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Abstract—In this letter, we are concerned with low-complexity
detection in large multiple-input multiple-output (MIMO) sys-
tems with tens of transmit/receive antennas. Our new contri-
butions in this letter are two-fold. First, we propose a low-
complexity algorithm for large-MIMO detection based on a
layered low-complexity local neighborhood search. Second, we
obtain a lower bound on the maximum-likelihood (ML) bit
error performance using the local neighborhood search. The
advantages of the proposed ML lower bound are 𝑖) it is easily
obtained for MIMO systems with large number of antennas
because of the inherent low complexity of the search algorithm,
𝑖𝑖) it is tight at moderate-to-high SNRs, and 𝑖𝑖𝑖) it can be
tightened at low SNRs by increasing the number of symbols in
the neighborhood definition. The proposed detection algorithm
based on the layered local neighborhood search achieves bit error
performances which are quite close to this lower bound for large
number of antennas and higher-order QAM.

Index Terms—Large-MIMO detection, local neighborhood
search, QR decomposition, ML lower bound, higher-order QAM,
high spectral efficiency.

I. INTRODUCTION

LARGE-MIMO systems with tens of transmit and receive
antennas are of interest because of the high capacities

theoretically predicted in them [1],[2],[3]. Such large num-
ber of antennas can be employed in large/medium sized
communication terminals like set top boxes, laptops and
TVs for spectrally efficient wireless delivery of high data
rate applications (e.g., wireless HDTV/3DTV distribution,
broadcast/multicast video, interactive gaming). Evolution of
WiFi standards to IEEE 802.11ac, which aims to achieve
multi-gigabit rate transmissions in 5 GHz band, considers
16×16 MIMO operation (e.g., 16×16 MIMO indoor channel
sounding measurements at 5 GHz have been reported in [4] for
consideration in WiFi standards). Also, there is growing ma-
turity of compact antennas/RF design suited for large-MIMO
systems. For example, 24 and 36 antennas mounted in cubes of
dimensions 8cm×8cm×8cm and 12cm×12cm×12cm, respec-
tively, for MIMO applications have been reported in [5]. Low-
complexity near-optimal processing at the receiver for large-
MIMO systems is challenging. Research in low-complexity
receive processing (e.g., MIMO detection, channel estimation)
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techniques that can lead to practical realization of large-MIMO
systems is both nascent as well as promising. Recently, certain
algorithms from machine learning/artificial intelligence have
been shown to achieve near-optimal performance in large-
MIMO systems with tens of antennas at low complexities [6]-
[11]1. In [8], near-optimal detection in a 50×50 MIMO system
with BPSK was reported using a Gibbs sampling based de-
tection algorithm. In [9], near-optimal detection performance
in a 64 × 64 MIMO system, again with BPSK modulation,
was reported using a factor graph based belief propagation
(BP) algorithm that employed a Gaussian approximation of the
interference. In [10],[11], a tabu search algorithm, which is
a local neighborhood search algorithm, was shown to achieve
near-optimal performance in large-MIMO systems for 4-QAM
modulation, but its performance was far from optimum for
higher-order QAM. Tabu search [12],[13] has been proposed
previously for multiuser detection [14],[15],[16] and MIMO
detection [17]. The tabu search in [17] uses fixed tabu period
(fixed tabu search), whereas we employ reactive tabu search
where tabu period is adapted. List decoding in [18] has shown
good potential for large MIMO systems.

Our first new contribution in this letter is that we propose
a layering approach in conjunction with the low-complexity
tabu search which significantly improves higher-order QAM
performance (e.g., 16-QAM, 64-QAM) in large-MIMO sys-
tems, bringing its performance much closer to the maximum-
likelihood (ML) performance compared to the basic tabu
search without layering [19]. The layered structure is inspired
by previously suggested approaches based on successive can-
cellation (or decision feedback) systems [20],[21],[22], along
with the use of QR decomposition for detection and detec-
tion ordering [21]-[25]. However, as opposed to cancellation,
the proposed scheme can update the solution vector for all
symbols under consideration within the specific layer.

In order to assess how well the proposed layered tabu search
algorithm performs w.r.t. to the true ML performance in large-
MIMO systems (i.e., for large 𝑛𝑡, where 𝑛𝑡 denotes the num-
ber of transmit antennas), we resort to obtaining bounds on the
ML performance which are computable at low complexities.
This is because predicting the ML performance either through
a brute-force search or by using sphere decoding (SD) is
prohibitively complex for large-MIMO systems (like 32× 32,
64×64 V-BLAST MIMO systems). Bounding of performance
and minimum distances for breadth-first tree search algorithms
in multiuser CDMA systems has been addressed in [26]. Up-
per bounds on the ML performance based on union bounding

1Similar algorithms have been reported earlier in the context of multiuser
detection in large CDMA systems.
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are known [27]. However, the complexity of computing this
bound is 𝑀𝑛𝑡 [27], which is prohibitive for large 𝑛𝑡 and 𝑀
(𝑀 is the modulation alphabet size). Also, the tightness of
such upper bounds for large 𝑛𝑡 and 𝑀 for a given SNR/BER
is difficult to predict because of the lack of knowledge of true
ML performance for those 𝑛𝑡, 𝑀 , and SNR/BER values. This
then brings the need for good low-complexity lower bounds
on the ML performance for large 𝑛𝑡, so that nearness to the
ML performance of large-MIMO detection algorithms (like
the one proposed in this letter) can be predicted.

Consequently, our second new contribution in this letter is
that we obtain a lower bound on the ML bit error performance
using the neighborhood search in tabu search algorithm. The
advantages of the proposed bound are 𝑖) it is easily obtained
for MIMO systems with large 𝑛𝑡 because of the inherent low
complexity of the search algorithm, 𝑖𝑖) it is tight at moderate
to high SNRs, and 𝑖𝑖𝑖) it can be tightened at low SNRs
by increasing the number of symbols in the neighborhood
definition. Interestingly, the proposed layered search algorithm
for detection, termed as layered tabu search (LTS) algorithm,
achieves bit error performances which are quite close to this
lower bound for large 𝑛𝑡 and higher-order QAM. For e.g.,
in a 32 × 32 V-BLAST MIMO system, the proposed LTS
algorithm performs close to within 1.7 dB of the proposed
ML lower bound at 10−3 BER for 16-QAM (128 bps/Hz).

II. SYSTEM MODEL

Consider a V-BLAST MIMO system with 𝑛𝑡 transmit and
𝑛𝑟 receive antennas. The transmitted symbols take values
from a modulation alphabet 𝔸 (e.g., 𝑀 -QAM/𝑀 -PSK). Let
x ∈ 𝔸𝑛𝑡 denote the transmitted vector. Let H ∈ ℂ𝑛𝑟×𝑛𝑡

denote the channel gain matrix, whose entries are assumed
to be i.i.d. Gaussian with zero mean and unit variance. The
received vector y is given by

y = Hx+ n, (1)

where n is the noise vector whose entries are are modeled as
i.i.d. ℂ𝒩 (0, 𝜎2). The ML detection rule is given by

x̂𝑀𝐿 = arg min
x∈𝔸𝑛𝑡

∥y −Hx∥2 = arg min
x∈𝔸𝑛𝑡

𝜙(x), (2)

where 𝜙(x)
△
= x𝐻H𝐻Hx−2ℜ (

y𝐻Hx
)

is the ML cost. The
computational complexity in (2) is exponential in 𝑛𝑡, which
is prohibitive for large 𝑛𝑡. Our interest is to achieve near-ML
performance for large 𝑛𝑡 at low complexities for modulation
alphabets including higher-order QAM. The proposed LTS
algorithm, which is presented in the next section, is aimed
at achieving these performance and complexity objectives for
large 𝑛𝑡 and higher-order modulations.

III. PROPOSED LAYERED TABU SEARCH ALGORITHM

In this section, we present the proposed LTS algorithm
for large-MIMO detection. The proposed algorithm involves
a strategy of detecting symbols in a layered manner, where
in each layer a low-complexity local neighborhood search,
namely, tabu search (TS) [10],[11], detects a sub-vector of the
transmitted symbol vector. The sub-vector size is increased
from one layer to the next layer. In addition, the detected

sub-vector in a given layer is used to form the initializing
solution for the search in the next layer. We first present the TS
algorithm without layering in Sec. III-A, and present layered
TS (LTS) algorithm in Sec. III-B.

A. Tabu Search Algorithm Without Layering

The TS algorithm [10],[11] starts with an initial solution
vector, defines a neighborhood around it (i.e., defines a set
of neighboring vectors based on a neighborhood criterion),
and moves to the best vector among the neighboring vectors
(even if the best neighboring vector is worse, in terms of
ML cost, than the current solution vector; this allows the
algorithm to escape from local minima). This process is
continued for a certain number of iterations, after which
the algorithm is terminated and the best among the solution
vectors in all the iterations is declared as the final solution
vector. In defining the neighborhood of the solution vector
in a given iteration, the algorithm attempts to avoid cycling
by marking the moves to solution vectors of the past few
iterations as ‘tabu’ (i.e., prohibits these moves), which ensures
efficient search of the solution space. The number of these
past iterations is parametrized as the ‘tabu period,’ which is
dynamically changed depending on the number of repetitions
of the solution vectors that are observed in the search path.

Neighborhood Definition: Let 𝑀 denote the cardinality of
𝔸 = {𝑎1, 𝑎2, ⋅ ⋅ ⋅ , 𝑎𝑀}. Define a set 𝒩 (𝑎𝑞), 𝑞 ∈ {1, ⋅ ⋅ ⋅ ,𝑀},
as a fixed subset of 𝔸∖𝑎𝑞, which we refer to as the symbol-
neighborhood of 𝑎𝑞 . We choose the cardinality of this set
to be the same for all 𝑎𝑞, 𝑞 = 1, ⋅ ⋅ ⋅ ,𝑀 ; i.e., we take
∣𝒩 (𝑎𝑞)∣ = 𝑁, ∀𝑞. Note that the maximum and minimum
values of 𝑁 are 𝑀 − 1 and 1, respectively. We choose the
symbol neighborhood based on Euclidean distance, i.e., for
a given symbol, those 𝑁 symbols which are the nearest will
form its neighborhood; the nearest symbol will be the first
neighbor, the next nearest symbol will be the second neighbor,
and so on. For e.g., 𝔸 = {−3,−1, 1, 3} for 4-PAM, and
choosing 𝑁 to be 2, 𝒩 (−3) = {−1, 1}, 𝒩 (−1) = {−3, 1},
𝒩 (1) = {−1, 3}, 𝒩 (3) = {1,−1} are possible symbol-
neighborhoods. Let 𝑤𝑣(𝑎𝑞), 𝑣 = 1, ⋅ ⋅ ⋅ , 𝑁 denote the 𝑣th
element in 𝒩 (𝑎𝑞); i.e., we say 𝑤𝑣(𝑎𝑞) is the 𝑣th symbol-
neighbor of 𝑎𝑞.

Let x(𝑚) = [𝑥
(𝑚)
1 𝑥

(𝑚)
2 ⋅ ⋅ ⋅𝑥(𝑚)

𝑛𝑡 ] denote the data vector
belonging to the solution space in the 𝑚th iteration, where
𝑥
(𝑚)
𝑖 ∈ 𝔸. We refer to the vector

z(𝑚)(𝑢, 𝑣) =
[
𝑧
(𝑚)
1 (𝑢, 𝑣) 𝑧

(𝑚)
2 (𝑢, 𝑣) ⋅ ⋅ ⋅ 𝑧(𝑚)

𝑛𝑡
(𝑢, 𝑣)

]
, (3)

as (𝑢, 𝑣)th vector-neighbor
(
or simply the (𝑢, 𝑣)th neighbor

)
of x(𝑚), 𝑢 = 1, ⋅ ⋅ ⋅ , 𝑛𝑡, 𝑣 = 1, ⋅ ⋅ ⋅ , 𝑁 , if 𝑖) x(𝑚) differs from
z(𝑚)(𝑢, 𝑣) in the 𝑢th coordinate only, and 𝑖𝑖) the 𝑢th element
of z(𝑚)(𝑢, 𝑣) is the 𝑣th symbol-neighbor of 𝑥(𝑚)

𝑢 . That is,

𝑧
(𝑚)
𝑖 (𝑢, 𝑣) =

{
𝑥
(𝑚)
𝑖 for 𝑖 ∕= 𝑢
𝑤𝑣(𝑥

(𝑚)
𝑢 ) for 𝑖 = 𝑢.

(4)

So we will have 𝑛𝑡𝑁 vectors which differ from a given
vector in the solution space in only one coordinate. These
𝑛𝑡𝑁 vectors form the neighborhood of the given vector.
An operation on x(𝑚) which gives x(𝑚+1) belonging to the
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vector-neighborhood of x(𝑚) is called a move. The algorithm
is said to execute a move (𝑢, 𝑣) if x(𝑚+1) = z(𝑚)(𝑢, 𝑣). We
note that the number of candidates to be considered for a
move in any one iteration is 𝑛𝑡𝑁 . Also, the overall number of
‘distinct’ moves possible is 𝑛𝑡𝑀𝑁 , which is the cardinality
of the union of all moves from all 𝑀𝑛𝑡 possible solution
vectors. The tabu value of a move, which is a non-negative
integer, means that the move cannot be considered for that
many number of subsequent iterations.

Tabu Matrix: A tabu_matrix T of size 𝑛𝑡𝑀 × 𝑁 is the
matrix whose entries denote the tabu values of moves. For each
coordinate of the solution vector (there are 𝑛𝑡 coordinates),
there are 𝑀 rows in T, where each row corresponds to one
symbol in the modulation alphabet 𝔸; the indices of the rows
corresponding to the 𝑢th coordinate are from (𝑢 − 1)𝑀 + 1
to 𝑢𝑀 , 𝑢 ∈ {1, ⋅ ⋅ ⋅ , 𝑛𝑡}. The 𝑁 columns of the T matrix
correspond to the 𝑁 symbol-neighbors of the symbol corre-
sponding to each row. In other words, the (𝑟, 𝑠)th entry of the
tabu_matrix, 𝑟 = 1, ⋅ ⋅ ⋅ , 𝑛𝑡𝑀 , 𝑠 = 1, ⋅ ⋅ ⋅ , 𝑁 , corresponds to
the move (𝑢, 𝑣) from x(𝑚) when 𝑢 = ⌊ 𝑟−1

𝑀 ⌋+ 1, 𝑣 = 𝑠 and
𝑥
(𝑚)
𝑢 = 𝑎𝑞 , where 𝑞 = 𝑚𝑜𝑑(𝑟 − 1,𝑀) + 1. The entries of

the tabu matrix, which are non-negative integers, are updated
in each iteration, and they are used to decide the direction
in which the search proceeds (as described in the algorithm
description below).

Tabu Search Algorithm: Let g(𝑚) be the vector which
has the least ML cost found till the 𝑚th iteration of the
algorithm. Let 𝑙𝑟𝑒𝑝 be the average length (in number of
iterations) between two successive occurrences of a solution
vector (repetitions). Tabu period, 𝑃 , a dynamic non-negative
integer parameter, is defined as follows: if a move is marked
as tabu in an iteration, it will remain as tabu for 𝑃 subsequent
iterations unless the move results in a better solution. A binary
flag, 𝑙𝑓 𝑙𝑎𝑔 ∈ {0, 1}, is used to indicate whether the algorithm
has reached a local minimum in a given iteration or not; this
flag is used in the evaluation of the stopping criterion of the
algorithm. The algorithm starts with an initial solution vector
x(0). Set g(0) = x(0), 𝑙𝑟𝑒𝑝 = 0, and 𝑃 = 𝑃0. All the entries
of the tabu_matrix are set to zero. The following steps 1) to
3) are performed in each iteration. Consider 𝑚th iteration in
the algorithm, 𝑚 ≥ 0.

Step 1): Initialize 𝑙𝑓 𝑙𝑎𝑔 = 0. The ML costs of the 𝑛𝑡𝑁
neighbors of x(𝑚), 𝜙(z(𝑚)(𝑢, 𝑣)), 𝑢 = 1, ⋅ ⋅ ⋅ , 𝑛𝑡, 𝑣 =
1, ⋅ ⋅ ⋅ , 𝑁 , are computed. Let

(𝑢1, 𝑣1) = argmin
𝑢,𝑣

𝜙(z(𝑚)(𝑢, 𝑣)). (5)

The move (𝑢1, 𝑣1) is accepted if any one of the following two
conditions is satisfied:

𝜙(z(𝑚)(𝑢1, 𝑣1)) < 𝜙(g(𝑚)) (6)

T((𝑢1 − 1)𝑀 + 𝑞, 𝑣1) = 0, (7)

where 𝑞 is such that 𝑎𝑞 = 𝑥
(𝑚)
𝑢1 , 𝑎𝑞 ∈ 𝔸. If move (𝑢1, 𝑣1) is

not accepted (i.e., neither of the conditions in (6) and (7) is
satisfied), find (𝑢2, 𝑣2) such that

(𝑢2, 𝑣2) = arg min
𝑢,𝑣:𝑢∕=𝑢1,𝑣 ∕=𝑣1

𝜙(z(𝑚)(𝑢, 𝑣)), (8)

and check for acceptance of the move (𝑢2, 𝑣2). If this also can-
not be accepted, repeat the procedure for (𝑢3, 𝑣3), and so on.

If all the 𝑛𝑡𝑁 moves are tabu, then all the tabu_matrix entries
are decremented by the minimum value in the tabu_matrix ;
this goes on till one of the moves becomes acceptable. Let
(𝑢′, 𝑣′) be the index of the neighbor with the minimum cost
for which the move is permitted. Make

x(𝑚+1) = z(𝑚)(𝑢′, 𝑣′). (9)

The variables 𝑞′, 𝑞′′, 𝑣′′ are implicitly defined by 𝑎𝑞′ = 𝑥
(𝑚)
𝑢′ =

𝑤𝑣′′ (𝑥
(𝑚+1)
𝑢′ ), and 𝑎𝑞′′ = 𝑥

(𝑚+1)
𝑢′ , where 𝑎𝑞′ , 𝑎𝑞′′ ∈ 𝔸. It is

noted that in this Step 1 of the algorithm, essentially the best
permissible vector-neighbor is chosen as the solution vector
for the next iteration.

Step 2): The new solution vector obtained from Step 1 is
checked for repetition. For the linear vector channel model in
(1), repetition can be checked by comparing the ML costs of
the solutions in the previous iterations. If there is a repetition,
the length of the repetition from the previous occurrence is
found, the average length, 𝑙𝑟𝑒𝑝, is updated, and the tabu period
𝑃 is modified as 𝑃 = 𝑃+1. If the number of iterations elapsed
since the last change of the value of 𝑃 exceeds 𝛽𝑙𝑟𝑒𝑝, for a
fixed 𝛽 > 0, make 𝑃 = max(1, 𝑃 − 1). After a move (𝑢′, 𝑣′)
is accepted, if 𝜙(x(𝑚+1)) < 𝜙(g(𝑚)), make

T((𝑢′ − 1)𝑀 + 𝑞′, 𝑣′) = T((𝑢′ − 1)𝑀 + 𝑞′′, 𝑣′′) = 0,

g(𝑚+1) = x(𝑚+1),

else

T((𝑢′ − 1)𝑀 + 𝑞′, 𝑣′) = T((𝑢′ − 1)𝑀 + 𝑞′′, 𝑣′′) = 𝑃 + 1,

𝑙𝑓 𝑙𝑎𝑔 = 1, g(𝑚+1) = g(𝑚).

It is noted that this Step 2 of the algorithm implements the
‘reactive’ part in the search, by dynamically changing 𝑃 .

Step 3): Update the entries of the tabu_matrix as

T(𝑟, 𝑠) = max{T(𝑟, 𝑠)− 1, 0}, (10)

for 𝑟 = 1, ⋅ ⋅ ⋅ , 𝑛𝑡𝑀 , 𝑠 = 1, ⋅ ⋅ ⋅ , 𝑁 . The algorithm terminates
in Step 3 if the following stopping criterion is satisfied, else
it goes back to Step 1.

Stopping criterion: The search algorithm described above
is stopped if maximum number of iterations 𝑚𝑎𝑥_𝑖𝑡𝑒𝑟 is
reached. Also, if the current solution is a local minimum
(𝑙𝑓 𝑙𝑎𝑔 = 1) and the total number of repetitions of solutions is
greater than 𝑚𝑎𝑥_𝑟𝑒𝑝, the algorithm is stopped. The solution
of the algorithm would then be the vector with the least ML
cost which has been found before the algorithm was stopped.
The average per-symbol complexity of the TS algorithm is
𝑂(𝑛𝑡𝑛𝑟), which is attractive for large-MIMO signal detection
[10],[11]. Though this TS algorithm without layering has been
shown to achieve near-ML performance in large 𝑛𝑡 for 4-
QAM, its performance in higher-order QAM is not as good
[10],[11]. The LTS algorithm proposed in the following sub-
section improves higher-order QAM performance significantly
for large 𝑛𝑡.

B. LTS Algorithm

In this subsection, we present the proposed LTS algorithm
which performs detection in a layered manner, where the TS
algorithm (presented in the previous subsection) is applied
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in each layer. Let U denote the upper triangular matrix
obtained from the QR decomposition of H. Then, the objective
equivalent to (2) will be to find the transmitted vector x which
minimizes ∥U(x− x̄)∥2, where

x̄ = H†y, (11)

and H† is the Moore-Penrose pseudo inverse of H. Let 𝑢𝑖𝑗
denote the element in the 𝑖th row and 𝑗th column of the U
matrix, and 𝑥𝑖 denote the 𝑖th element of the vector x.

The algorithm processes one layer at a time. It starts with
the 𝑛𝑡th layer first. In the 𝑘th layer, 𝑘 = 𝑛𝑡, (𝑛𝑡 − 1), (𝑛𝑡 −
2), ⋅ ⋅ ⋅ , 1, the algorithm detects the (𝑛𝑡 − 𝑘 + 1)-sized sub-
vector [𝑥𝑘, 𝑥𝑘+1, ⋅ ⋅ ⋅ , 𝑥𝑛𝑡 ]. We detect the symbols of this sub-
vector jointly because they interfere with each other due to the
structure of the U matrix. For e.g., since U is upper triangular,
there will be no interference to the symbol 𝑥𝑛𝑡 in the 𝑛𝑡th
layer. In the (𝑛𝑡 − 1)th layer, there will be one interferer
𝑥𝑛𝑡 . In the (𝑛𝑡 − 2)th layer there will be two interferers
𝑥𝑛𝑡−1 and 𝑥𝑛𝑡 , and so on in the subsequent layers. The joint
detection method employed in each layer is the TS algorithm
described in Sec. III-A. We propose to reduce the complexity
further by skipping the joint detection search in a layer if a
simple cancellation of interference due to the already detected
symbols in the previous layer results in a good quality output.
The resulting LTS algorithm is stated below.

Let x̌ be the quantized version of x̄, i.e., each element in
x̄ is rounded-off to its nearest symbol in the alphabet to get
x̌, so that x̌ ∈ 𝔸𝑛𝑡 . Let 𝑑𝑚𝑖𝑛 be the minimum Euclidean
distance between any two symbols in the alphabet 𝔸. The
steps performed in the 𝑘th layer, 𝑘 = 𝑛𝑡, (𝑛𝑡 − 1), ⋅ ⋅ ⋅ , 1, are
as follows:

Step 1): Calculate

𝑟𝑘 = �̄�𝑘 −
𝑛𝑡∑

𝑙=𝑘+1

𝑢𝑘𝑙
𝑢𝑘𝑘

(�̂�𝑙 − 𝑥𝑙), (12)

which is a cancellation operation that removes the interference
due to the symbols detected in the previous layer (i.e., �̂�𝑙’s).
Note that for 𝑘 = 𝑛𝑡 (i.e., for the 𝑛𝑡th layer, which is
processed first), there will be no 2nd term on the RHS in
(12).

Step 2): Find the symbol in the alphabet 𝔸 which is closest
to 𝑟𝑘 in Euclidean distance. Let this symbol be 𝑎𝑞 .
𝑖) If ∣𝑟𝑘 − 𝑎𝑞∣ < 𝛿𝑑𝑚𝑖𝑛, 0 < 𝛿 ≤ 0.5, then �̂�𝑘 = 𝑎𝑞 (�̂�𝑘 is

the detected symbol corresponding to 𝑥𝑘). Make 𝑘 = 𝑘 − 1
and return to Step 1)2.
𝑖𝑖) If ∣𝑟𝑘 − 𝑎𝑞∣ ≥ 𝛿𝑑𝑚𝑖𝑛, then set �̂�𝑘 = �̌�𝑘. Run the TS

algorithm in Sec. III-A, by replacing x(0) with x̃(0), H with
H̃, y with ỹ, where x̃(0), H̃, ỹ for the 𝑘th layer are taken as

x̃(0) = [�̂�𝑘, �̂�𝑘+1, ⋅ ⋅ ⋅ , �̂�𝑛𝑡 ], (13)

2Execution of this part of the step essentially skips the joint detection using
TS. Nearness of 𝑟𝑘 to an element in 𝔸 to within 𝛿𝑑𝑚𝑖𝑛 , 0 < 𝛿 ≤ 0.5 is
used as the criterion to decide to carry out or skip TS in layer 𝑘. Figure
3 shows the BER performance and complexity (in average number of real
operations per symbol) of the LTS algorithm as a function of 𝛿 for 16 × 16
V-BLAST MIMO with 16-QAM at an SNR of 19 dB. It can be seen that
the BER improves as 𝛿 is decreased from 0.5 towards 0. This is because a
smaller 𝛿 means increased chance of carrying out joint detection using TS in
Step 2-𝑖𝑖, which results in improved performance while incurring increase in
complexity. We have used 𝛿 = 1

4
in the LTS simulations.

H̃ =

⎡⎢⎢⎢⎣
𝑢𝑘𝑘 𝑢𝑘(𝑘+1) ⋅ ⋅ ⋅ 𝑢𝑘𝑛𝑡

0 𝑢(𝑘−1)(𝑘−1) ⋅ ⋅ ⋅ 𝑢(𝑘−1)𝑛𝑡

...
...

...
...

0 0 ⋅ ⋅ ⋅ 𝑢𝑛𝑡𝑛𝑡

⎤⎥⎥⎥⎦ , (14)

ỹ = H̃ [�̄�𝑘 𝑥𝑘+1 ⋅ ⋅ ⋅ �̄�𝑛𝑡 ]
𝑇 . (15)

The output vector from the TS algorithm is made as the
updated [�̂�𝑘, 𝑥𝑘+1, ⋅ ⋅ ⋅ , �̂�𝑛𝑡 ] sub-vector. Make 𝑘 = 𝑘 − 1 and
return to Step 1).

After processing all the 𝑛𝑡 layers, the vector x̂ =
[�̂�1, �̂�2, ⋅ ⋅ ⋅ , �̂�𝑛𝑡 ] is declared as the final detected data vector.
We note that in the TS algorithm without layering in Sec.
III-A, TS is carried out once on the full 𝑛𝑡×𝑛𝑟 system model.
Whereas, in the LTS algorithm TS is performed multiple times,
once on each layer

(
depending on the effectiveness of the

interference cancellation performed in that layer as per eqn.
(12)

)
. The dimension of the problem gets increased by 1 from

one layer to the next.

C. Detection with Ordering

A way to improve performance is to follow an optimum
order while detecting the symbols. We need to find an
optimum order (𝑝1, 𝑝2, ⋅ ⋅ ⋅ , 𝑝𝑛𝑡) which is a permutation of
(1, 2, ⋅ ⋅ ⋅ , 𝑛𝑡). We obtain the optimum ordering based on the
post-detection SNR of the symbols as follows.

Perform the following steps for 𝑖 = 𝑛𝑡, ⋅ ⋅ ⋅ , 1 with
H𝑛𝑡 = H: 𝑖) Find H†

𝑖 , the Moore-Penrose pseudo-inverse
of H𝑖, where H𝑖 is obtained by zeroing (𝑝𝑖+1, 𝑝𝑖+2, ⋅ ⋅ ⋅ , 𝑝𝑛𝑡)
columns of H; 𝑖𝑖) Find 𝑝𝑖, the index that corresponds to the
row with the least norm among all rows of H†

𝑖 . Detection is
then carried out in the following order: 𝑝𝑛𝑡 , 𝑝𝑛𝑡−1, 𝑝𝑛𝑡−2 , and
so on.

IV. A LOWER BOUND ON ML PERFORMANCE

In this section, we obtain a lower bound on the ML bit
error performance using the neighborhood search in the TS
algorithm in Sec. III-A. To find the lower bound, we will use
the actually transmitted vector x as the initial vector in the TS
algorithm. Define 𝑛-symbol neighborhood of a certain vector
to be the set of all vectors which differ from that vector in 𝑖
coordinates, 1 ≤ 𝑖 ≤ 𝑛.

With the transmitted vector x as the initial vector, TS
algorithm is run and the output solution vector is obtained. Let
x𝑇𝑆 denote the output solution vector obtained from the TS
algorithm, and let 𝑒𝑇𝑆 denote the number of symbol errors in
x𝑇𝑆 compared to x. For each realization in the simulations,
x, x𝑇𝑆 , and hence 𝑒𝑇𝑆 are known. Let 𝒩x denote the 𝑛-
symbol neighborhood of x (defined in the previous paragraph).
Also, let x𝑀𝐿 denote the true ML vector, and 𝑒𝑀𝐿 denote the
number of symbol errors in x𝑀𝐿 (which we do not know, and
seek to get a lower bound on). Note that the solution vector
x𝑇𝑆 may or may not lie in the 𝑛-symbol neighborhood of x,
𝒩x. Since the TS algorithm chooses x𝑇𝑆 to be the vector with
the least ML cost among all the tested vectors, if x𝑇𝑆 /∈ 𝒩x,
then x𝑀𝐿 /∈ 𝒩x. Also, by the definition of 𝒩x, the number
of errors in x𝑇𝑆 and x𝑀𝐿 are lower bounded by 𝑛+ 1, i.e.,
𝑒𝑇𝑆 , 𝑒𝑀𝐿 ≥ 𝑛+ 1. So, in the simulations, if 𝑒𝑇𝑆 ≥ 𝑛+ 1 in
a given realization, then take 𝑒𝑀𝐿 as 𝑛+ 1 as a lower bound
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on the number symbol errors in the ML vector. On the other
hand, if x𝑇𝑆 ∈ 𝒩x which implies that 𝑒𝑇𝑆 = 𝜅, 1 ≤ 𝜅 ≤ 𝑛,
then two cases are possible: 1) x𝑇𝑆 is the ML vector, and 2)
x𝑇𝑆 is not the ML vector. In case 1) 𝑒𝑇𝑆 = 𝑒𝑀𝐿 = 𝜅, and in
case 2) 𝑒𝑇𝑆 = 𝜅 and x𝑀𝐿 being outside 𝒩x, 𝑒𝑀𝐿 ≥ 𝑛+ 1.
So, in the simulations, if 𝑒𝑇𝑆 = 𝜅, 𝜅 ≤ 𝑛, then take 𝑒𝑀𝐿 as
𝜅 as a lower bound. Lastly, if 𝑒𝑇𝑆 = 0, then x𝑇𝑆 = x which
may or may not be the ML vector; in such a realization, take
𝑒𝑀𝐿 = 0 as a lower bound. In summary, in the simulations,

∙ if 𝑒𝑇𝑆 = 𝜅, 𝜅 ≤ 𝑛, then take 𝑒𝑀𝐿 as 𝜅, and
∙ if 𝑒𝑇𝑆 ≥ 𝑛+ 1, then take 𝑒𝑀𝐿 as n+1,

which results in a lower bound on the ML symbol error
performance. Since the number of symbol errors is a lower
bound on the number of bit errors, it is a bit error bound as
well.

A. Results and Discussions on the Lower Bound

We simulated the tabu search algorithm for a 16 × 16
V-BLAST MIMO system and obtained the proposed lower
bounds for 4-QAM, 16-QAM, and 64-QAM. In the simu-
lations, we have applied the algorithm on the real-valued
system model corresponding to (1), i.e., on the system model
y𝑟 = H𝑟 x𝑟 + n𝑟, where

H𝑟 =

[ ℜ(H) −ℑ(H)
ℑ(H) ℜ(H)

]
, y𝑟 =

[ ℜ(y)
ℑ(y)

]
,

x𝑟 =

[ ℜ(x)
ℑ(x)

]
, n𝑟 =

[ ℜ(n)
ℑ(n)

]
.

The following parameters are used in the tabu search algorithm
simulations: 𝑚𝑎𝑥_𝑟𝑒𝑝 = 75, 𝑚𝑎𝑥_𝑖𝑡𝑒𝑟 = 300, 𝛽 = 0.1,
𝑃0 = 2 for 4-QAM; 𝑚𝑎𝑥_𝑟𝑒𝑝 = 250, 𝑚𝑎𝑥_𝑖𝑡𝑒𝑟 = 1000,
𝛽 = 0.01, 𝑃0 = 2 for 16-QAM; and 𝑚𝑎𝑥_𝑟𝑒𝑝 = 1000,
𝑚𝑎𝑥_𝑖𝑡𝑒𝑟 = 3000, 𝛽 = 0.01, 𝑃0 = 2 for 64-QAM. Perfect
channel state information at the receiver (CSIR) is assumed.
In Fig. 1, we plot the ML lower bounds for 𝑛 = 1, 2, 3, 4 and
compare them with the actual ML performance obtained by
sphere decoding. We note that sphere decoding simulations for
the considered 16×16 system took long simulation run times.
From Fig. 1, it can be observed that the proposed lower bound
is quite tight (within just 0.5 dB) for BERs less than 10−2,
and gets increasingly tighter for lesser BERs. We note that
because of the low-complexity of the tabu search algorithm,
these bounds are easily computed for large 𝑛𝑡. Also, even at
low SNRs the bound gets increasingly tighter with increasing
𝑛.

An Approximate Prediction of ML Performance: The
improved tightness of the proposed lower bound for increasing
𝑛 is observed to be quite significant at low SNRs in Fig. 1.
However, a large 𝑛 means increased complexity. As a low-
complexity alternative, we approximate the true ML error
performance to be the error performance of the tabu search
solution when the transmitted vector x is used as the initial
vector, i.e., we assume 𝑒𝑀𝐿 = 𝑒𝑇𝑆 . From the previous
discussion on the lower bound, we note that 𝑒𝑇𝑆 indeed
corresponds to an upper bound to the proposed ML lower
bound. But this upper bound need not be a lower or upper
bound to true ML performance. So we refer to the performance
obtained by equating 𝑒𝑇𝑆 to 𝑒𝑀𝐿 as an ‘approximate ML
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Fig. 1. Comparison of the proposed lower bound on ML performance for
𝑛 = 1, 2, 3, 4 with the ML performance predicted by sphere decoder for
16 × 16 V-BLAST MIMO with 4-QAM.

performance.’ It can be noted that, complexity-wise, like the
proposed lower bound, the approximate ML performance is
also easily obtained for large 𝑛𝑡. In Fig. 2, we compare
the lower bound, approximate ML, and the sphere decoder
performances for 16 × 16 V-BLAST MIMO with 4-, 16-
and 64-QAM. It is seen that the proposed approximate ML
performance is quite close to the actual ML performance even
at low SNRs.

V. PROPOSED LTS PERFORMANCE IN LARGE-MIMO

Large-System Behavior of LTS: Figure 4 shows the per-
formance of the LTS algorithm with ordering in 𝑛𝑡 × 𝑛𝑟 V-
BLAST MIMO systems with 𝑛𝑡 = 𝑛𝑟 = 4, 8, 32 and 16-
QAM. The following parameters are used in all LTS simula-
tions in each layer: 𝑚𝑎𝑥_𝑟𝑒𝑝 = 10, 𝑚𝑎𝑥_𝑖𝑡𝑒𝑟 = 𝛽 = 20 for
4-QAM, 𝑚𝑎𝑥_𝑟𝑒𝑝 = 10, 𝑚𝑎𝑥_𝑖𝑡𝑒𝑟 = 𝛽 = 100 for 16-QAM,
𝑚𝑎𝑥_𝑟𝑒𝑝 = 20, 𝑚𝑎𝑥_𝑖𝑡𝑒𝑟 = 𝛽 = 200 for 64-QAM, 𝑃0 = 1,
and 𝛿 = 1/4. In Fig. 4, we see that the LTS algorithm exhibits
large-system behavior, where the achieved BER performance
improves with increasing 𝑛𝑡 = 𝑛𝑟. Figure 4 also shows the
BER performance of LTS in 32 × 32 MIMO with 8-PSK,
where the following parameters are used: 𝑚𝑎𝑥_𝑟𝑒𝑝 = 10,
𝑚𝑎𝑥_𝑖𝑡𝑒𝑟 = 50, 𝛽 = 50, 𝑃0 = 1, 𝛿 = 1/8. It is seen that
LTS performance in 32×32 MIMO with 8-PSK is quite close
to 8-PSK performance in unfaded SISO AWGN.

BER/Complexity Comparison with TS with No Layering:
Figure 5 shows a comparison between the BER performances
of the proposed LTS algorithm without and with ordering,
and the TS algorithm without layering in a 32×32 V-BLAST
MIMO system with 16-QAM and 64-QAM. It can be seen
that compared to TS without layering, the proposed layered
TS approach significantly improves the BER performance. For
e.g., TS without layering needs 24 dB SNR to achieve 10−3

BER for 16-QAM, whereas the proposed LTS algorithm with
ordering achieves the same BER at 19 dB, which amounts to
an SNR gain of 5 dB. For 64-QAM, this SNR gain is even
higher. In Fig. 6, we show a complexity comparison between
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Fig. 3. BER performance and complexity of the LTS algorithm as a function
of 𝛿 for 16× 16 V-BLAST MIMO with 16-QAM at an SNR of 19 dB.

the algorithms, where we have plotted the average number of
real operations as a function 𝑛𝑡 = 𝑛𝑟 for 16-QAM at 10−2

BER. Though the order of complexity for TS without layering
is less, the constant is high; at 𝑛𝑡 = 𝑛𝑟 = 16 the proposed
LTS with ordering has almost similar complexity as that of TS
without layering. Also, LTS without ordering has about the
same complexity as TS without layering for 𝑛𝑡 = 𝑛𝑟 = 32;
LTS without ordering, however, achieves better performance
than that of TS without layering. Figure 5 also presents a BER
comparison with a tree structured detector in [28], namely, SIC
via breadth-first search (SIC-BFS). In Fig. 5, the performance
of LTS with layering is better than the performance of SIC-
BFS in [28].

Comparison with Other Detectors: In Table-I, we present a
comparison of the performance (in terms of SNR required
to achieve 10−2 BER) and complexity (in terms of per-

symbol complexity in number of real operations at 10−2 BER)
comparison of the LTS algorithm with those of two low-
complexity variants of sphere decoding. The first one is the
sphere decoder (SD) algorithm in [29], which uses lattice
boundary awareness to reduce complexity. The second one
is the fixed complexity sphere decoder (FSD) in [30], which
restricts the search in such a way that the complexity of the
algorithm is fixed irrespective of the SNR. The FSD in [30]
can result in sub-optimal performance because of limiting the
search to achieve fixed complexity at all SNRs. In [30], FSD
has been shown to achieve almost the same performance as
that of the SD performance for 4× 4 V-BLAST MIMO with
4-, 16- and 64-QAM, and for 8 × 8 V-BLAST MIMO with
4- and 16-QAM, at lower complexities than SD at low to
moderate SNRs. We first simulated the FSD algorithm and
repeated its performance in [30] for 4 × 4 and 8 × 8 V-
BLAST MIMO with 4- and 16-QAM. In addition, we ran FSD
simulations for 16 × 16 and 32 × 32 V-BLAST MIMO with
16-QAM. The FSD performance results for 8×8, 16×16 and
32 × 32 V-BLAST MIMO with 16-QAM obtained from the
simulations and the corresponding complexities are shown in
Table-I. The corresponding results for TS (without layering),
proposed LTS (without and with ordering), and SD in [29]
are also shown. From Table-I, it is observed that 𝑖) in 8 × 8
MIMO, all detectors achieve almost the same performance,
with FSD having the least complexity among them and LTS
having lesser complexity than TS (without layering), 𝑖𝑖) in
16 × 16 MIMO, the FSD, LTS, and TS (without layering)
detectors perform worse than SD in [29] by about 0.5 dB, with
LTS without ordering having the least complexity and SD in
[29] having the highest complexity, and 𝑖𝑖𝑖) in 32×32 MIMO,
LTS without ordering achieves better performance than TS
(without layering) and FSD, at significantly lesser complexity
than FSD and at similar complexity of TS (without layering).
We do not give the 32 × 32 MIMO results for SD in [29]
because of its prohibitively high complexity to simulate in
such large dimensions (64 real dimensions in 32× 32 MIMO
with QAM). So, LTS without ordering is quite attractive in
performance and complexity for large 𝑛𝑡 (e.g., 16 × 16 and
32× 32 MIMO with 16-QAM).

Channel Estimation and Turbo Coded Performance: In this
subsection, we relax the perfect CSIR assumption made in the
previous simulations, by considering a training based iterative
channel estimation/LTS detection scheme. Transmission is
carried out in frames (similar to the transmission scheme in
[7]), where each frame consists of a pilot part followed by
a data part. The pilot part consists of 𝑛𝑡 pilot channel uses,
where one 𝑛𝑡 × 𝑛𝑡 identity matrix is transmitted as pilot for
channel estimation purposes. The data part consists of 𝑛𝑑
data channel uses, where 𝑛𝑑 number of 𝑛𝑡-sized data symbol
vectors are transmitted. One frame length, 𝑇 (taken to be the
channel coherence time), is 𝑇 = 𝑛𝑡 + 𝑛𝑑 channel uses [31].
The iterative channel estimation/detection scheme works as
follows: 𝑖) obtain an MMSE estimate of the channel matrix
during the pilot part, 𝑖𝑖) use the estimated channel matrix to
detect the data vectors using LTS in the data part, 𝑖𝑖𝑖) use the
detected data vectors to estimate the channel matrix again, and
𝑖𝑣) iterate between channel estimation and LTS detection for
a certain number of times.
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We generated soft decision outputs from LTS output as
follows. Let d = [𝑥1, 𝑥2, ⋅ ⋅ ⋅ , 𝑥𝑛𝑡 ], 𝑥𝑖 ∈ 𝔸 denote the detected
output symbol vector from the LTS algorithm. Let the symbol
𝑥𝑖 map to the bit vector b𝑖 = [𝑏𝑖,1, 𝑏𝑖,2, ⋅ ⋅ ⋅ , 𝑏𝑖,𝐾 ]𝑇 , where
𝐾 = log2 ∣𝔸∣, and 𝑏𝑖,𝑗 ∈ {+1,−1}, 𝑖 = 1, 2, ⋅ ⋅ ⋅ , 𝑛𝑡 and
𝑗 = 1, 2, ⋅ ⋅ ⋅ ,𝐾 . Let �̃�𝑖,𝑗 ∈ ℝ denote the soft value for the
𝑗th bit of the 𝑖th symbol. Given d, we need to find �̃�𝑖,𝑗 , ∀ (𝑖, 𝑗).
Note that the quantity ∥y −Hd∥2 is inversely related to the
likelihood that d is indeed the transmitted symbol vector. Let
the d vector with its 𝑗th bit of the 𝑖th symbol forced to +1 be
denoted as vector d𝑗+

𝑖 . Likewise, let d𝑗−
𝑖 be the vector d with

its 𝑗th bit of the 𝑖th symbol forced to -1. Then the quantities
∥y−Hd𝑗+

𝑖 ∥2 and ∥y−Hd𝑗−
𝑖 ∥2 are inversely related to the

likelihoods that the 𝑗th bit of the 𝑖th transmitted symbol is +1
and -1, respectively. So, if ∥y −Hd𝑗−

𝑖 ∥2 − ∥y −Hd𝑗+
𝑖 ∥2 is
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Fig. 6. Complexity comparison between LTS with ordering, LTS without
ordering, and TS without layering in terms of average number of real
operations for different 𝑛𝑡 = 𝑛𝑟 with 16-QAM at 10−2 BER.

+ve (or -ve), it indicates that the 𝑗th bit of the 𝑖th transmitted
symbol has a higher likelihood of being +1 (or -1). So, the

quantity �̃�𝑖,𝑗
△
= ∥y−Hd𝑗−

𝑖 ∥2 − ∥y−Hd𝑗+
𝑖 ∥2, appropriately

normalized to avoid unbounded increase for increasing 𝑛𝑡,
can be a good soft value for the 𝑗th bit of the 𝑖th symbol.
A normalization factor of

(𝜆𝑖,𝑗

2

)2∥h𝑖∥2 is found to give good
performance, where 𝜆𝑖,𝑗 is given by d𝑗−

𝑖 = d𝑗+
𝑖 + 𝜆𝑖,𝑗e𝑖

(since d𝑗−
𝑖 and d𝑗+

𝑖 differ in only one location), and e𝑖 is the
vector with 1 in the 𝑖th coordinate and zeroes in all the other
coordinates. In coded BER simulations, we have used �̃�𝑖,𝑗
normalized by the above factor as soft inputs to the decoder.

In Fig. 7, we present the simulated turbo coded BER per-
formance of LTS detection, with perfect CSIR and estimated
CSIR (using 2 iterations between MMSE channel estimation
and LTS detection), for 18× 18 V-BLAST MIMO, 16-QAM,
and rate-1/2 turbo code. Coded BER results for the estimated
CSIR scheme with 𝑛𝑑 = 54, 108, 162 (corresponding to
coherence times of 𝑇 = 72, 126, 180, and spectral efficiencies
of 27 bps/Hz, 30.8 bps/Hz, 32.4 bps/Hz, respectively) are
shown. From Fig. 7, it is seen that, as expected, performance
with estimated CSIR degrades compared to that with perfect
CSIR. For e.g., with 𝑇 = 72, the performance degrades by
about 2.5 dB at 10−3 coded BER compared to perfect CSIR
performance. However, this performance degradation reduces
for increasing coherence times (i.e., slow fading); e.g., for
𝑇 = 126, 180, the degradation compared to perfect CSIR
performance is about 1.5 dB. In other words, the BER and
bps/Hz with estimated CSIR gets increasing closer to those
with perfect CSIR for increasing channel coherence times, 𝑇 ,
which are typical in low-/no-mobility applications.

VI. CONCLUSION

We made two new contributions in this letter. First, we
presented a layered detection approach in conjunction with
a low-complexity local neighborhood tabu search and showed
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TABLE I
COMPLEXITY AND PERFORMANCE COMPARISON OF THE LTS ALGORITHM WITH OTHER ALGORITHMS. ★ : 32× 32 MIMO RESULTS FOR SD IN [29]
ARE NOT GIVEN BECAUSE OF ITS PROHIBITIVELY HIGH COMPLEXITY TO SIMULATE IN SUCH LARGE DIMENSIONS (64 REAL DIMENSIONS IN 32× 32

MIMO WITH QAM).

Per-symbol-complexity (PSC) in number of real operations×103 and
SNR required to achieve 10−2 BER in 16-QAM

Algorithm 8 ×8 16× 16 32× 32
PSC SNR PSC SNR PSC SNR

TS (without layering) 123.432 18 dB 126.832 17.5 dB 128.227 18.2 dB

LTS (without ordering) 14.263 18 dB 57.052 17.4 dB 179.049 17.4 dB

LTS (with ordering) 24.644 18 dB 135.082 17.4 dB 764.297 17.2 dB

FSD in [30] 11.341 17.9 dB 302.277 17.6 dB 143735.349 17.8 dB

SD in [29] 11.433 17.9 dB 6227.990 17 dB ★ ★
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Perfect CSIR, 36 bps/Hz
Iter Chl Est/Det, T=72, 27 bps/Hz
Iter Chl Est/Det, T=126, 30.86 bps/Hz
Iter Chl Est/Det, T=180, 32.4 bps/Hz

18x18 V−BLAST MIMO
16−QAM, Rate−1/2 turbo code

Fig. 7. Turbo coded performance of LTS with perfect CSIR and estimated
CSIR for 18 × 18 V-BLAST MIMO, 16-QAM, rate-1/2 turbo code. 𝑇 =
72, 126, 180 for estimated CSIR.

that it indeed works very well in terms of both performance as
well as complexity in MIMO systems with large number of an-
tennas. Performance-wise, we showed that it achieves close to
ML performance, and complexity-wise it scales well for large
number of antennas. Such good performance and complexity
features of the proposed algorithm are quite attractive for
large-MIMO systems. Second, we proposed a lower bound on
ML bit error performance based on the neighborhood search
of the tabu search algorithm, which is a novel and effective
approach. The proposed bound is easy to obtain for large-
MIMO systems, and it can serve as a benchmark for evaluating
the nearness to ML performance achieved by different large-
MIMO detection algorithms.
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