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Low-complexity Linear Equalization for OTFS Modulation

G. D. Surabhi and A. Chockalingam

Abstract—In this letter, we propose low-complexity linear
equalizers for orthogonal time frequency space (OTFS) modula-
tion that exploit the structure of the effective channel matrix in
OTFS. The proposed approach exploits the block circulant nature
of the OTFS channel matrix to achieve significant complexity
reduction. For an N × M OTFS system, where N and M are
the number of Doppler and delay bins, respectively, the proposed
approach gives exact minimum mean square error (MMSE) and
zero-forcing (ZF) solutions with just O(MN logMN) complexity,
while MMSE and ZF solutions using the traditional matrix
inversion approach require O(M3N3) complexity. The proposed
approach can provide low complexity initial solutions for local
search techniques to achieve enhanced bit error performance.

keywords: OTFS modulation, linear equalizers, block cir-

culant matrices, computational complexity.

I. INTRODUCTION

The challenge of establishing reliable high-speed communi-

cation in extremely dynamic environments has been addressed

recently by a new modulation technique called the ‘orthogonal

time frequency space (OTFS)’ modulation. It has been shown

that the OTFS modulation achieves superior bit error rate

performance (BER) compared to the conventional multicarrier

techniques like orthogonal frequency division multiplexing

(OFDM), in very high Doppler wireless environments. The

fundamental premise of OTFS modulation is the representation

of the channel and the information symbols in the delay-

Doppler domain rather than the time-frequency domain as

done in conventional multicarrier modulation techniques. A

key advantage of the delay-Doppler representation of wireless

channels is that the rapid fluctuation of the time varying

channel exhibits slow variations when viewed in the delay-

Doppler domain. This, along with the fact that the channel

in the delay-Doppler domain has a sparse nature, simplifies

channel estimation in rapidly time varying wireless channels.

OTFS modulation was first proposed in [1], where it was

demonstrated to have superior error performance compared

to OFDM in very high Doppler environments. This was

followed by several works addressing various aspects of OTFS

modulation [2]-[8]. Low complexity detection of OTFS signal

has been addressed using message passing based detector

and Markov chain Monte Carlo based algorithm in [3] and

[4], respectively. Further, while [6] uses a minimum mean

squared error (MMSE) detector for OTFS signal detection, [7]

proposes an interference cancellation based low-complexity
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equalizer followed by an initial MMSE equalization in time-

frequency domain. The performance of OTFS modulation

with MMSE equalizer and decision feedback equalizer has

been discussed in [2]. It has been shown in [2] that the

BER performance of uncoded OTFS with MMSE equalizer

is significantly better compared to that of OFDM for lower

modulation order (BPSK, 4-QAM, and 16-QAM) and the

performance gains degrade for higher order QAM (64-QAM

and 256-QAM). It has also been suggested in [2] that this

performance can be improved significantly by the use of a

non-linear equalizer following a linear equalizer. Motivated

by this and the fact that the overall detection complexity can

reduce by reducing the complexity of the linear equalizer

preceding the non-linear equalizer, in this letter, we propose

low-complexity linear equalizers for OTFS signal detection.

Our novel approach in this effort is the exploitation of the

structure prevalent in the effective channel matrix in OTFS

to reduce the computational complexity of linear equalizers,

which has not been reported before.

We propose low-complexity MMSE and zero-forcing (ZF)

equalizers for OTFS signal detection, which do not rely on the

traditional matrix inversion approach that conventional MMSE

and ZF equalizers employ. Instead, the proposed approach

achieves exact MMSE and ZF solutions at a much lower

complexity compared to the matrix inversion approach. This

is made possible by recognizing a certain structure in the

effective delay-Doppler channel matrix in OTFS modulation.

Specifically, the proposed approach recognizes the block cir-

culant nature of the OTFS channel matrix and exploits the

properties of block circulant matrices to achieve significant

complexity reduction. For example, for an N × M OTFS

system, where N and M are the number of Doppler and

delay bins, respectively, the complexity of MMSE and ZF

equalizers using the conventional matrix inversion approach

is O(M3N3), whereas the proposed approach gives exact

MMSE and ZF solutions using a computation complexity of

just O(MN logMN). This complexity reduction of linear

equalizers can aid efficient realizations of non-linear equalizers

to achieve enhanced bit error performance at reduced overall

complexity. We illustrate this by using the proposed MMSE

equalizer solution as the initial solution to a local search based

non-linear equalizer.

II. OTFS MODULATION

We consider OTFS modulation architected over a general

multicarrier modulation system as shown in Fig. 1. The

transforms involved in OTFS modulation and demodulation

are introduced in the following subsections.

A. OTFS transmitter
The OTFS transmitter considers NM information sym-

bols on an N × M delay-Doppler grid, denoted by x[k, l],
k = 0, · · · , N − 1, l = 0, · · · ,M − 1 from a modulation

alphabet A, to be transmitted in a given packet burst of

duration NT , occupying a bandwidth of B = M∆f , where
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Fig. 1: OTFS modulation scheme.

∆f = 1/T . The information symbols x[k, l]s are treated as

points on the 2D N ×M delay-Doppler grid and are mapped

to time-frequency plane using inverse symplectic finite Fourier

transform (ISFFT), given by

X[n,m] =
1

MN

N−1
∑

k=0

M−1
∑

l=0

x[k, l]ej2π(
nk
N −ml

M ). (1)

The TF signal so obtained is converted to time domain for

transmission using Heisenberg transform, given by

x(t) =

N−1
∑

n=0

M−1
∑

m=0

X[n,m]gtx(t− nT )ej2πm∆f(t−nT ), (2)

where gtx(t) denotes the transmit pulse shape. The time

domain signal x(t) is then transmitted through the time varying

wireless channel. Denoting the complex baseband response of

the channel in delay-Doppler domain by h(τ, ν), where τ and

ν are delay and Doppler variables, respectively, the received

time domain signal is given by

y(t) =

∫

ν

∫

τ

h(τ, ν)x(t− τ)ej2πν(t−τ)dτdν. (3)

B. OTFS receiver
At the receiver, the received time domain signal y(t) is

transformed into a TF signal using Wigner transform, which

match filters y(t) with received pulse shape grx(t) and samples

it at the lattice points t = nT and f = m∆f . The Wigner

transform is given by

Agrx,y(t, f) =

∫

g∗rx(t
′ − t)y(t)e−j2πf(t′−t)dt′,

Y [n,m] =Agrx,y(t, f)|t=nT,f=m∆f . (4)

If the transmit pulse gtx(t) and the receive pulse grx(t) satisfy

biorthogonality and robustness condition in [2], the input-

output relation of the TF modulation is given by

Y [n,m] = H[n,m]X[n,m] + V [n,m], (5)

where V [n,m] is the additive white Gaussian noise (AWGN)

at the output of Wigner transform, and H[n,m] is given by

H[n,m] =

∫

τ

∫

ν

h(τ, ν)ej2πνnT e−j2π(ν+m∆f)τdνdτ. (6)

The TF signal Y [n,m] so obtained is mapped back to the

delay-Doppler domain using symplectic finite Fourier trans-

form (SFFT), given by

y[k, l] =

N−1
∑

n=0

M−1
∑

m=0

Y [n,m]e−j2π(nk
N −ml

M ). (7)

Using (1)-(7), the input-output relation can be derived as [2]

y[k, l] =
1

MN

M−1
∑

l′=0

N−1
∑

k′=0

x[k′, l′]hw

(

k − k′

NT
,
l − l′

M∆f

)

+v[k, l],

(8)

where hw

(

k−k′

NT , l−l′

M∆f

)

= hw(ν, τ)|ν= k−k′

NT ,τ= l−l′

M∆f

and

hw(ν, τ) is the circular convolution of the channel response

with a windowing function w(ν, τ) as defined in [2]. The

above equation can be vectorized as [3]

y = Hx+ n, (9)

where x ∈ C
MN×1, xk+Nl = x[k, l] ∈ A, y ∈ C

MN×1 is

the received vector, H ∈ C
MN×MN is the effective channel

matrix in delay-Doppler domain, and n ∈ C
MN×1 is the

AWGN vector whose entries are distributed as CN (0, σ2).

III. LOW-COMPLEXITY LINEAR RECEIVERS FOR OTFS
Consider the vectorized input-output relation in OTFS given

by (9). The estimates of the transmitted symbols at the output

of a linear receiver will be of the form x̂ = f(Gy), where

G is a linear transformation matrix which depends on the

type of linear receiver and f(.) is a function that maps

each entry of the vector Gy to the nearest symbol in the

modulation alphabet A in terms of Euclidean distance. The

linear transformation matrices for MMSE and ZF are given

by GMMSE = (HHH+ σ2I)−1HH and GZF = (HHH)−1HH ,

respectively. Observe that the computation of both GMMSE and

GZF involves inversion of MN ×MN matrices, which has a

computational complexity of O(M3N3). This is not attractive

for large values of M and N . The computation of GMMSE and

GZF can be achieved with significantly lower complexity if the

structures of H, GMMSE, and GZF are carefully exploited.

A. Low-complexity MMSE equalizer
Consider the vectorized input-output relation in (9). The

MN × MN channel matrix H in (9) is a block circulant

matrix with M circulant blocks, each of size N × N . Let

BM,N denote the class of block circulant matrices with M
circulant blocks of size N × N . Denoting circular matrices

with circ(), any matrix A ∈ BM,N will be of the form

circ(A0,A1, · · · ,AM−1), where each block Ai is an N ×N
circulant matrix of the form circ(ai,0, ai,1, · · · , ai,N−1) [11].

In order to derive the low-complexity MMSE detector for

OTFS, we make use of the following three properties of BM,N .

1) Any matrix A ∈ BM,N is diagonalized by the unitary

matrix (FM ⊗ FN ), where FM and FN denote discrete

Fourier transform (DFT) matrices of size M×M and N×
N , respectively, and ⊗ denotes the Kronecker product of

two matrices [11]. Hence, A can be written as

A = (FM ⊗ FN )HD(FM ⊗ FN ), (10)

where D = diag{d1, d2, · · · , dMN} and di denotes the

ith eigen value of A.

2) For any matrix A ∈ BM,N , the entries of the matrix D

will be of the form

D =

M−1∑

i=0

Ω
i

M ⊗Di, (11)

where ΩM = diag{1, ω, · · · , ωM−1} with ω = ej2π/M

and Di denotes the N × N diagonal matrix containing

the eigen values of the N ×N circulant block Ai.

3) For any two matrices A, B ∈ BM,N , the matrices A
T ,

A
H , AB(= BA), γ1A+ γ2B,

∑
R−1

r=0
γrA

r , and A
−1 (if it

exists) are all in BM,N , where γ0, · · · , γR−1 are scalars.

Now, consider the OTFS channel matrix in (9), which is a

block circulant matrix with M blocks each of size N × N .

Since H ∈ BM,N , it can be decomposed as



IEEE COMMUNICATIONS LETTERS, VOL. XX, NO. XX MONTH 2019 3

H = (FM ⊗ FN )HΛ(FM ⊗ FN ), (12)

where Λ = diag{λ1, λ2, · · · , λMN} and λi denotes the ith
eigen value of H. Next, consider the transformation matrix

GMMSE = (HHH + σ2I)−1HH . From property 3), it can be

seen that if H ∈ BM,N , then GMMSE ∈ BM,N . Therefore, the

eigen value decomposition of GMMSE will be of the form

GMMSE = (FM ⊗ FN )HΨ(FM ⊗ FN ), (13)

where Ψ is a diagonal matrix of size MN ×MN containing

the eigen values of GMMSE. Substituting (12) in GMMSE =
(HHH+ σ2I)−1HH and simplifying, we get

GMMSE = (FM ⊗FN )H(Λ∗Λ+σ2I)−1Λ∗(FM ⊗FN ). (14)

Now, comparing (13) and (14), Ψ can be written as

Ψ = (Λ∗Λ+ σ2I)−1Λ∗. (15)

Therefore, the eigen values of GMMSE can be expressed in terms

of the eigen values of H as

Ψ = diag

{

λ∗
1

|λ1|2 + σ2
,

λ∗
2

|λ2|2 + σ2
, · · · ,

λ∗
MN

|λMN |2 + σ2

}

.

(16)

From (16), it is clear that the eigen values of GMMSE can

be computed from the eigen values of H. The computation of

eigen values of GMMSE using the eigen values of H is one of the

key steps in the proposed low-complexity MMSE equalizer for

OTFS. Using GMMSE, the transmitted symbols are estimated by

computing GMMSEy with significantly lower complexity using

FFTs, IFFTs, and the properties of H and GMMSE as follows.

1) Computation of eigen values of each block of H: The first

step in the proposed low-complexity MMSE equalizer is

the computation of the eigen values of H. As discussed

previously, H has a block circulant structure with cir-

culant blocks, with an eigen value decomposition of the

form (12). The matrix Λ in (12) can be written as

Λ =
∑M−1

i=0 Ωi
M ⊗Λi

=diag

{

M−1∑

i=0

Λi,
M−1∑

i=0

ej2πi/M
Λi,··· ,

M−1∑

i=0

ej2π(M−1)i/M
Λi

}

,

(17)
where Λi denotes the N ×N diagonal matrix containing

the eigen values of ith block in H. The computation

of eigen values of H involves the following two steps:

computing Λis by computing the eigen values of the

circulant blocks of H and computing Λ using them as in

(17). Since each block in H has a circulant structure, the

eigen values of each block are computed by computing

the DFT of the first row of each block of H. Therefore,

computation of Λ1,Λ2, · · · ,ΛM requires the computa-

tion of eigen values of M number of N × N circulant

matrices and hence has O(MN logN) complexity.

2) Computation of the eigen values of H: Next, using

Λis, the eigen values of H are computed using (17).

A closer look at (17) reveals that the entries of Λ

can be computed with low complexity using IFFT. Let

v1,v2, · · · ,vM denote M column vectors of dimension

N × 1 whose entries contain the diagonal elements of

Λ1,Λ2, · · · ,ΛM , respectively. Let V = [vT
1 v

T
2 · · ·vT

M ]
denote the M × N matrix whose rows are the vectors

v1,v2, · · · ,vM . Now, (17) can be computed as

Λ = diag{(FH
MV)T }. (18)

The complexity of obtaining Λ using (18) involves the

computation of N M -point IDFTs. Therefore, the com-

plexity of this step is O(MN logM).
3) Computation of eigen values of GMMSE: Next, using the

eigen values of H, the eigen values of GMMSE are com-

puted using (16). This steps requires the computation of

Ψ1,Ψ2, · · · ,ΨMN using λ1, λ2, · · · , λMN , respectively.

So the order of complexity for computing Ψ is O(MN).
4) Computation of GMMSEy: The next step is to compute

GMMSEy = (FM ⊗ FN )HΨ(FM ⊗ FN )y. This equation

can also be evaluated with low complexity using FFTs

and IFFTs. Let Y denote the N × M matrix such that

vec(Y) = y. Then, (FM ⊗ FN )y can be written as

z = (FM ⊗ FN )y = vec(FNYFH
M ). (19)

Observe that z can be obtained by computing N -point

DFT along the columns of Y and M -point IDFT along

the rows of Y. Thus, the complexity of computing z

using FFTs and IFFTs is O(MN logM+MN logN) =
O(MN logMN). Next, Ψ(FM ⊗ FN )y can be com-

puted by computing Ψz. Since Ψ is a diagonal matrix,

the computation of Ψz has a complexity of O(MN).
Now, let q = Ψz and Q denote the N × M matrix

such that vec(Q) = q. With this, GMMSEy = (FM ⊗
FN )HΨ(FM ⊗ FN )y can be computed as

GMMSEy = vec(FH
NQFM ). (20)

Again, this step involves the computation of N -point

IDFT along the columns of Q and M -point DFT along

the rows of Q. Hence, this step has a complexity of

O(MN logMN). Therefore, the overall complexity of

step 4 is O(2MN logMN +MN).

B. Low-complexity ZF equalizer

The transformation matrix for zero forcing detector is given

by GZF = (HHH)−1HH . As discussed in the previous

subsection, the H is a block circulant matrix with circulant

blocks and has an eigen value decomposition as in (12). Since

GZF = (HHH)−1HH ∈ BM,N , GZF can be written as

GZF = (FN ⊗ FM )HΨ(FN ⊗ FM ), (21)

where Ψ = (Λ∗Λ)−1Λ∗. From the above equation, it is easy

to see that the transformation matrix GZF can be computed

using FFTs, IFFTs, and diagonal matrix Ψ containing the

eigen values of GZF. Also, Ψ = (Λ∗Λ)−1Λ∗ can be obtained

from Λ, just by computing λ∗
i
/|λi|

2
= 1/λi, i = 1, · · · ,MN . The

low-complexity ZF equalizer can be implemented as follows:

1) Computation of eigen values of each block of H: The

eigen values of M circulant blocks of H are computed

using DFTs. The computational complexity of this step

is O(MN logN).
2) Computation of eigen values of H: The eigen values

of H (Λ) are computed using (17) as in the case of

MMSE equalizer. This step can be implemented using

IDFT as discussed in Sec. III-A and has a complexity of

O(MN logM).
3) Computation of eigen values of GZF: The eigen values of

GZF are computed using the eigen values of H as

Ψ = diag{1/λ1, 1/λ2, · · · , 1/λMN}. (22)

The computational complexity of this step is O(MN).
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4) Computation of GZFy: The computation of GZFy is

similar to the computation of GMMSEy as in Sec. III-A.

First, z = (FM ⊗ FN )y = vec(FNYFH
M ) is computed

using N -point DFT along the columns of Y and M -point

IDFT along the rows of Y. Next, q = Ψz is computed.

Finally, GZFy is computed as GZFy = vec(FH
NQFM ),

where q = vec(Q). Overall complexity of this step is

O(2MN logMN +MN).
The proposed algorithm is summarized as follows.

1: Inputs: y, H.

2: Step 1: Compute eigen values of M circulant blocks of H

by computing DFTs of first row of each circulant block.

3: Step 2: Compute Λ using (18).

4: Step 3: Compute Ψ (Ψ = (Λ∗Λ+ σ2I)−1Λ∗ in case of

MMSE and Ψ = (Λ∗Λ)−1Λ∗ in case of ZF).

5: Step 4: Compute GMMSEy/GZFy by computing z =
vec(FNYFH

M ), q = Ψz, and vec(FH
NQFM ).

The complexities associated with each step of the algorithm

are presented in Table I. At this stage, we make the following

remark on the proposed equalization approach.

TABLE I: Order of complexity.

Step # Order of complexity

1: computation of eigen values of circu-
lant blocks of H

O(MN logN)

2: computation of Λ O(MN logM)

3: computation of Ψ O(MN)

4: computation of Gy O(2MN logMN + MN)

Overall complexity (dominated by Step 4) O(MN logMN)

Remark: It should be noted that the GMMSE and GZF equal-

izers in the proposed approach perform equalization in the

delay-Doppler domain, unlike the equalizers in [7],[8] which

perform equalization in the TF domain. For the received signal

to be accessed in the TF domain, the TF equalization approach

requires the two-step OTFS implementation as in Fig. 1, viz.,

time domain to TF domain (using Wigner transform) and from

TF domain to delay-Doppler domain (using SFFT). On the

other hand, the proposed direct delay-Doppler equalization

approach allows one-step OTFS implementation using Zak

transform [2], which has significant complexity advantage

compared to the two-step approach with TF equalization.

Specifically, the implementation of OTFS with a single Zak

transform has a complexity of MN logN (as it involves the

use of M FFTs of length N ), whereas the two-step OTFS im-

plementation has a complexity of MN logM+MN logMN .

IV. RESULTS AND DISCUSSIONS

Figure 2a shows the BER performance comparison of OTFS

with conventional ZF and MMSE equalizers and the proposed

low-complexity ZF and MMSE equalizers. We consider a

channel with P paths, with the ith path having a channel gain

hi, delay τi, and Doppler νi. The channel response in the

delay-Doppler domain, denoted by h(τ, ν), can be expressed

as h(τ, ν)=
∑P−1

i=0 hiδ(τ−τi)δ(ν−νi) [3]. The simulation set

up considered in Fig. 2(a) uses the delay-Doppler value pairs

for eight paths (P = 8) as shown in the Table given below,

where the ith path has delay τi and Doppler νi.

Path, i 1 2 3 4 5 6 7 8

τi (µs) 0 1.04 2.08 3.12 4.16 5.20 6.25 7.29

νi (Hz) 0 469 469 938 1406 1406 1875 1875
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(b) EVA model [12].

Fig. 2: BER performance of the proposed low-complexity ZF

and MMSE equalizers.

The channel gains (his) are assumed to be i.i.d and dis-

tributed as CN (0, 1/P ). The signal-to-noise ratio (SNR) is

defined as E[‖Hx‖2]/σ2, where E[.] denotes the expectation

operator and σ2 is the noise variance. A delay Doppler grid

with M = 32 and N = 32 is considered. A carrier frequency

of 4 GHz, subcarrier spacing of 15 kHz, and BPSK modulation

is considered. Firstly, from the figure, we observe that the

performance of the MMSE equalizer is superior compared to

that of the ZF equalizer. Further, the proposed low-complexity

ZF and MMSE equalizers show exactly the same BER perfor-

mance as that of the conventional ZF and MMSE equalizers,

respectively. This demonstrates that, as expected, the proposed

low-complexity algorithms provide the exact MMSE and ZF

solutions and hence the same BER performance as that of the

conventional MMSE and ZF equalizers. Figure 2b shows the

BER performance of OTFS with the proposed low-complexity

MMSE and ZF equalizers considering the channel parameters

according to the extended vehicular A model (EVA) in 3GPP

[12]. A channel with P = 9 paths with a delay profile as per

EVA model and Jakes Doppler spectrum is considered. The

Doppler shifts νis corresponding to the ith path in different re-

alizations are generated randomly using νi=νmax cos θi, where

νmax is the maximum Doppler shift which is taken to be 1.34

kHz, and θis are uniformly distributed over [−π, π]. A carrier

frequency of 4 GHz, subcarrier spacing of 15 kHz, and frame

size (M,N) = (512, 12) are considered. For the considered

system with EVA channel model parameters recommended

by 3GPP, the proposed low-complexity MMSE/ZF equalizers

require 73731 real operations, whereas the conventional matrix

inversion based equalizers require 9.27 × 1011 operations.

Next, Fig. 3 shows the computational complexity of the

conventional MMSE/ZF equalizers and the proposed low-

complexity equalizers in terms of the number real operations

involved as a function of M . For simulations, N = 32 is

considered and all other parameters are the same as those

used in Fig. 2a. From Fig. 3, it can be observed that the

complexity of the proposed MMSE equalizer is significantly

less compared to that of conventional MMSE equalizer. For

example, the number real operations required to compute

MMSE solution for a system with M = 128 and N = 32
is 2.75× 1011 in case of the conventional equalizer, whereas

it is 49,155 in case of the proposed MMSE equalizer.

Performance of OFDM based OTFS: The OTFS implemen-

tation discussed so far used the TF modulation with ideal pulse

satisfying biorthogonal and robustness property, for which
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Fig. 3: Computational complexity of conventional and pro-

posed low-complexity MMSE equalizers.

the input-output relation is of the form (5)†. However, for

an OFDM based OTFS system [5] which uses rectangular

pulse (non-ideal), the input-output relation in (5) does not

hold and hence the effective channel matrix in the delay-

Doppler domain will no longer have block circulant with

circulant blocks structure. Hence, diagonalization of the effec-

tive channel matrix using FM ⊗ FN may not yield a strictly

diagonal matrix. As a result, the proposed low-complexity

schemes may not yield exact MMSE/ZF solutions in OFDM

based OTFS implementations. The effect of this observation is

illustrated in Fig. 4a, which shows the performance of OFDM

based OTFS. From Fig. 4a, we observe that the performance

of the proposed low-complexity MMSE/ZF equalizers gets

poor in OFDM based OTFS compared to that in OTFS with

ideal pulse. This is because the proposed equalizers assume

block circulant with circulant blocks structure for the effective

channel matrix. However, as will be shown next, the proposed

MMSE/ZF equalizer followed by a low-complexity non-linear

equalizer achieves almost the same improved performance in

OTFS with ideal pulse as well as OFDM based OTFS.

Proposed MMSE equalizer followed by LAS equalizer: We

consider a local search based non-linear equalizer called

likelihood ascent search (LAS) equalizer [10] following the

proposed low-complexity linear equalizer. The LAS algorithm

is a low-complexity algorithm that starts with an initial solu-

tion and searches for good solutions in the neighborhood until

a local optimum is reached. The computational complexity

of the LAS algorithm depends on the computation of the

initial solution and the search operation. The complexity

of obtaining an initial MMSE solution using conventional

matrix inversion approach is O(M3N3), which is O(M2N2)
complexity per symbol. Further, it has been shown through

simulations that the search operation in the LAS algorithm

requires an average per-symbol complexity of O(MN) [10].

The proposed low-complexity MMSE equalizer has a per-

symbol complexity of O(logMN). Therefore, the use of the

proposed low-complexity MMSE equalizer to obtain the initial

solution for the LAS algorithm significantly reduces the overall

complexity. Figure 4b shows the BER performance of this

MMSE-LAS equalizer for i) OTFS with ideal pulse and ii)
OFDM based OTFS. From this figure, we observe that the

performance of MMSE-LAS equalizer is significantly superior

compared to that of the MMSE equalizer in both cases.

†Given the constraint imposed by the uncertainty principle, ideal pulses
are non-realizable in practice. However, pulses whose support is highly
concentrated in time and frequency minimize the cross-symbol interference,
and hence closely approximate the ideal pulses. Design of such near-ideal
pulses has been addressed in [9].

0 5 10 15 20

SNR in dB

10
-8

10
-6

10
-4

10
-2

10
0

B
it

 e
r
r
o

r
 r

a
te

(a)

0 5 10 15 20

SNR in dB

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

B
it

 e
r
r
o

r
 r

a
te

(b)

Fig. 4: Performance of proposed low-complexity ZF, MMSE

equalizers and MMSE-LAS in OFDM based OTFS systems.

Importantly, though OFDM based OTFS with the proposed

MMSE equalizer showed some degraded performance in Fig.

4a, we observe in Fig. 4b that the use of it with a LAS

equalizer achieves almost the same improved performance

compared to that of the use of it in OTFS with ideal pulse.

This improved performance is achieved at a significantly low

complexity. Figure 4b also shows the comparison of the BER

performance of the proposed MMSE-LAS detector with the

message passing (MP) based detection proposed in [3]. From

this figure, we observe that MMSE-LAS and the MP detection

have almost the same performance up to 12 dB SNR, after

which the BER of MP detector floors, whereas the BER of

MMSE-LAS detector continues to decrease. This is because

the Gaussian approximation used in the computation of mes-

sages in MP detection involves sum of P − 1 interference

terms. Since P = 8 in Fig. 4b, the approximation is less

accurate because of the small number of terms involved in

the approximation, and this leads to an error floor.
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