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Abstract—In this paper, we consider media-based modulation
(MBM) in a cyclic-prefixed single-carrier setting (CPSC-MBM) in
inter-symbol interference channels and focus on low-complexity
signal detection at the receiver. For this, we exploit the structured
sparsity that is inherently present in CPSC-MBM signals. We
formulate the sparse vector detection problem of interest as an
equivalent sparse matrix detection problem, whose reconstruction
complexity can be significantly less without incurring much
loss in recovery performance. This technique of recovering
sparse matrices, termed as sparse matrix sketching, applied to
CPSC-MBM signal recovery is shown to achieve good bit error
performance with significant complexity gains compared to the
sparse vector detection approach.

Keywords – Media-based modulation, RF mirrors, sparse matrix

sketching, FISTA, ADM.

I. INTRODUCTION

Media-based modulation (MBM) is a recent channel mod-

ulation scheme which is shown to have promising theoretical

and practical advantages [1]-[9]. MBM uses a single transmit

radio frequency (RF) chain and one or more RF mirrors (para-

sitic elements) placed in the near field of the transmit antenna.

In the ON state, an RF mirror reflects the RF signal and in the

OFF state, it allows the signal to pass through. If there are mr f

RF mirrors, then there are 2mr f ON and OFF combinations for

these RF mirrors, called as mirror activation pattern (MAPs).

The RF mirrors act as signal scatterers in the near field of the

transmit antenna. Different MAPs create different near field

geometry for the transmitted signal. Therefore, 2mr f different

MAPs create 2mr f independent channels between the transmit-

ter and the receiver. In a given channel use, one of the 2mr f

MAPs are selected using mr f information bits. On the selected

MAP, a symbol from a conventional modulation alphabet A

(e.g., QAM/PSK) is transmitted based on log2 |A| bits. So, the

achieved rate in MBM is ηMBM = mr f +log2 |A| bits per channel

use (bpcu). MBM has several advantages compared to other

single RF chain based schemes as highlighted below.

1) Linear increase in rate with mr f : From the achieved rate

expression for MBM mentioned above, it can be seen that

the rate increases linearly with the number of RF mirrors

used. Whereas, a conventional system using a single RF chain

and a modulation alphabet A achieves a rate of η = log2 |A|
bpcu, which requires exponential increase in the modula-

tion alphabet size to achieve linear increase in rate. Spatial

modulation (SM) [10] also uses a single RF chain but uses

multiple transmit antennas. An SM system achieves a rate

of ηSM = log2 nt + log2 |A| bpcu. SM therefore requires an

This work was supported in part by the Visvesvaraya PhD Scheme of
the Ministry of Electronics & IT, Government of India, J. C. Bose National
Fellowship, Department of Science and Technology, Government of India,
and the Intel India Faculty Excellence Program.

exponential increase in either the transmit antennas or the

modulation alphabet size to achieve linear increase in rate.

2) Exponential growth in sparsity with mr f : MBM signal

vectors are inherently sparse. As will be discussed in Secs.

II and III, the sparsity in MBM grows exponentially with the

number of RF mirrors used. This is useful in low-complexity

signal detection using sparse recovery algorithms. While SM

signal vectors are also sparse, the sparsity in SM grows only

linearly with the number of transmit antennas.

3) Linear increase in capacity with nr : MBM using one

transmit antenna and nr receive antennas has been shown

to asymptotically achieve the capacity of nr parallel AWGN

channels [6],[9] (see Fig. 1 which shows the simulated MBM

capacity plots as a function of mr f for different nr ).

Motivated by the above advantages of MBM over other

single RF chain schemes, in the present work we focus on

the low-complexity detection of MBM signals in ISI channels.

MBM signal detection using sparse signal recovery techniques

have been proposed in the recent literature [4],[8],[9],[11].

Recently, it is shown in the compressive sensing literature that

if a sparse vector recovery problem can be converted to an

equivalent sparse matrix recovery problem, then the recovery

can be achieved at a significantly lesser complexity in the

matrix form compared to that in the vector form without much

compromise in the performance. This technique is termed

as sparse matrix sketching [12],[13]. Towards this end, we

consider cyclic-prefixed single-carrier MBM (CPSC-MBM)

[5] systems in (ISI) channels and formulate the CPSC-MBM

signal detection problem as a structured sparse matrix sketch-

ing problem, and propose two detection algorithms for CPSC-

MBM signal detection based on sparse matrix sketching. It

is shown that the proposed algorithms efficiently exploit the

structured matrix form of CPSC-MBM signals and achieve

low complexity detection with good performance.

The rest of the paper is organized as follows. The CPSC-

MBM system model is presented in Sec. II. The proposed

sparse matrix sketching based detection algorithms are pre-

sented in Sec. III. Section IV presents the bit error rate (BER)

and complexity results for CPSC-MBM using the proposed

algorithms. Conclusions are presented in Sec. V.

II. SYSTEM MODEL

Consider an MBM system with a transmit antenna and mr f

RF mirrors surrounding it. The transmission in CPSC-MBM

is carried out in frames. A transmission frame uses N time-

slots to convey the data and L − 1 time-slots for cyclic prefix

(CP). Hence, the size of a frame is N + L − 1 time-slots.

An L-tap frequency-selective fading channel with exponential
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Fig. 1: MBM capacity as a function of mr f and nr at SNR =

2 dB.

power-delay profile is considered. In each of the N channel

uses of the data part of the frame, one of the Nm , 2mr f

MAPs is selected using mr f information bits. Using the

selected MAP, a symbol from a conventional alphabet A (e.g.,

QAM/PSK) is transmitted based on log2 |A| bits. The achieved

rate of CPSC-MBM system in bpcu is therefore given by

η = N
N+L−1

{
mr f + log2 |A|

}
bpcu.

Let A0 , A ∪ 0. The MBM signal set, SMBM, is the set of

Nm × 1-sized MBM signal vectors given by

SMBM =

{
sk,p ∈ ANm

0
; k = 1, · · · ,Nm ; p = 1, · · · , |A|

}

s.t sk,p =
[
0, · · · ,0, sp︸︷︷︸

k th entry

0, · · · ,0]T , sp ∈ A, (1)

where k is the MAP index. The receiver has nr receive

antennas. The channel is assumed to remain constant for one

frame duration and is assumed to be known perfectly at the

receiver. In each of the N channel uses of the data part of the

frame, an MBM signal vector from SMBM is transmitted. Let

x j ∈ SMBM denote the Nm × 1 transmitted signal vector in the

jth channel use, −L ≤ j ≤ N − 1. At the receiver, after CP

removal, the Nnr × 1 received signal vector is given by

y = Hx + n, (2)

where n ∼ CN (0,σ2INnr
) is the Nnr × 1 noise vector, x is

the N Nm × 1 vector which forms the data part of the frame,

given by x =
[
xT

0
xT

1
· · · xT

N−1

]T
, and H is the Nnr × N Nm

equivalent block circulant matrix, given by

H = circ[H0,H1, · · · ,HL−1,0, · · · ,0], (3)

where Hl is the nr × Nm channel gain matrix corresponding

to the lth multipath whose (i, k)th entry is h
(l )

i,k
, where h

(l )

i,k

denotes the channel gain from the transmit antenna to the ith

receive antenna for the lth path when kth MAP is used, i =

1, · · · ,nr , k = 1, · · · ,Nm , l = 0, · · · ,L − 1. The power-delay

profile is assumed to follow an exponential decay model, i.e.,

E
[|h(l )

i,k
|2] = e−l , l = 0,1, · · · ,L − 1. The maximum likelihood

(ML) detection rule for the system model (2) is given by

x̂ = argmin
x∈SN

MBM

‖y − Hx‖2. (4)

The detection complexity in (4) is O (N 2Nmnr 2(Nmr f +N log2 |A |) ),

which is exponential in the frame size N , making it infeasible

for large N .

III. DETECTION USING SPARSE MATRIX SKETCHING

From (1), the MBM signal vectors can be seen to have

only one non-zero entry out of the Nm = 2mr f entries.

Since the CPSC-MBM signal vector is the concatenation of N

MBM vectors, it is also sparse with the same sparsity factor.

Specifically, CPSC-MBM signal vector is a sparse N Nm × 1

vector with only one non-zero entry in every Nm-length MBM

subvector. The sparsity along with this additional structure

can be exploited to design efficient detectors using structured

compressive sensing based sparse recovery techniques.

A. CPSC-MBM received signal in alternate form

We express the block circulant matrix H in (3) as

H =
(
FH ⊗ Inr

)
D
(
F ⊗ INm

)
, (5)

where ⊗ denotes the Kronecker product, (.)H denotes the

Hermitian operation, and F is the DFT matrix, given by

F = 1/
√

N












ρ0,0 ρ0,1 · · · ρ0,N−1

ρ1,0 ρ1,1 · · · ρ1,N−1

...
...

ρN−1,0 ρN−1,1 · · · ρN−1,N−1












,

where ρm,n = exp
( − j2πmn

N

)
, and D is a block diagonal matrix

given by

D = diag[D0,D1, · · · ,DN−1] s.t Di =

L−1∑

l=1

ρi,lHl . (6)

From (5), we can write

Hx =
(
FH ⊗ Inr

)
D
(
F ⊗ INm

)
x,

=

(
FH ⊗ Inr

)











D0

(
f0 ⊗ INm

)
x

D1

(
f1 ⊗ INm

)
x

...

DN−1

(
fN−1 ⊗ INm

)
x












,
(7)

where fi denotes the ith row of F. Let X =
[
x0 x1 · · · xN−1

]

be the Nm × N matrix such that x = vec
(
X
)

=[
xT

0
xT

1
· · · xT

N−1

]T
. Now, (7) can be further simplified as

Hx =
(
FH ⊗ Inr

)








D0XfT
0
...

DN−1XfT
N−1









. (8)

Using the property of the Kronecker product vec(AXBT ) =

(B ⊗ A)vec(X) in (8), the received signal vector in (2) can

be written in the alternate form as an nr × N matrix Y ,[
y0 y1 · · · yN−1

]
as

Y = Inr

[
D0XfT0 D1XfT1 · · · DNXfTN−1

]
FHT

+ N

=

[
D0XfT0 D1XfT1 · · · DN−1XfTN−1

]
F∗ + N, (9)

where N ∈ Cnr ×N is the noise matrix with Ni, j ∼ CN (0,σ2),

and F∗ denotes the element-wise conjugation of matrix F.



B. Formulation of the signal detection problem

A sparse matrix sketching problem is to solve

min
X
‖X‖1 s.t Y = AXBT + N, (10)

where Y is the observation matrix, A and B are known

matrices [13]. We use the alternate form of the CPSC-MBM

received signal in (9) and formulate the detection problem

as sparse matrix sketching problem in a slightly modified

form compared to (10). Specifically, the CPSC-MBM signal

detection problem can be formulated as a structured sparse

matrix sketching problem as

min
X
‖X‖1 s.t

a) Ỹ = f (X) + Ñ, b) ‖xi ‖0 = 1 ∀i = 0,1 · · · ,N − 1,
(11)

where Ỹ = Y(F∗)−1
= f (X) + Ñ, with Y as in (9), f (X) =[

D0XfT
0

D1XfT
1
· · · DN−1XfT

N−1

]
, Ñ = N(F∗)−1, and xi

is the ith column of X. We now make a few remarks on the

above formulation.

Remark 1: Although the formulation in (11) involves recon-

struction of a sparse matrix, it is different from the canonical

form of the matrix sketching problem in (10) in two aspects.

Firstly, the form of the observation matrix as given in a) of

(11) is specific to CPSC-MBM and is different from that in

(10). Secondly, the canonical form in (10) has no additional

structure in the problem, whereas the constraint b) in (11)

requires only one non-zero to be reconstructed in each column

of the sparse matrix X.

Remark 2: The formulation in (11) is different from the

conventional sparse vector recovery approach. Specifically, the

sparse vector recovery formulation is based on the system

model in (2) and is given by

min ‖x‖1 s.t y = Hx + n, ‖xi ‖0 = 1,∀i = 0, · · · ,N − 1. (12)

In the following subsections, we propose two algorithms

to solve (11) based on sparse matrix sketching. The first

algorithm is based on fast iterative shrinkage-thresholding

algorithm (FISTA) [14], with extensions and modifications

to suit the specific structure of the problem in (11). We call

this algorithm as ‘MBM matrix FISTA’ (MBM-MFISTA). We

also propose a matrix sketching algorithm which builds on

alternating direction method (ADM) [15] to enable matrix

recovery. We call this algorithm as ‘MBM matrix ADM’

(MBM-MADM).

C. Signal detection using MBM-MFISTA

To solve the optimization problem in (11), we consider the

following regularized l1-norm optimization problem:

min
X

{1
2
‖Ỹ − f (X)‖2F + λ‖X‖1

}
, (13)

where λ is regularization parameter. (13) can be written as

min
X

{1
2

N−1∑

i=0

‖ỹi − DiXfTi ‖22 + λ‖X‖1
}
, (14)

where ỹi is the ith column of the matrix Ỹ. For a complex

matrix A ∈ C
M ×N , the equivalent matrix in the real form is

Algorithm 1 Listing of proposed MBM-MFISTA

1) Input:
[
ỹri
]N−1
i=0 ,

[
Dri

]N−1
i=0 ,

[
fri
]N−1
i=0

2) Initialization: X0
r = 0, X1

r = 0, t0 = 1, t1 = 1, n = 1, λ1 > 0,

λ > 0, α ǫ (0,1), L f , X̂ = Nm × N zero matrix.
3) while not converged do

4) Rn
= Xn

r +
tn−1−1

tn

(
Xn
r − Xn−1

r

)

5) Vn
= Rn − 1

L f

N−1∑
i=0

DT
ri

(
Dri R

nfTri − ỹri
)
fri

6) Xn+1
r = soft(Vn ,

λn

L f
)

7) tn+1 =
1+
√

4t2
n+1

2

8) λn+1 = max(αλn , λ)
9) n = n + 1

10) end while
11) Convert Xn

r to complex form Xn

12) {p1,p2, · · · ,pN } = Sx (Xn )

13) X̂(pk , k) = argmin
s∈A

‖Xn (pk , k) − s‖2, k = 1,2, · · · ,N

14) Output: X̂

Ar =

�
�
�
�
�

Re(A) −Im(A)

Im(A) Re(A)

�
�
�
�
�
.

The optimization problem in (14) in real form is

min
Xr

{1
2

N−1∑

i=0

‖ỹri − Dri Xr fTri ‖
2
F + λ‖Xr ‖1

}
. (15)

For solving (15), we consider the approach in [12] which

generalizes FISTA for sparse matrix recovery. However, nec-

essary changes are made to satisfy the constraints in (11). The

proposed MBM-MFISTA listing is given in Algorithm 1.

In Algorithm 1, steps 1 to 4 and 6 to 10 are same as those

of MFISTA in [12]. The main modifications are in steps 5 and

12 which account for the constraints in (11). Specifically, step

5 is the gradient step specific to the form of the CPSC-MBM

observation matrix in (9), which is taken care in the constraint

a) of (11). In step 12, Sx selects one position in each column

of Xn which contains the entry with highest absolute value

in that column. Then, all the entries of Xn other than the

ones selected by Sx are set to zero. This is taken care in

steps 2 (initialization of X̂) and 12, which ensure only one

non-zero element in each column of the reconstructed CPSC-

MBM matrix, thus satisfying the constraint b) in (11). Finally,

the reconstructed non-zeros are mapped to the valid symbols

in A in step 13. In the algorithm, L f is the Lipschitz constant

of ∇F (Xr ), where F (Xr ) = 1
2

∑N−1
i=0 ‖ỹri − Dri Xr fTri ‖

2
F

,

soft(An ,a) = sgn(An
i, j

)(|An
i, j
| − a)+, ∀(i, j).

Complexity: The computational complexity of Algorithm 1

is governed by step 5, which involves computing
∑N−1

i=0 DT
ri(

Dri R
nfTri − ỹri

)
fri and has the complexity of O(8N2 Nmnr +

8N2 N2
m +24N2 Nm +8N Nmnr ), which is mainly dominated by

the O(8N2 N2
m ) term. The complexity of vector FISTA [14] is

O(8N3N2
mnr + 4N2 Nm + 4N2 Nmnr ) which is dominated by

the O(8N3N2
mnr ). So, the complexity of MBM-MFISTA is

less than that of vector FISTA by a factor of Nnr .

D. Signal detection using MBM-MADM

In this subsection, we present the proposed MBM-MADM

which is an extension of ADM [15] to the matrix case. In



order to extend ADM to sparse matrix recovery, we introduce

the auxiliary term Z in (15), which results in the following

optimization problem:

min
Xr ,Z

{1
2

N−1∑

i=0

‖ỹri − Dri ZfTri ‖
2
F + λ‖Xr ‖1

}
s.t Xr = Z. (16)

The augmented Lagrangian function of (16) is then given by

argmin
Xr ,Z,Λ

L
(
Xr ,Z,Λ

)
=

1

2

N−1∑

i=0

‖ỹri − Dri ZfTri ‖
2
F + λ‖Xr ‖1

+ Tr
(
Λ
T (

Z − Xr

))
+
ρ

2
‖Z − Xr






2
F , (17)

where Λ∈R2Nm ×2N is the Lagrange multiplier matrix, ρ is the

penalty parameter, and Tr(·) denotes the trace operator. Now,

the ADM iterations are achieved by solving the following sin-

gle (matrix) variable optimization problems and the Lagrange

multiplier matrix update:

Zn+1
= argmin

Z

L
(
Xn
r ,Z,Λ

n ) , (18a)

Xn+1
r = argmin

Xr

L
(
Xr ,Z

n+1,Λn ) , (18b)

Λ
n+1
= Λ

n + ρ(Zn+1 − Xn+1
r ). (18c)

The optimization problem (18a) is solved using the acceler-

ated gradient method [16] for K iterations, with the (k + 1)th

iteration given by

Zk+1
= Uk − η∇ f (Uk ) (19a)

Uk+1
= Zk+1 − k

k + 3
(Zk+1 − Zk ), (19b)

where f (Uk ) =
{ N−1∑

i=0

‖ỹri −Dri U
k fTri ‖

2
F

+Tr
(
Λ
T (

Uk −Xr

))
+

ρ

2
‖Uk −Xr






2
F

}
. The solution to (18a) is then Zn+1

= ZK . The

optimization problem (18b) is equivalent to

argmin
Xr

λ‖Xr ‖1 +
ρ

2
‖Zn+1 − Xr + Λn/ρ‖2F , (20)

which can be solved by soft thresholding as

Xn+1
r = soft

(
Zn+1 + Λn/ρ, λ/ρ

)
. (21)

The Lagrange multiplier matrix is then updated in (18c) by

using the solutions of (18a) and (18b). The iterations in (18a),

(18b), and (18c) are continued till a maximum number of

iterations is reached.

The listing of the proposed MBM-MADM is given in

Algorithm 2. The steps 1 to 16 shown in the listing achieve

the iterative procedure discussed above. Although the iterative

procedure results in the sparse matrix reconstruction, the

structure of the CPSC-MBM as imposed by the condition b)

of (11) has to be separately taken care of. This is achieved by

restricting one non-zero per each column of the reconstructed

sparse matrix, which is shown in step 17 of the algorithm,

where Sx is as defined before. Finally, the reconstructed non-

zeros are mapped to the valid symbols from A in step 18. In

the algorithm, soft(An ,a) = sgn(An
i, j

)(|An
i, j
| − a)+, ∀(i, j).

Complexity: The complexity of Algorithm 2 is governed

by the gradient descent step, where the computation of∑N−1
i=0 DT

ri

(
Dri U

k fTri − ỹri
)
fri has a complexity of

Algorithm 2 Listing of proposed MBM-MADM

1) Input:
[
ỹri
]N−1
i=0 ,

[
Dri

]N−1
i=0 ,

[
fri
]N−1
i=0

2) Initialize: X0
r = 0, Z0

= 0, Λ0
= 0, n = 1, λ = 2, ρ0 = 0.1,

ρ = 5, α = 1.1, X̂ = Nm × N zero matrix
3) while not converged do

4) V0
= Zn , U0

= 0, k = 1, η>0
5) for k : 1→ K

6) Vk+1
= Uk − η

N−1∑
i=0

DT
ri

(
Dri U

k fTri − ỹri
)
fri −Λn − ρn

(
Uk −

Xr
)

7) Uk+1
= Vk+1 − k

k+3
(Vk+1 − Vk )

8) k = k + 1
9) end for

10) Zn+1
= VK

11) Xn+1
r = soft

(
Zn+1 + Λn/ρn , λ/ρn

)

12) Λn+1
= Λ

n + ρn (Zn+1 − Xn+1
r )

13) ρn+1
= min(αρn , ρ)

14) n = n + 1
15) end while
16) Convert Xn

r to complex form Xn

17) {p1,p2, · · · ,pN } = Sx (Xn )

18) X̂(pt , t) = argmin
s∈A

‖Xn (pt , t) − s‖2, t = 1,2, · · · ,N

19) Output: X̂

O(8N2Nmnr + 8N2 N2
m + 24N2 Nm + 8N Nmnr ) operations.

Further, the accelerated gradient descent is performed for K it-

erations. Therefore, the overall complexity is O(8N2 Nmnr K +

8N2 N2
mK + 24N2 NmK + 8N Nmnr K ), which is dominated by

O(8N2N2
mK ). On the other hand, the complexity of the vector

ADM is O(8N3 N3
m ) [15]. Therefore, the complexity of vector

ADM is cubic in N Nm , while it is only quadratic in N Nm for

MBM-MADM.

IV. RESULTS AND DISCUSSIONS

In this section, we present numerical results on the con-

vergence, complexity, and bit error rate (BER) performance

of the proposed algorithms. Figures 2(a) and 2(b) show the

normalized mean squared error (NMSE), ‖X − X̂‖2
F
/‖X‖2

F
, as

a function of number of iterations using MBM-MFISTA and

MBM-MADM, respectively. We also show the NMSE of the

equivalent structured sparse vector algorithms ‘MBM vector

FISTA’ (MBM-VFISTA) and ‘MBM vector ADM’ (MBM-

VADM) for comparison. It can be seen that the NMSE de-

creases with the increase in number of iterations and becomes

flat after certain number of iterations, which is about 50 and 75

iterations for MBM-MFISTA and MBM-MADM, respectively.

These values are used as the maximum number of iterations

in the BER simulations reported next.

In Fig. 3, we plot the BER performance of CPSC-MBM

using MBM-MFISTA and MBM-MADM algorithms for two

system configurations. We also show the detection perfor-

mance with MBM-VFISTA and MBM-VADM. The BER per-

formance with vector approximate message passing (VAMP)

as in [11] is also shown for comparison. It can be seen

that CPSC-MBM performance with MBM-MFISTA is slightly

better than that with MBM-MADM. Further, the performance

of CPSC-MBM using MBM-MFISTA is almost the same as
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Fig. 2: NMSE as function of number of iterations with MBM-

MFISTA, MBM-VFISTA, MBM-MADM, MBM-VADM.
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Fig. 3: BER performance of CPSC-MBM using MBM-

MFISTA (proposed), MBM-MADM (proposed), MBM-

VFISTA, MBM-VADM, and VAMP [11].

that using MBM-VFISTA, and the performance of CPSC-

MBM using MBM-MADM is very close to that using MBM-

VADM. Also, the BER performance with VAMP is slightly

better than that with MBM-MFISTA. However, as we illustrate

next, the complexities of MBM-MFISTA and MBM-MADM

are less than that of VAMP.

In Figs. 4(a) and 4(b), we show the complexity of the

proposed detectors as mr f and N are varied, respectively. The

complexity of MBM-VFISTA, MBM-VADM, and VAMP are

shown for comparison. It can be seen that the complexity of the

proposed MBM-MFISTA and MBM-MADM are considerably

less than those of MBM-VFISTA, MBM-VADM, and VAMP.

Next, we present a BER and complexity comparison of

the proposed detection algorithms with optimal ML detection

Figs. 5(a) and 5(b). From these figures, it can be seen that

the proposed algorithms achieve a BER performance within

1.5 dB of the optimal ML detector. It can be further observed

from Fig. 5(b) that the complexity of the proposed detectors

is lesser than that of the ML detector.

V. CONCLUSIONS

We considered the problem of low complexity detection

for CPSC-MBM signals in ISI channels. We proposed two

structured sparse matrix sketching based detection algorithms

by extending the vector FISTA and vector ADM algorithms.

Simulation results showed that the proposed detectors trade off

a small loss in BER to a significant reduction in complexity.
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