proposed MPD is comparable to/less than
MMSE complexity and is less than SUMIS complexity. In ad-
dition, the performance of MPD is better than those of MMSE
and SUMIS detectors as illustrated below.
Performance: In Fig. 15, we present a comparison between

the BER performances of the proposed MPD, MMSE detec-
tion, and SUMIS detection with , for ,

, and 16-QAM. A similar comparison between the
proposed CHEMP receiver, and the MMSE and SUMIS detec-
tors with MMSE channel estimate is presented in Fig. 16. From
these figures, we can see that the proposed MPD outperforms
the MMSE and SUMIS detectors under perfect CSI and esti-
mated CSI conditions.

VI. DESIGN OF LDPC CODES FOR CHEMP RECEIVER

Since both the proposed CHEMP receiver and the LDPC de-
coder employ message passing, a detection-decoding approach
based on message passing on a joint graph can be natural. In this
section, we present a joint graph for the LDPC coded system
model. We perform MPD and LDPC decoding by passing mes-
sages on the joint graph. We design optimized irregular LDPC
codes specific to the considered large MIMO channel and the
CHEMP receiver through EXIT chart matching.We also present
the coded BER performance of the LDPC codes thus obtained.
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Fig. 15. Comparison of uncoded BER performance of the Proposed MPD,
MMSE Detector and SUMIS Detector in [36] With for 16-QAM,

.

Fig. 16. Comparison of Uncoded BER Performance of the Proposed CHEMP
Receiver, MMSE and SUMIS Detectors With MMSE Channel Estimate for
16-QAM, .

When the detection and decoding operations are performed
jointly, the receiver starts the detection-decoding process
after receiving coded bits. In the joint detection-decoding
approach, we marginalize the joint probability of the received
coded symbols. The objective is to compute

(39)

where

(40)

is the event of the th check equation of the LDPC code being
satisfied, and is the event of all check equations of the
LDPC code being satisfied. We formulate a graph whose joint
probability factorizes according to (39), and that upon marginal-
ization gives the probability of the transmitted symbols.

A. Joint Detector and Decoder

Fig. 17 shows the joint graph for the LDPC coded large-scale
MIMO system with 4-QAM. The joint graph consists of three
sets of nodes, namely, variable nodes set, observation nodes set,
and check nodes set. The observation nodes correspond to
the elements of the vectors, the variable nodes correspond
to the transmitted coded symbols over channel uses, and

check nodes correspond to the check equations of the
LDPC code (see Fig. 17).
Let , , ,

, and . Now, the different
messages passed over the graph are:
• Observation node to variable node :
These messages correspond to the probabilities

, the probability of the th bit transmitted at the
th channel use, i.e., for a given ,
.

• Variable node to check node :
These messages correspond to the probabilities

, the probability of the th bit in the LDPC code block
transmitted by the th user. , where
is the neighborhood of , i.e., the set of all check nodes
connected to .

• Check node to variable node :
These messages correspond to the probabilities

, where is the neighborhood
of , i.e., the set of all variable nodes connected to . This
corresponds to the probability of the th check equation
of the LDPC code block transmitted by the th user to be
satisfied.

• Variable node to observation node :
These messages correspond to the probabilities

,
It should be noted that, due to the way messages are defined in
the MPD of the CHEMP receiver, there is no message sent from
the observation node to the variable node when

, and there is no message sent from the observation
node to the variable node when .
Similarly, the variable node sends no message to any obser-
vation node except and . The iterations are continued
till all the LDPC check equations are satisfied by the estimated
bits or a certain number of iterations are completed.

B. Design of LDPC Codes for the Joint Detector-Decoder

We obtain the behavior of the proposed joint detector-de-
coder through EXIT curve analysis [32]. The EXIT function is

, where is the average mutual information be-
tween the coded bits and the extrinsic output for a given value
of , where is the average mutual information between the
coded bits and the input a priori information. First, we obtain
the EXIT curves of the CHEMP receiver and combine it with
that of the LDPC decoder to obtain the EXIT characteristics of
the joint detector-decoder.
The EXIT characteristics of the CHEMP receiver is obtained

through Monte Carlo simulations, as an analytical evaluation is
intractable. We combine the CHEMP receiver’s EXIT curves
with those of the LDPC decoder, whose EXIT curves have
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Fig. 17. The Joint Graph of the LDPC Coded Large-scale MIMO System.

Fig. 18. EXIT Curves of 1) Proposed MPD, and 2) Combination of MPD and
Variable Nodes of the LDPC Decoder (CMVLD).

known closed-form expressions [33]. Fig. 18 shows the EXIT
curves of the proposed MPD detector and that of the combina-
tion of the MPD detector and the variable nodes of the LDPC
decoder for 4-QAM, and . We know
that to approach the capacity of the channel using LDPC codes,
we need to match the EXIT curves of the check nodes set and
the variable nodes set [34], by finding an appropriate degree
distribution of the variable nodes and the check nodes that is
specific for a channel and receiver. Using the evaluated EXIT
curves and the method detailed in [18], we obtain the degree
distribution of irregular LDPC codes specific for the large-scale
MIMO channel and the proposed CHEMP receiver. The LDPC
codes thus obtained for various system parameter settings are
presented in Table III.

C. Coded BER Performance

We evaluated the coded BER performance of the joint
detector-decoder by combining the CHEMP receiver and the
LDPC decoder, for and .
Fig. 19 shows the coded BER performance of the optimized
LDPC codes for the cases with 1) perfect channel knowledge
and 2) estimated channel knowledge (i.e., estimated ),
for . The minimum SNR required to achieve

TABLE III
DEGREE PROFILES OF OPTIMIZED RATE- LDPC CODES FOR DIFFERENT
LARGE MIMO CONFIGURATIONS. , : FRACTION OF VARIABLE NODES

OF DEGREE AND CHECK NODES OF DEGREE

Fig. 19. Coded BER performance of the irregular LDPC codes optimized for
the joint detector-decoder with 1) perfect channel knowledge and 2) estimated
channel knowledge (i.e., estimated ), for , 4-QAM,

, rate-1/2.

capacity is also marked. The rate of the LDPC code is 1/2 and
the LDPC code block length is It can be seen that
the optimized LDPC code performs close to within about 3 dB
from capacity. We also compare the performance of the opti-
mized codes with that of an off-the-shelf irregular LDPC code
from [35]. From Fig. 19, we can see that the optimized LDPC
code with perfect channel knowledge performs better than the
off-the-shelf LDPC code by about 1.2 dB at coded BER.
Likewise, the optimized LDPC code with estimated channel
knowledge outperforms the off-the-shelf LDPC code by about
0.8 dB.
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Fig. 20. Comparison of the average SNR required to achieve a coded BER of
by the joint detector-decoder with 1) perfect channel knowledge and 2)

estimated channel knowledge (i.e., estimated ), for various loading factors
with , 4-QAM, , rate-1/2.

Fig. 21. Coded BER performance comparison between the optimized LDPC
code and other LDPC codes in [37] and in WiMax standard [38].

, 4-QAM, , rate-1/2, perfect CSI.

In Fig. 20, we plot the average SNRs required to achieve a
coded BER of by the optimized LDPC codes with esti-
mated channel knowledge and perfect channel knowledge, as
a function of the system loading factor . From Fig. 20, we
observe that the optimized LDPC code with perfect channel
knowledge performs better than the off-the-shelf LDPC code
in [35] by about 1.2 dB at , and 0.3 dB at .
Likewise, the optimized LDPC code with the estimated channel
outperforms the off-the-shelf LDPC code by about 0.7 dB at

, and 0.5 dB at . This performance improve-
ment is due to the LDPC code optimization through EXIT curve
matching and joint detection-decoding.
In Fig. 21, we show a performance comparison between

the proposed optimized code and the codes in [37] and in
the WiMax standard [38], in a system with ,
4-QAM, , rate-1/2, and perfect CSI. At a block

length of , the proposed optimized code is found
to perform close to within about 2.2 dB from capacity. Also,
the optimized code is found to perform better than the codes in
[37] and [38] by about 2 dB and 2.5 dB, respectively, at
coded BER.

VII. CONCLUSIONS

We proposed a promising message passing based receiver
(referred to as the ‘CHEMP receiver’) for low complexity de-
tection and channel estimation in large-scale MIMO systems.
The proposed CHEMP receiver is simple and novel (leading to
low complexity), yet very effective in large dimensions (leading
to near-optimal performance). The key idea is a novel way of
exploiting the channel hardening effect that happens in large
MIMO channels. Specifically, the receiver worked with approx-
imations to the off-diagonal terms of the matrix, and di-
rectly obtained and used an estimate of (instead of an esti-
mate of ). For the considered large-scale MIMO settings, the
proposed message passing detection algorithm has almost the
same or less complexity compared to MMSE detection com-
plexity (since the proposed detection algorithm does not need
a matrix inversion). Yet, it could achieve much better perfor-
mance compared to MMSE detection performance. The pro-
posed CHEMP receiver outperformed MMSE and other mes-
sage passing receivers using an MMSE estimate of . We pre-
sented a mean square difference analysis of the LLRs in the
proposed receiver which provided a reasoning for its good per-
formance. The irregular LDPC codes obtained for the consid-
ered large MIMO channel and the proposed CHEMP receiver
through EXIT chart matching achieved better coded BER per-
formance compared to off-the-shelf irregular LDPC codes. Ex-
tension of the proposed receiver approach to frequency-selec-
tive channels can be carried out as future extension to this work.
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