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Why Multiple Antennas?

Nt: No. of transmit antennas, Nr: No. of receive antennas

# Antennas Error Probability (Pe) Capacity (C), bps/Hz

Nt = Nr = 1 (SISO) Pe ∝ SNR−1 C = log(SNR)

Nt = 1, Nr > 1 (SIMO) Pe ∝ SNR−Nr C = log(SNR)

Nt > 1, Nr > 1 (MIMO) Pe ∝ SNR−NtNr C = min(Nt, Nr) log(SNR)

NtNr : Diversity Gain min(Nt, Nr) : Spatial Mux Gain

• Large Nt, Nr → increased spectral efficiency

————————-
[1] I. E. Telatar, Capacity of multi-antenna Gaussian channels, European Trans. Telecommun., vol. 10, no. 6, pp. 585-595,

November 1999.

[2] G. J. Foschini and M. J. Gans, On limits of wireless communications in a fading environment when using multiple antennas,
Wireless Pers. Commun., vol. 6, pp. 311-335, March 1998.
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Large-MIMO Approach

• Employ large number (several tens) of antennas at the Tx and Rx

• Achieve high spectral efficiencies (tens to hundreds of bps/Hz)

– Data rate (bps) = Spectral efficiency (bps/Hz) × Bandwidth (Hz)

– e.g., 100 bps/Hz =⇒ 1 Gbps rate in just 10 MHz bandwidth

• Limitation in current MIMO standards

– spectral efficiency: ∼ 10 bps/Hz only

– 2 to 4 transmit antennas

– e.g., 750 Mbps in 80 MHz in 802.11n using 4 Tx antennas

– do not exploit the potential of large spatial dimensions
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Technological Challenges in Realizing Large-MIMO

• Placement of large number of antennas in communication
terminals

– Feasible in moderately sized communication terminals (e.g., Set top boxes,

Laptops, BS towers)

– use high carrier frequencies for small carrier wavelengths (e.g., 5 GHz, 60 GHz)

• RF technologies

– Multiple IF/RF transmit and receive chains

• Large-MIMO detection

– Need low-complexity detectors

• Channel estimation

– Estimation of large number of channel coefficients
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16-Antenna Channel Sounding for IEEE 802.11ac (5 GHz)

————————-
[3] Gregory Breit et al, 802.11ac Channel Modeling, doc. IEEE 802.11-09/0088r0, submission to Task Group TGac,

19 January 2009.
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64 × 64 MIMO Indoor Channel Sounding (5 GHz)

(a) 64-Antenna/RF hardware at 5 GHz (b) LOS setup

————————-
[4] Jukka Koivunen, “Characterisation of MIMO propagation channel in multi-link scenarios,” MS Thesis, Helsinki University of

Technology, December 2007.
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Some Recent Wireless Products

• Can see the trend in packaging increasing number of antennas/RF chains in

wireless products

Source: Internet
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Detection Complexity: A Key Challenge in Large-MIMO

• Optimal detection has exponential complexity in # transmit

antennas

• Need low-complexity algorithms that are near-optimal

• A possible approach to low-complexity solutions

– Seek algorithms from machine learning (ML)

– Large-dimension problems are routinely addressed in other

areas (e.g., computer vision, web search) using ML algorithms

– Communications area too has benefited from ML algorithms

∗ MUD in CDMA (large # users), Turbo/LDPC decoding (large frame sizes)
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Linear Vector Channels

• Several communication systems can be characterized by the

following linear vector channel model

yc = Hcxc + nc

xc ∈ Cdt , Hc ∈ Cdr×dt , yc ∈ Cdr , nc ∈ Cdr

• Examples

– MIMO
∗ dt = Nt, # Tx antennas; dr = Nr , # Rx antennas; xc: Tx symbol vector

∗ Hc: Channel gain matrix; yc: Rx signal vector; nc: Noise vector

– Coding
∗ dt = k, # Information bits; dr = n, # Coded bits; xc: Information bit vector

∗ Hc: Generator matrix; yc: Rx signal vector; nc: Noise vector

– CDMA
∗ dt = dr = K , # users; xc: Tx. bit vector; Hc: Cross correlation matrix,
∗ yc: Rx signal vector; nc: Noise vector
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Optimum Detection

• Problem

– Obtain an estimate of xc, given yc and Hc

• Maximum likelihood (ML) solution

xML =
arg min

xc ∈ Adt
‖yc − Hcxc‖2

︸ ︷︷ ︸
△
= φ(xc)

(1)

A: signaling alphabet; φ(xc): ML cost

– ML cost: φ(xc) = xH
c HH

c Hcxc − 2ℜ
(
yH

c Hcxc

)
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Optimum Detection

• Let A be M -PAM or M -QAM (Two PAMs in quadrature)

– M -PAM symbols take values from {Am, m = 1, · · · , M}, Am = (2m− 1−M)

– yc = yI + jyQ, xc = xI + jxQ, nc = nI + jnQ, Hc = HI + jHQ

• Convert (1) into a real-valued system model

y = Hx + n (2)

H ∈ R
2dr×2dt , y ∈ R

2dr , x ∈ R
2dt , n ∈ R

2dr

H =

0

@

HI −HQ

HQ HI

1

A , y = [yT
I y

T
Q]T , x = [xT

I x
T
Q]T , n = [nT

I n
T
Q]T .

• ML solution

xML =
arg min

x ∈ S
‖y − Hx‖2 xT HT Hx − 2yT Hx, (3)

S: 2dt-dimensional signal space (Cartesian product of A1 to A2dt ; Ai: M -PAM signal set

from which xi takes values, i = 1, · · · , 2dt). ML Complexity:Exponential in dt
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Optimum Detection

• Maximum a posteriori (MAP) solution

– Consider square M -QAM

– Each entry of x belongs to a
√

M -PAM constellation

– Let b
(0)
i , b

(1)
i , · · · , b

(q−1)
i denote the q = log2(

√
M) constituent bits of xi

– xi can be written as

xi =

q−1∑

j=0

2j b
(j)
i , i = 0, 1, · · · , 2dt − 1

– Let the bit vector b ∈ {±1}2qdt be written as

b
△
=

[
b
(0)
0 · · · b(q−1)

0 b
(0)
1 · · · b(q−1)

1 · · · b(0)
2dt−1 · · · b

(q−1)
2dt−1

]T

– Defining c
△
= [20 21 · · · 2q−1], x can be written as

x = (I2dt
⊗ c)b
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Optimum Detection

• Rx signal model can be written as

y = H(I2dt
⊗ c)︸ ︷︷ ︸

△
= H′∈ R2dr×2qdt

b + n

• MAP estimate of b
(j)
i , i = 0, · · · , 2dt − 1, j = 0, · · · , q − 1 is

b̂
(j)
i =

arg max

a ∈ {±1} p
(
b
(j)
i = a |y,H′)

• Complexity: Exponential in qdt
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Sub-optimum Solutions

• Matched filter (MF)

xMF = HTy

• Zero-forcing (ZF) solution

xZF = H−1y

• Minimum mean square error (MMSE) solution

xMMSE = (H + σ2I)−1y

• These suboptimum solution vectors can be used as initial vectors

in search algorithms to improve performance further
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Near-Optimal Algorithms for Large dt

• Near-ML algorithms

– Local neighborhood search based

– Likelihood ascent search (LAS)

– Reactive tabu search (RTS)

• Near-MAP algorithms

– Message passing based

– Belief propagation (BP)

– Probabilistic association (PDA)
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LAS Algorithm

• Search for good solution vectors in the local neighborhood

• Neighborhood definition

– Neighbors that differ in one coordinate

∗ e.g., Consider A = {±1}; x = [−1, 1, 1,−1]

∗ 1-bit away neighbors of x:

N1(x) =
{

[−1, 1, 1,1], [−1, 1,−1,−1], [−1,−1, 1,−1], [1, 1, 1,−1]
}

– Neighbors that differ in two coordinates

– 2-bit away neighbors of x:

N2(x) =
{

[−1, 1,−1, 1], [−1,−1,−1,−1], [1,−1, 1,−1],

[1, 1, 1, 1], [1, 1,1,−1], [1,−1, 1,1]
}

• Choose best neighbor based on ML cost: φ(x̃) = x̃THTHx̃ − 2yTHx̃
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LAS Algorithm

END

START

Yes

No

than that of the current
a better cost function
Does this vector have

solution vector?

Compute initial solution vector

Find the neighborhood of the solution vector

Find the best vector in the neighborhood

Make this neighbor as the current solution vector
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An Illustration of LAS Search Path
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Local minima trap
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Large-Dimension Behavior of LAS in V-BLAST [5],[6]

* 1-LAS: 1-symbol away neighborhood

* BER improves with increasing Nt (large-dimension effect)
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——————
[5] K. V. Vardhan, S. K. Mohammed, A. Chockalingam, B. S. Rajan, A low-complexity detector for large MIMO systems and multicarrier CDMA

systems, IEEE Jl. Sel. Areas in Commun. (JSAC), vol. 26, no.3, pp. 473-485, April 2008.

[6] S. K. Mohammed, K. V. Vardhan, A. Chockalingam, B. Sundar Rajan, Large MIMO systems: A low-complexity detector at high spectral

efficiencies, IEEE ICC’2008, Beijing, May 2008.
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Complexity of 1-LAS in V-BLAST

• Consider Nt = Nr

• Total complexity comprises of 3 main parts

1. Computing initial vector (e.g., ZF, MMSE): O(N 2
t ) per symbol

2. Computing HTH: O(N 2
t ) per symbol

3. Search operation: O(Nt) per symbol (through simulations)

• So, overall average per-symbol complexity: O(N 2
t )

• This low-complexity allows detection of V-BLAST signals in
hundreds of spatial dimensions
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Large # Dimensions: The Key

• Observation

– In V-BLAST, LAS algorithm achieves near-ML performance, but only when the

# antennas is in hundreds

– hundreds of antennas may not be practical

• Note

– LAS requires large # dimensions to perform well

– but, all dimensions need not be in space alone

• Q1: Can large # dimensions be created with less # Tx antennas?

• A1: Yes. Use time dimension as well. Approach: Non-orthogonal STBCs

• Q2: Can LAS modified to work well for smaller (tens) dimensions?

• A2: Yes. Approach: Escape strategies from local minima
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An Escape Strategy from Local Minima [7]

• Multistage LAS (M-LAS)

– Start the algorithm as 1-LAS

– On reaching the local minima,

∗ find 2-symbol away neighbors of the local minima

∗ choose the best 2-symbol away neighbor if it has lesser cost than local

minima

∗ run 1-LAS from this best neighbor till a local minima is reached

– Expect better performance. Complexity is increased a little, but not by an order

– Escape strategy with 3-symbol away neighborhood on reaching local minima

• Another promising strategy is reactive tabu search

————
[7] S. K. Mohammed, A. Chockalingam, B. S. Rajan, A low-complexity near-ML performance achieving algorithm for large MIMO detection,

IEEE ISIT’2008, Toronto, June 2008.
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Performance of M-LAS

* 3-LAS performs better than 1-LAS
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Space-Time Block Codes

• Provide redundancy across space and time

• Goal of space-time coding

– Achieve the maximum Tx-diversity of Nt (i.e., full-diversity), high rate,

decoding at low-complexity

• An STBC is usually represented by a p × nt matrix

– rows: time slots; p: # time slots

– columns: Tx. antennas; nt: # Tx. antennas

X =




s11 s12 · s1nt

s21 s22 · s2nt

· · · ·
sp1 s42 · spnt




• sij denotes the complex number transmitted in the ith time slot on the jth Tx antenna
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Space-Time Block Codes

• Rate of an STBC, r = k
p

– k: number of information symbols sent in one STBC

– p: number of time slots in one STBC

∗ Higher rate means more information carried by the code

• A matrix X is said to be a Orthogonal STBC if

XHX =
(
|x1|2 + |x2|2 + · · · + |xk|2

)
Int

– Elements of X are linear combinations of x1, · · · , xk and their conjugates

– x1, x2, · · · , xk are information symbols

• 2-Tx Antennas Codes (2 × 2 Alamouti Code)

X =

[
x1 x2

−x∗
2 x∗

1

]
, k = 2, p = 2, r = 1, orthogonal STBC
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Linear-Complexity Decoding of OSTBCs

• Consider Alamouti code with nt = 2, nr = 1

• Received signal in ith slot, yi, i = 1, 2, is

y1 = h1x1 + h2x2 + n1

y2 = −h1x
∗
2 + h2x

∗
1 + n2

• ML decoding amounts to

– computing

x̃1 = y1h
∗
1 + y∗

2h2

x̃2 = y1h
∗
2 − y∗

2h1

– decoding x1 by finding the symbol in the constellation that is closest to x̃1

– and decoding x2 by finding the symbol that is closest to x̃2

• This decoding feature is called Single-Symbol Decodability (SSD)



A. Chockalingam and B. Sundar Rajan: Large-MIMO: A Technology Whose Time Has Come Dept. of ECE, IISc, Bangalore, April 2010 31'

&

$

%

Orthogonal vs Non-Orthogonal STBCs

• Orthogonal STBCs are more widely known

– e.g., 2 × 2 Alamouti code (Rate-1; 2 symbols in 2 channel uses)

– advantages

∗ linear complexity ML decoding, full transmit diversity

– major drawback

∗ rate falls linearly with increasing number of transmit antennas

• Non-orthogonal STBCs: less widely known

– e.g., 2 × 2 Golden code (Rate-2; 4 symbols in 2 chl uses; same as V-BLAST)

∗ advantages

· High-rate (same as V-BLAST, i.e., Nt symbols/channel use)

· Full Transmit diversity

· best of both worlds (in terms of data rate and transmit diversity)

∗ What is the catch

· decoding complexity



A. Chockalingam and B. Sundar Rajan: Large-MIMO: A Technology Whose Time Has Come Dept. of ECE, IISc, Bangalore, April 2010 32'

&

$

%

Non-Orthogonal STBCs

• Golden code [8] (2 × 2 non-orthogonal STBC)

X =

[
x1 + τx2 x3 + τx4

i(x3 + µx4) x1 + µx2

]
, k = 4, p = 2, r = 2

where τ = 1+
√

5
2

and µ = 1−
√

5
2

• Features

– Information Losslessness (ILL)

– Full Diversity (FD)

– Coding Gain (CG)

• ‘Perfect codes’ [9] achieve all the above three features

– Golden code is a perfect code
—————————————-
[8] J.-C. Belfiore, G. Rekaya, and E. Viterbo, “The golden code: A 2 × 2 full-rate space-time code with non-vanishing

determinants,” IEEE Trans. on Information Theory, vol. 51, no. 4, pp. 1432-1436, April 2005.

[9] F. E. Oggier, G. Rekaya, J.-C. Belfiore, and E. Viterbo, “Perfect space-time block codes,” IEEE Trans. on Information
Theory, vol. 52, no. 9, pp. 3885-3902, September 2006.
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High-Rate Non-Orthogonal STBCs from CDA for any Nt

• High-rate non-orthogonal STBCs from Cyclic Division Algebras (CDA) for

arbitrary # transmit antennas, n, is given by the n × n matrix [10]

X =

2

6

6

6

6

6

6

6

6

6

6

6

4

Pn−1
i=0 x0,i ti δ

Pn−1
i=0 xn−1,i ωi

n ti δ
Pn−1

i=0 xn−2,i ω2i
n ti · · · δ

Pn−1
i=0 x1,i ω

(n−1)i
n ti

Pn−1
i=0 x1,i ti

Pn−1
i=0 x0,i ωi

n ti δ
Pn−1

i=0 xn−1,i ω2i
n ti · · · δ

Pn−1
i=0 x2,i ω

(n−1)i
n ti

Pn−1
i=0 x2,i ti

Pn−1
i=0 x1,i ωi

n ti
Pn−1

i=0 x0,i ω2i
n ti · · · δ

Pn−1
i=0 x3,i ω

(n−1)i
n ti

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
Pn−1

i=0 xn−2,i ti
Pn−1

i=0 xn−3,i ωi
n ti

Pn−1
i=0 xn−4,i ω2i

n ti · · · δ
Pn−1

i=0 xn−1,i ω
(n−1)i
n ti

Pn−1
i=0 xn−1,i ti

Pn−1
i=0 xn−2,i ωi

n ti
Pn−1

i=0 xn−3,i ω2i
n ti · · ·

Pn−1
i=0 x0,i ω

(n−1)i
n ti

3

7

7

7

7

7

7

7

7

7

7

7

5

• ωn = e
j2π

n , j =
√
−1, and xu,v , 0 ≤ u, v ≤ n− 1 are the data symbols from a QAM alphabet

• n2 complex data symbols in one STBC matrix (i.e., n complex data symbols per channel use)

• δ = t = 1: Information-lossless (ILL); δ = e
√

5 j and t = ej: Full diversity and ILL

• Ques: Can large (e.g., 32 × 32) STBCs from CDA decoded? Ans: LAS algorithm can.

———————————-
[10] B. A. Sethuraman, B. Sundar Rajan, V. Shashidhar, “Full-diversity high-rate space-time block codes from division

algebras,” IEEE Trans. on Information Theory, vol. 49, no. 10, pp. 2596-2616, October 2003.
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Linear Vector Channel Model for NO-STBC

• (n, p, k) STBC is a matrix Xc ∈ C
n×p, n: # time slots, p: # tx antennas, k: # data

symbols in one STBC; (n = p and k = n2 for NO-STBC from CDA)

• Received space-time signal matrix

Yc = HcXc + Nc,

• Consider linear dispersion STBCs where Xc can be written in the form

Xc =
k∑

i=1

x(i)
c A(i)

c

where A
(i)
c ∈ C

Nt×p is the weight matrix corresponding to data symbol x
(i)
c

• Applying vec(.) operation

vec (Yc) =

k
X

i=1

x(i)
c vec (HcA

(i)
c ) + vec (Nc)

=
k

X

i=1

x(i)
c (Ip×p ⊗ Hc) vec (A(i)

c ) + vec (Nc)
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Linear Vector Channel Model for NO-STBC

• Define yc
△
= vec (Yc) ∈ C

Nrp, Ĥc
△
= (I⊗Hc) ∈ C

Nrp×Ntp,

a
(i)
c

△
= vec (A

(i)
c ) ∈ C

Ntp, nc
△
= vec (Nc) ∈ C

Nrp

• System model can then be written in vector form as

yc =
k∑

i=1

x(i)
c (Ĥc a(i)

c ) + nc

= H̃cxc + nc (4)

H̃c ∈ C
Nrp×k, whose ith column is Ĥc a

(i)
c , i = 1, · · · , k

xc ∈ C
k, whose ith entry is the data symbol x

(i)
c

• Convert the complex system model in (4) into real system model as before

• Apply LAS algorithm on the resulting real system model
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LAS Performance in Decoding NO-STBCs [11]
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(h) Turbo Coded 32 × 32 NO-STBC, 16-QAM

————————-
[11] S. K. Mohammed, A. Zaki, A. Chockalingam, B. Sundar Rajan, “High-Rate Space-Time Coded Large-MIMO Systems:

Low-Complexity Detection and Channel Estimation,” IEEE Journal on Sel. Topics in Signal Processing (IEEE JSTSP):

Special Issue on Managing Complexity in Multiuser MIMO Systems, vol. 3, no. 6, pp. 958-974, December 2009.
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Comparison with Other Architectures/Detectors [11]

Complexity SNR required

No. MIMO Architecture/Detector Combinations (in # real operations to achieve 5 × 10−2

(fixed Nt = Nr = 16 and 32 bps/Hz per bit) at 5 × 10−2 uncoded BER

for all combinations) uncoded BER

16 × 16 ILL-only CDA STBC (rate-16) ,

i) 4-QAM and 1-LAS detection 3.473 × 103 6.8 dB

( Proposed scheme [11] )

ii) 16 × 16 ILL-only CDA STBC (rate-16),

4-QAM and ISIC algorithm [Choi, Cioffi] 1.187 × 105 11.3 dB

iii) Four 4 × 4 stacked rate-1 QOSTBCs,

256-QAM and IC algorithm [Jafarkhani] 5.54 × 106 24 dB

iv) Eight 2 × 2 stacked rate-1 Alamouti codes,

16-QAM and IC algorithm [Jafarkhani] 8.719 × 103 17 dB

v) 16 × 16 V-BLAST (rate-16) scheme,

4-QAM and sphere decoding 4.66 × 104 7 dB

vi) 16 × 16 V-BLAST (rate-16) scheme,

4-QAM and V-BLAST detector (ZF-SIC) 1.75 × 104 13 dB
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Effect of Spatial Correlation?

• Spatially correlated MIMO fading channel model by Gesbert et al [12]

NtTXs

dt

θt

Dt

R

θs

Dr

θr

NrRXs

dr

Figure1: Propagation scenario for the MIMO fading channel model

correlated channel matrix: H =
1√
S

R
1/2
θr ,dr

GrR
1/2
θS ,2Dr/SGtR

1/2
θt,dt

———————————-
[12] D. Gesbert, H. Bolcskei, D. A. Gore, A. J. Paulraj, “Outdoor MIMO wireless channels: Models and performance prediction,”

IEEE Trans. on Commun., vol. 50, pp. 1926-1934, December 2002.
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Spatial Correlation Degrades Performance [11]
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Figure2: Uncoded/coded BER performance of 1-LAS detector i) in i.i.d. fading, and ii) in correlated

MIMO fading in [3] with fc = 5 GHz, R = 500 m, S = 30,Dt = Dr = 20 m, θt = θr = 90◦, and

dt = dr = 2λ/3 = 4 cm. 16 × 16 STBC, Nt = Nr = 16, 16-QAM, rate-3/4 turbo code, 48 bps/Hz .

Spatial correlation degrades performance .
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Increasing # Receive Dimensions Helps! [11]
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Figure3: Effect of Nr > Nt in correlated MIMO fading in [3] keeping Nrdr constant and dt = dr .

Nrdr = 72 cm, fc = 5 GHz, R = 500 m, S = 30, Dt = Dr = 20 m, θt = θr = 90◦, 12 × 12

ILL-only STBC, Nt = 12, Nr = 12, 18, 16-QAM, rate-3/4 turbo code, 36 bps/Hz . Increasing # receive

dimensions alleviates the loss due to spatial correlation .
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Channel Estimation in Large-MIMO?

• Training based channel estimation [11]

– Send 1 Pilot matrix followed by Nd data STBC matrices
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Space
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1 Pilot

Data STBCs

1 Frame

Nt Nt Nd �Nt
Nd

∗ 1 frame length (in # of channel uses), T = (Nd + 1)Nt [coherence time]

∗ 1 pilot matrix length (in # of channel uses), τ = Nt

– Obtain an MMSE estimate of the channel matrix during pilot phase

– Use estimated channel matrix to detect data matrices using LAS detection

– Iterate between detection and channel estimation
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MIMO Capacity with Estimated CSIR

Hassibi-Hochwald (H-H) bound [13] on capacity with estimated CSIR:

C ≥ T − τ

T
E
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Nt(1 + γβd) + γβpτ

ĤcĤ
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Figure4: H-H capacity bound [13] for 1P+8D (T = 144, τ = 16, βp = βd = 1) and 1P+1D (T = 32, τ =

16, βp = βd = 1) training for a 16 × 16 MIMO channel.
———————————-
[13] B. Hassibi and B. M. Hochwald, “How much training is needed in multiple-antenna wireless links?,” IEEE Trans. on

Information Theory, vol. 49, no. 4, pp. 951-963, April 2003.
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How Much Training is Required?

Figure5: Capacity as a function of Nt with SNR = 18 dB and Nr = 12. For a given Nr , SNR (γ), and

coherence time (T ), there is an optimum Nt [13] .
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BER Performance with Estimated Channel Matrix [11]
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Figure6: Turbo coded BER performance of LAS detection and channel est imation as a function of co-

herence time, T = 32, 144, 400, 784 (Nd = 1, 8, 24, 48), for a given Nt = Nr = 16. 16 × 16

ILL-only STBC, 4-QAM, rate-3/4 turbo code. Spectral efficiency and BER performance with estimated

CSIR approaches to those with perfect CSIR in slow fading (i. e., large T ).
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Other Promising Large-MIMO Detection Algorithms

• Reactive Tabu Search [14]

• Probabilistic Data Association [15]

• Belief Propagation [16],[17]

• These algorithms exhibit large-dimension behavior; i.e., their bit

error performance improves with increasing Nt.
———————–
[14] N. Srinidhi, S. K. Mohammed, A. Chockalingam, and B. S. Rajan, Low-Complexity Near-ML Decoding of Large
Non-Orthogonal STBCs using Reactive Tabu Search, IEEE ISIT’2009, Seoul, June 2009.

[15] S. K. Mohammed, A. Chockalingam, B. S. Rajan, Low-complexity near-MAP decoding of large non-orthogonal STBCs
using PDA, IEEE ISIT’2009, Seoul, June 2009.

[16] S. Madhekar, P. Som, A. Chockalingam, B. S. Rajan, Belief Propagation Based Decoding of Large Non-Orthogonal
STBCs, IEEE ISIT’2009, Seoul, June 2009.

[17] P. Som, T. Datta, A. Chockalingam, B. S. Rajan, Improved Large-MIMO Detection using Damped Belief Propagation,

IEEE ITW’2010, Cairo, January 2010.
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Reactive Tabu Search

• Another iterative local search algorithm

– A metaheuristics algorithm

– cannot guarantee optimal solution, but generally gives near optimal solution

• Uses ‘tabu’ mechanism to escape from local minima or cycles

– Certain vectors are prohibited (made tabu) from becoming solution vectors for

certain number of iterations (called tabu period) depending on the search path

– This is meant to ensure efficient exploration of the search space

• The reactive part adapts the tabu period
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RTS Algorithm [14]

A B

C DA B

DC

Yes
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Is the move 
to this vector

tabu?

found so far?
the best cost function 
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stopping 
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END
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An Illustration of RTS Search Path
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Global Minima
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Performance of RTS in V-BLAST
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——————–
[18] N. Srinidhi, S. K. Mohammed, A. Chockalingam, B. S. Rajan, Near-ML Signal Detection in Large-Dimension Linear Vector

Channels Using Reactive Tabu Search, Online arXiv:0911.4640v1 [cs.IT] 24 Nov 2009.
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Performance/Complexity of RTS in V-BLAST

* RTS performs better than LAS at the same order of LAS complexity
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Performance of RTS in NO-STBC [14]

* RTS performs better than LAS
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Probabilistic Data Association

• Originally developed for target tracking

• Used in digital communications recently

• PDA

– A reduced complexity alternative to a posteriori probability (APP)

detector/decoder/equalizer.

– Has been applied in

∗ Multiuser detection in CDMA (Luo et al 2001, Huang and

Zhang 2004, Tan and Rasmussen 2006)

∗ Turbo equalization (Yin et al 2004)
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PDA Based Large-MIMO Detection [15]

• Iterative algorithm

– In each iteration, 2qk statistic updates (one for each bit) are performed

• Likelihood ratio of bit b
(j)
i in an iteration is

Λ
(j)
i

△
=

P
(
y|b(j)

i = +1
)

P
(
y|b(j)

i = −1
)

︸ ︷︷ ︸
△
= β

(j)
i

P
(
b
(j)
i = +1

)

P
(
b
(j)
i = −1

)
︸ ︷︷ ︸

△
= α

(j)
i

• Received signal vector y can be written as

y = hqi+j b
(j)
i +

2k−1∑

l=0

q−1∑

m=0

m 6=q(i−l)+j

hql+m b
(m)
l + n

︸ ︷︷ ︸
△
= en (interference+noise vector)

ht: tth column of H
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PDA Based Large-MIMO Detection [15]

• Define p
j+
i

△
= P (b

(j)
i = +1) and p

j−
i

△
= P (b

(j)
i = −1)

• To compute β
(j)
i , approximate the distribution of ñ to be Gaussian

• Mean of y

µ
j+
i

△
= E(y|b(j)

i = +1) = hqi+j +
2k−1∑

l=0

q−1∑

m=0

m 6=q(i−l)+j

hql+m(2pm+
l − 1)

µ
j−
i

△
= E(y|b(j)

i = −1) = µ
j+
i − 2hqi+j

• Covariance of y

C
j
i = σ2I2Nrp +

2k−1∑

l=0

q−1∑

m=0

m 6=q(i−l)+j

hql+m hT
ql+m 4pm+

l (1 − pm+
l )
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PDA Based Large-MIMO Detection [15]

• Using µ
j±
i and C

j
i , P (y|b(j)

i = ±1) can be written as

P (y|b(j)
i = ±1) =

e−(y−µj±
i )T (Cj

i )
−1(y−µj±

i )

(2π)Nrp|Cj
i |

1
2

• Using (5), β
j
i can be written as

β
j
i β

j
i = e−((y−µj+

i )T (Cj
i )

−1(y−µj+
i )−(y−µj−

i )T (Cj
i )

−1(y−µj−
i ))

• Compute Λ
(j)
i using α

(j)
i and β

(j)
i

• Update the statistics of b
(j)
i as

P (b
(j)
i = +1|y) =

Λ
(j)
i

1 + Λ
(j)
i

, P (b
(j)
i = −1|y) =

1

1 + Λ
(j)
i

• This completes one iteration of the algorithm
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PDA Based Large-MIMO Detection [15]

• Updated values of P (b
(j)
i = +1|y) and P (b

(j)
i = −1|y) for all i, j are

fed back as a priori probabilities to the next iteration

• Algorithm terminates after a certain number of iterations

• At the end of the last iteration,

– decide b̂
(j)
i as +1 if Λ

(j)
i ≥ 1, and −1 otherwise

• In coded systems

– feed Λ
(j)
i ’s as soft inputs to the decoder
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Performance of PDA in V-BLAST

* PDA algorithm also exhibits large-dimension behavior
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Figure7: BER performance of PDA based detection of V-BLAST MIMO for Nt = Nr = 8, 16, 32, 64, 96,

4-QAM, and m = 5 iterations.
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Performance of PDA in NO-STBC [15]
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(b) 16-QAM
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Large-MIMO Detection Based on Graphical Models

• Belief propagation (BP) is proven to work in cycle-free graphs

• BP is often successful in graphs with cycles as well

• MIMO graphical models are fully/densely connected

• Graphical models with certain simplifications/assumptions work

successfully in large-MIMO detection

1. Use of Pairwise Markov Random Field (MRF) based graphical

model in conjunction with message/belief damping [16],[17]

2. Use of Factor Graph (FG) based graphical model with Gaussian

Approximation of Interference (GAI) [17]
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Performance of Damped BP on Pairwise MRF [17]
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(c) Performance as a function of damping factor
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(d) BP on pairwise MRF exhibits large-dimension behavior

• Damping significantly improves performance

• Order of per-symbol complexity: O(N2
t )
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Large-MIMO Detection using BP on FGs [17]

• Each entry of the vector y is treated as a function node

(observation node)

• Each symbol, xi ∈ {±1}, is treated as a variable node

• Key ingredient: Gaussian approximation of the interference

yi = hikxk +

interference︷ ︸︸ ︷
2Nt∑

j=1,j 6=k

hijxj + ni

︸ ︷︷ ︸
△
= zik

,

is modeled as CN (µzik
, σ2

zik
) with µzik

=
PNt

j=1,j 6=k
hijE(xj), and

σ2
zik

=
P2Nt

j=1,j 6=k |hij |2 Var(xj) + σ2

2
, where hij is the (i, j)th element in H
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Large-MIMO Detection using BP on FGs [17]

• With xi’s ∈ {±1}, the log-likelihood ratio (LLR) of xk at observation node i,

denoted by Λk
i , is

Λk
i = log

p(yi|H, xk = 1)

p(yi|H, xk = −1)
=

2

σ2
zik

ℜ (h∗
ik(yi − µzik

))

• LLR values computed at observation nodes are passed to variable nodes.

• Using these LLRs, variable nodes compute the probabilities

pk+
i

△
= pi(xk = +1|y) =

exp(
∑

l 6=i Λ
k
l )

1 + exp(
∑

l 6=i Λ
k
l )

and pass them back to the observation nodes.

• This message passing is carried out for a certain number of iterations.

• At the end, xk is detected as

x̂k = sgn
( 2Nr∑

i=1

Λk
i

)
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Message Passing on Factor Graphs [17]
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Figure8: Message passing between variable nodes and observ ation nodes.
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Performance of BP on FGs with GAI [17]
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(a) V-BLAST
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• BP with GAI achieves near-optimal performance for increasing Nt = Nr with

O(Nt) per-symbol complexity
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Large-MIMO Applications/Standardization

• Potential Applications

– Fixed Wireless IPTV/HDTV distribution (e.g., in 5 GHz band)

∗ potentially big markets in India

– High-speed back haul connectivity between BSs/BSCs using high data rate

large-MIMO links (e.g., in 5 GHz band)

– Wireless mesh networks

• Large-MIMO in Wireless Standards?

– Multi-Gigabit Rate LAN/PAN (e.g., in 5GHz / 60 GHz band)

∗ Evolution of WiFi standards (IEEE 802.11ac and 802.11ad)

– LTE-Advanced, WiMax (IEEE 802.16m)

– Can consider 12 × 12, 16 × 16, 24 × 24, 32 × 32 MIMO systems
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Concluding Remarks

• Low-complexity detection

– critical enabling technology for large-MIMO

– no more a bottleneck

• Large-MIMO systems can be implemented

• Large-MIMO approach scores high on spectral efficiency and

operating SNR compared to other approaches (e.g., increasing

QAM size)

• Standardization efforts can consider reaping the benefits of

large-MIMO in their evolution
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Thank You


