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Abstract—Media-based modulation (MBM) is an attractive
modulation scheme which can achieve high data rates using
multiple radio frequency (RF) mirrors (parasitic elements) and
fewer transmit antennas/RF chains. In this paper, we consider
MBM for the uplink in a massive MIMO system consisting of
tens of users and tens to hundreds of base station (BS) receive
antennas. Each user employs MBM with one transmit antenna
and multiple RF mirrors placed near it. The ON/OFF status of
the RF mirrors conveys information bits in addition to the bits
conveyed through conventional modulation symbols. We show
that the multiuser MBM (MU-MBM) system achieves very good
bit error performance compared to other conventional multiuser
MIMO systems. We propose two types of low-complexity detec-
tion algorithms for massive MU-MBM systems. The first type
is based on compressive sensing (CS) that exploits the inherent
sparse nature of the MBM transmit vectors. The second type is
is based on message passing that performs both detection and
channel estimation at low computational complexity. To do this,
it exploits the ‘channel hardening’ phenomenon that occurs in
large MIMO channels. It is shown that the proposed algorithms
are not only computationally less complex but also provide very
good bit error performance in massive MU-MBM systems.

Index Terms—Media-based modulation, parasitic elements,
RF mirrors, compressive sensing, structured sparsity, message
passing receiver, channel hardening

I. INTRODUCTION

Next generation of wireless communication systems are

expected to deliver very high data rates with high reliability

and spectral efficiency. Multiple input multiple output (MIMO)

systems, where both the transmitter and receiver use multiple

antennas/RF chains, is a key technology for achieving such

high data rates in a power and spectral efficient manner [1].

Large-scale multiuser MIMO systems for downlink and uplink

communications (e.g., massive MIMO [2]) are of interest. In

multiuser MIMO downlink, a base station (BS) with large

number of antennas (10s to 100s) transmit simultaneously to

several users. Employing zero-forcing (ZF) precoding in the

digital baseband is known to achieve near optimal performance

when the number of BS antennas is large. However, ZF

precoding requires the use of large number of RF chains,

equal to the number of BS antennas, which is prohibitive

since it increases the hardware cost and also leads to more

power consumption. To overcome this hardware constraint

and achieve the benefits of multiuser MIMO systems, several

hybrid analog and digital precoding schemes are proposed. The

main idea is to divide the precoder into a small size digital

precoder requiring less number of RF chains and a large size

analog precoder to achieve array gain. It has been shown that

hybrid precoding can reduce the number of RF chains at the

BS with negligible performance degradation compared to fully

digital precoding (see [3], [4] and the references therein).

On the uplink, multiple users transmit simultaneously to a

BS having multiple receive antennas. The use of complex RF

hardware in the user equipment (UE) is prohibitive due to cost

and operating power requirements. MIMO modulation tech-

niques that can enable the use of fewer transmit antennas/RF

chains at the UE are crucial for uplink data transmissions.

Three interesting approaches that can significantly reduce the

RF hardware complexity at UE are becoming popular in the

recent literature. They include spatial modulation (SM) [5]-[8],

load modulation (LM) [9]-[11], and media-based modulation

(MBM) [12]-[16]. A key commonality in them is that they

can work with only one transmit RF chain along with an

array of antenna elements. The single-RF chain feature in

these approaches enables RF hardware simplicity and size/cost

reduction. In the following, we briefly describe these MIMO

modulation schemes highlighting their relative differences and

merits.

SM: An SM system uses multiple transmit antenna elements

and a single RF chain at the transmitter [6]-[8]. In a given

channel use, only one transmit antenna element is activated

based on the information bits and a symbol from conventional

modulation alphabet (say, QAM) is transmitted from the

activated antenna. If nt is the number of transmit antenna

elements and A is the modulation alphabet used, then the

achieved rate in SM is ηSM = ⌊log2 nt⌋ + log2 |A| bits per

channel use (bpcu). Therefore, SM requires an exponential

increase in the number of antenna elements to increase the

rate. However, limited space available in the UE prohibits the

use of several transmit antenna elements, as required by SM.

LM: LM array is an interesting MIMO modulation scheme

in which the load impedances of multiple transmit antenna

elements (parasitic elements) are modulated according to in-

formation signals, in effect implementing the signal set in the

analog domain [9]. In LM, a single power amplifier fed by a

fixed voltage and frequency source drives an array of multiple

transmit antenna elements. The LM implementation requires

only one transmit RF chain since it uses only one power

amplifier and an optional spectral shaping filter to reduce

the sampling rate to symbol rate [9],[10]. The use of LM

arrays with 2 antenna elements at the UEs in a multiuser

MIMO system has been shown to achieve good performance
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[11]. A drawback with LM is that all the transmit vectors

are constrained to have the same transmit power, i.e., all the

transmit signals should lie on the surface of the nt-dimensional

hypersphere. Any power mismatch can result in refection of

power to the amplifier, which reduces its efficiency.

MBM: MBM is a recently proposed channel modulation

scheme that can achieve high rates over multipath fading

channels in rich scattering environments [12]-[16]. In MBM,

digitally controlled parasitic elements, called radio frequency

(RF) mirrors, are placed near the transmit antenna. These

RF mirrors controlled by information bits can create different

channel fade realizations, which are used to form the chan-

nel modulation alphabet. The RF mirrors in MBM do not

require complex RF hardware like mixers, filters, etc., and are

therefore simple in terms of hardware. The transmit antenna

is driven by one RF chain, resulting in a single RF chain

implementation. Importantly, the rate increases linearly with

the number of RF mirrors used in MBM. This is unlike in

SM, which requires exponential increase in the number of

transmit antennas elements to increase the rate. However, the

RF mirrors add to the RF hardware complexity in MBM.

An implementation of a compact MBM structure with 14 RF

mirrors is reported in [14], where RF mirrors are implemented

as periodic switched structures. MBM has been shown to

achieve very good performance in the point-to-point setting

[12]-[16]. Motivated by its hardware feasibility and superior

performance in the point-to-point setting, we study MBM in

the multiuser setting in this paper. In the rest of this section,

we briefly present the basics of MBM.

The RF mirrors placed around a transmit antenna in MBM

act as RF signal scatterers, which modify the propagation

environment near the transmit antenna. Each RF mirror can be

switched ON (reflects the incident RF signal from the transmit

antennas) or OFF (transparent to the incident RF signal)

digitally. The ON/OFF status of the mirrors is referred to as

the ‘mirror activation pattern’ (MAP). If there are mrf mirrors

around a transmit antenna, then 2mrf MAPs are possible. Each

of these MAPs corresponds to a unique near field geometry.

In a rich scattering environment, even a small perturbation

in the near field geometry results in an independent fading

channel observed at the receiver in the far field. Thus, each

MAP creates a corresponding independent fade realization.

The transmitter can select one of the 2mrf MAPs using mrf

input information bits. The antenna element transmits a symbol

from a conventional modulation alphabet (e.g., QAM) denoted

by A. Therefore, the achieved rate of MBM is given by

ηMBM = mrf + log2 |A| bpcu. The achieved rate increases by

1 bit with the addition of every single RF mirror. Thus, the

MBM scheme not only assures a wireless channel with rich

scattering and independent fade states, but also achieves high

rates. A practical implementation of the MBM scheme with

14 RF mirrors and a dipole transmit antenna is reported in

[14]. A scheme similar to MBM was reported earlier as ‘aerial

modulation’ in [17], [18].

In addition to providing high rates, MBM has been shown

to provide attractive performance advantages [12]-[16]. It has

been shown that, MBM using nr receive antennas can asymp-

totically (as mrf → ∞) achieve the capacity of nr parallel

AWGN channels [13]. This suggests that MBM can be an

attractive candidate for use in massive MIMO systems, where

the BS has a large number of receive antennas. Accordingly,

we investigate MBM in the context of large-scale multiuser

MIMO systems on the uplink.

First, considering small systems with few users and BS

antennas, and maximum likelihood (ML) detection, we show

that multiuser MBM (MU-MBM) can significantly outperform

other multiuser MIMO systems that employ conventional mod-

ulation and spatial modulation. In order to scale MU-MBM to

large systems with large number of users and BS antennas,

we then proceed to investigate suitable techniques/algorithms

meant for low-complexity signal detection and channel esti-

mation at the BS receiver. We consider two approaches for

this purpose. The first approach is based on the structured

sparse signal recovery from compressive sensing theory and

the second approach is based on message passing.

It has been recognized that compressive sensing (CS) will

play a key role in the next generation 5G communications.

This is mainly because of the rich set of tools provided

by CS to exploit the sparsity, thereby enabling the recovery

of high dimensional signals from a small number of linear

observations (see [25], [26] and references therein for appli-

cations of CS in communications). In the present work, we

recognize that multiuser MBM signal vectors are essentially

sparse vectors, and therefore sparse signal recovery techniques

are natural for MU-MBM signal detection. In this direction, we

propose two CS based sparse vector reconstruction algorithms,

namely, iterative sparse recovery (ISR) and inclusion exclusion

subspace pursuit (IESP), for MU-MBM signal detection. ISR

uses conventional CS based sparse recovery algorithms like

orthogonal matching pursuit (OMP) [27], compressive sam-

pling matching pursuit (CoSaMP) [28], and subspace pursuit

(SP) [29] iteratively, with necessary modifications for the

MU-MBM signal detection [32]. IESP is a structured sparse

recovery algorithm, in which the conventional SP is enhanced

to suit the structure of MU-MBM signal vectors to achieve

low-complexity signal detection.

In the second approach based on message passing, we

exploit ‘channel hardening’ – a phenomenon that occurs in

large MIMO channels whereby the channel matrices in large-

dimensional systems become well conditioned [33] – for the

purpose of low-complexity detection and channel estimation in

large-scale MU-MBM systems. In this approach, the multiuser

MBM system is modeled as a bipartite graph and message

passing is performed over it for efficient detection of the MU-

MBM signal vectors [34]. Further, a low-complexity algorithm

for combined channel estimation and detection in MU-MBM

is proposed; this algorithm exploits channel hardening and

enables MU-MBM signal detection at low computational

complexity with estimated channel state information at the

BS.

Both the proposed receiver approaches are shown to achieve

very good performance in large-scale MU-MBM systems. For

example, to achieve a certain target bit error performance, MU-

MBM requires far fewer number of receive antennas at the BS

compared to other traditional MIMO modulation techniques

such as conventional modulation and spatial modulation. For
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example, a bit error rate (BER) performance achieved using

620 receive antennas at the BS in a massive MIMO system

using conventional modulation can be achieved using just 130

antennas with MU-MBM using the proposed structured sparse

recovery algorithm. Also, spatial modulation used in the same

massive MIMO settings requires more than 200 antennas to

achieve the same BER performance. This suggests that MBM

can be an attractive modulation scheme for use in the uplink

of massive MIMO systems.

The rest of this paper is organized as follows. The MU-

MBM system model and its BER performance with ML

detection are presented in Sec. II. Sparsity-exploiting algo-

rithms for MU-MBM signal detection and their performance

in large-scale systems are presented in Sec. III. In Sec. IV,

message passing based receivers for MU-MBM are presented.

Conclusions are presented in Sec. V.

II. SYSTEM MODEL

Consider a multiuser MIMO system with K uplink users

and a BS with nr receive antennas (see Fig. 1). The users

employ MBM for signal transmission. Each user has a single

transmit antenna and mrf RF mirrors placed near it. In a

given channel use, each user selects one of the 2mrf possible

mirror activation patterns (MAPs) using mrf information bits.

A MAP gives the ON/OFF status of each of the mrf mirrors.

Each of the 2mrf possible MAP is mapped to a bit sequence.

An example of such a bit-to-MAP mapping is given in Table

I for mrf = 2.

Information bits Mirror 1 status Mirror 2 status

00 ON ON

01 ON OFF

10 OFF ON

11 OFF OFF

TABLE I: mapping between information bits and MAPs for

mrf = 2.
In addition to the bits conveyed through the choice of a

MAP in a given channel use, a symbol from a modulation

alphabet A (e.g., QAM, PSK) is also sent through the trans-

mit antenna. This modulation symbol conveys an additional

log2 |A| bits. Therefore, the spectral efficiency of a K-user

MBM system is given by

ηMU-MBM = K(mrf + log2 |A|) bpcu. (1)

For example, a multiuser MBM system with K = 4, mrf = 2,

and 4-QAM has a total spectral efficiency of 16 bpcu. One of

the key advantages of MBM is that the spectral efficiency per

user increases linearly with the number of RF mirrors used at

each user.

A. Single-user MBM channel alphabet

Let M , 2mrf , where M is the number of possible MAPs

for mrf RF mirrors. Let hm
k denote the nr × 1 channel gain

vector corresponding to the mth MAP of the kth user, where

hm
k = [hm

1,k hm
2,k · · · hm

nr,k
]T , hm

i,k is the channel gain between

the kth user’s transmit antenna and the ith receive antenna

at the BS when the mth MAP is chosen at the transmitter,

RF mirror
ON/OFF
control

Tx Baseband

Tx RF
chain

RF mirror
ON/OFF
control

Tx Baseband

Tx RF
chain

RF mirror
ON/OFF
control

Tx Baseband

Tx RF
chain

b

b

b

Base Station

(10s to 100s

of Rx antennas)

User 1

User 2

User K

1

2

nr

mrf RF mirrors

Fig. 1: Multiuser MBM in a massive MIMO system.

i = 1, · · · , nr, k = 1, · · · ,K, m = 1, · · · ,M , and the hm
i,ks

are assumed to be i.i.d. complex Gaussian random variables

with mean zero and unit variance. The MBM channel alphabet

for the kth user, denoted by Hk, is defined as the collection

of the channel gain vectors, i.e., Hk = {h1
k,h

2
k, · · · ,hM

k }.
The MBM channel alphabet of each user is estimated at

the BS receiver by transmitting known pilots before the data

transmission phase. The MBM channel alphabet knowledge of

each user is required at the BS receiver for detection. Whereas,

the transmitters need not be aware of the channel alphabets.

B. Single-user MBM signal set

Define A0 , A ∪ 0. The single-user MBM signal set,

denoted by SSU-MBM, is a set of M×1-sized MBM signal vectors

given by

SSU-MBM =
{
sm,q ∈ A

M
0 : m = 1, · · · ,M, q = 1, · · · , |A|

}

s.t sm,q = [0, · · · , 0, sq︸︷︷︸
mth coordinate

0, · · · , 0]T , sq ∈ A, (2)

where m is the index of the MAP. That is, an MBM signal

vector sm,q in (2) denotes that the complex symbol sq ∈ A is

transmitted on a channel whose gains are given by hm, where

hm is the nr × 1 channel gain vector corresponding to the

mth MAP. Therefore, the nr × 1 received signal vector when

the MBM signal vector sm,q is transmitted is given by

y = sqh
m + n, (3)

where n ∈ C
nr is the AWGN noise vector with n ∼

CN (0, σ2Inr
). The size of the single-user MBM signal set

is |SSU-MBM| = M |A|. For example, if mrf = 2 and |A| = 2
(i.e., BPSK ), then |SSU-MBM| = 8, and the corresponding MBM

signal set is given by

SSU-MBM =










1
0
0
0



,





−1
0
0
0



,





0
1
0
0



,





0
−1
0
0



,





0
0
1
0



,





0
0
−1
0



,





0
0
0
1



,





0
0
0
−1









. (4)

Note that all the M -length MU-MBM signal vectors have only

one non-zero entry. The index of the non-zero entry determines

the MAP used and the value of the non-zero entry gives the

transmitted modulation symbol in the alphabet A.



4

It has been shown in the point-to-point setting that, along

with providing very high spectral efficiencies, MBM can also

achieve good performance advantages. Further, it has been

shown that, MBM with nr receive antennas over a multipath

fading channel asymptotically (as mrf → ∞) achieves the

capacity of nr parallel AWGN channels [13]. That is, in the

limit as mrf →∞, the capacity of MBM is

C = nr log(1 + γ), (5)

where γ is the signal-to-noise ratio (see Appendix A for proof).

This suggests that MBM is an attractive choice for use in

multiuser uplink systems having a large number of receive

antennas at the BS.

C. Multiuser MBM signal set and received signal

The multiuser MBM signal set with K users is given

by SMU-MBM = S
K
SU-MBM

. Let xk ∈ SSU-MBM denote the trans-

mit MBM signal vector from the kth user. Now, x =[
xT
1 xT

2 · · · xT
K

]T ∈ SMU-MBM is the vector comprising of

the transmit signal vectors from all the K users. Let H ∈
C

nr×KM denote the channel gain matrix given by H =
[H1 H2 · · · HK ], where Hk = [h1

k h2
k · · · hM

k ] ∈ C
nr×M

is the MBM channel matrix of the kth user, and hm
k is the

channel gain vector of the kth user corresponding to the mth

MAP. The entries of H are assumed to be distributed as

i.i.d CN (0, 1). The spatially correlated channel model and the

effect of spatial correlation are presented in Sec. II-E. For this

multiuser system, the nr×1 received signal at the BS is given

by

y = Hx+ n, (6)

where n is the nr × 1 AWGN noise vector with n ∼
CN (0, σ2I).

D. BER performance of MU-MBM with ML detection

In this subsection, we present the BER performance of MU-

MBM under ML detection and compare it with that of other

multiuser MIMO modulation techniques. The ML detection

rule for the MU-MBM system model in (6) is given by

x̂ = argmin
x∈SMU-MBM

‖y −Hx‖2. (7)

Figures 2a, 2b, and 2c show the BER performance of MU-

MBM system with ML detection. In Fig. 2a, we consider a

MU-MBM system with K = 2, nr = 8, mrf = 3, BPSK, and

4 bpcu per user. Let nt and nrf denote the number of transmit

antennas and transmit RF chains, respectively, at each user. We

compare the performance of this MU-MBM system with that

of i) multiuser system with conventional modulation (MU-

CM) with nt = 1 and 16-QAM, and ii) multiuser system with

spatial modulation (MU-SM) with nt = 2 and 8-QAM. Note

that in all the three systems, each user has only one transmit

RF chain. All the schemes achieve a spectral efficiency of 4
bpcu per user. From Fig. 2a, we observe the following:

• The MU-MBM system achieves the best performance

among all the three systems considered. For example,

MU-MBM performs better by about 5 dB and 4 dB
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Fig. 2: BER performance of MU-MBM, MU-CM, and MU-

SM with K = 2, 4 bpcu per user, and ML detection. (a)

nr = 8, (b) nr = 16, and (c) nr = 4.

compared to MU-CM and MU-SM, respectively, at a

BER of 10−5.

• The better performance of MU-MBM can be attributed to

more bits being conveyed through indexing RF mirrors.

This allows MU-MBM to use lower-order modulation

alphabets compared to other systems which may need

higher-order alphabets to achieve the same bpcu.

Figure 2b shows the BER performance comparison of systems

with K = 2 and nr = 16. The systems compared are i) MU-

MBM with nt = 1, mrf = 4, and tone, ii) MU-CM with

nt = 1, 16-QAM, and iii) MU-SM with nt = 2, 8-QAM. All

the systems achieve the rate of 4 bpcu per user. In Fig. 2c,

the performance is compared among the systems with K = 2
and nr = 4. The MU-CM and MU-SM systems have same

configurations as in Fig. 2b, whereas MU-MBM uses mrf = 2
and 4-QAM. All the three systems achieve the same rate of

4 bpcu per user. Performance trends similar to those observed

in Fig. 2a are observed in Figs. 2b and 2c also.

E. Effect of spatial correlation

In generating the performance results in Fig. 2, the channel

gain entries in H were assumed to be i.i.d. However, since the

RF mirrors in a UE can be closely placed, there can be spatial

correlation among the channels created by different MAPs.

Further, there can be spatial correlation among the receive

antennas. Also, because of the spatial separation between

users, channels of different users towards the BS can be taken

to be uncorrelated. That is, the entries of Hk, for any given

k, k = 1, · · · ,K, are assumed to be correlated, while the

correlation among the entries of any pair of matrices Hk

and Hl, k, l = 1, · · · ,K and k 6= l is zero. We use the
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Kronecker model for modeling channel correlation, i.e., the

channel matrix with correlation is given by [15],[24]

H = R
1/2
Rx H̃R

1/2
Tx , (8)

where RRx is the nr × nr receive correlation matrix, H̃ is the

nr ×KM matrix with entries distributed i.i.d CN (0, 1), and

RTx is the KM×KM transmit correlation matrix. The receive

correlation matrix RRx is considered to follow exponentially

decaying correlation model with its (i, j)th entry being ρ
|i−j|
r .

With this, the receive correlation matrix RRx is given by

RRx =




1 ρr ρ2r · · · ρnr−1
r

ρr 1 ρr · · · ρnr−2
r

. . .

ρnr−1
r ρnr−2

r · · · 1


 . (9)

The transmit correlation matrix RTx is given by

RTx =




R1 0 · · · 0

0 R2 · · · 0
...

...
. . .

...

0 0 · · · RK


,

where Rk is the M × M RF mirror correlation matrix

representing the correlation among the channels corresponding

to different MAPs of kth user’s RF mirrors. The correlation

among MAPs of a given user is assumed to follow equicorre-

lation model with ρm being the correlation value among the

different MAPs. With this model, the RF mirror correlation

matrix Rk, k = 1, · · · ,K is given by

Rk =




1 ρm · · · ρm
ρm 1 · · · ρm

. . .

ρm ρm · · · 1


 . (10)

Figure 3 shows the effect of correlation on the BER perfor-

mance of MU-MBM. The considered MU-MBM system has

K = 2, nt = 1, mrf = 2, nr = 8, 4-QAM, and 4 bpcu

per user. We show the BER performance of this system for

correlation values of ρm = ρr = 0.4, ρm = ρr = 0.6, and

ρm = ρr = 0.8. It can be seen from Fig. 3 that, as expected,

correlation degrades the BER performance, and that the degra-

dation increases with increase in the amount of correlation. For

example, at a BER of 10−3, compared to the system with no

correlation (ρm = ρr = 0), there is a degradation of about

1 dB at a correlation of ρm = ρr = 0.4. The degradation

increases to about 3 dB and 7 dB at correlation values of

ρm = ρr = 0.6 and ρm = ρr = 0.8, respectively.

Note that the ML detection complexity order is exponential

in K. Hence, the complexity of ML detection is prohibitively

high for systems with large K and nr. However, in massive

MIMO systems, K is in the order of tens and nr is in

the order of hundreds. Therefore, low complexity detection

schemes that scale well for massive MU-MBM systems are

essential. To address this need, we devise low-complexity

detection algorithms for MU-MBM based on compressed

sensing and message passing techniques in Sections III and

IV, respectively.
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Fig. 3: Effect of correlation on the BER performance of MU-

MBM system with K = 2, nt = 1, mrf = 2, nr = 8,

4-QAM, and 4 bpcu per user, for correlation values of ρm =
ρr = 0, 0.4, 0.6, and 0.8.

III. SPARSITY-EXPLOITING DETECTION OF MULTIUSER

MBM SIGNALS

In this section, we develop low-complexity signal detection

algorithms based on compressed sensing techniques. These

algorithms exploit the sparsity present in the MU-MBM signal

vectors. An MBM signal vector has only one non-zero element

out of M elements. This gives a sparsity factor of 1/M
for MBM signals. For example, an MBM signal set with

mrf = 4 and M = 2mrf = 16 has a sparsity factor of

1/16. Similarly, an MU-MBM signal vector for K users also

has a sparsity factor of K/KM = 1/M . The MU-MBM

signal vector comprises of K MBM sub-vectors, with each

sub-vector having a single non-zero entry. This results in

a structured sparsity referred to as the ‘inclusion-exclusion

sparsity’ [35]. Here, the inclusion of a non-zero entry in each

sub-vector excludes all other entries of that sub-vector from

being a non-zero value. We exploit this inherent structured

sparsity in MU-MBM signals to devise algorithms that can

lead to efficient signal detection at low computational com-

plexities. We propose two different low-complexity MU-MBM

signal detection algorithms based on the matching pursuit and

subspace pursuit techniques known in compressive sensing.

First, we propose an algorithm that uses the greedy sparse

recovery techniques known in compressed sensing such as or-

thogonal matching pursuit (OMP) [27], compressive sampling

matched pursuit (CoSaMP) [28], and subspace pursuit(SP)

[29]. We refer to this algorithm as the iterative sparse re-

covery (ISR). Next, we propose a detection algorithm that

exploits the structured inclusion-exclusion sparsity in MU-

MBM signal vectors for low-complexity detection. We refer

to this algorithm as the inclusion-exclusion subspace pursuit

(IESP) detector. IESP is an enhancement of SP algorithm,

designed to suit the inclusion-exclusion structure of MU-MBM

signal vectors. Another algorithm known as ‘group subspace

pursuit’ has been reported in [31], which is also an extension

of subspace pursuit to the distributed and group sparse signal

structure of the uplink MU-SM in the multipath cyclic-prefix



6

single carrier channel when joint SM transmission is carried

out. This work shows that, by extending the subspace pursuit

algorithm to the distributed and group sparsity structure of the

joint MU-SM transmission scheme, very good signal detection

performance can be achieved.

A. The sparse signal recovery problem

The sparse signal recovery problem is finding an approxi-

mate solution to the following optimization problem

argmin
x
‖x‖1 subject to y = Φx+ n, (11)

where Φ ∈ C
m×l is referred to as the measurement matrix

with m < l, x ∈ C
l is the sparse signal vector, y ∈ C

m is the

noisy observation, and n ∈ C
m is the noise. In conventional

sparse recovery algorithms, the sparse vector x is not subjected

to any further structural constraints. In compressed sensing

based sparse vector reconstruction algorithms, the measure-

ment matrix has to satisfy the restricted isometry property

(RIP) for guaranteed reconstruction.

The MU-MBM signal detection problem at the BS can

be modeled as a sparse recovery problem where the channel

matrix H ∈ C
nr×KM corresponds to the rectangular mea-

surement matrix, the received signal vector y ∈ Cnr is the

noisy observation, the noise is additive complex Gaussian

n ∼ CN (0, σ2I), and x ∈ SMU-MBM is the sparse vector

that has to be reconstructed at the BS. In [36], it is shown

that, for random matrices with i.i.d Gaussian entries, RIP is

satisfied with very high probability. Thus, the channel matrix

H satisfies RIP with very high probability.

B. MU-MBM detection as structured sparse recovery problem

The conventional sparse vector recovery problem does not

pose any additional structural constraints, other than sparsity,

on the signal vector. However, our signal of interest, i.e., the

MU-MBM signal vector, is not only sparse, but also exhibits

the inclusion-exclusion sparsity property. Further, the K non-

zero entries in the sparse vector x can take values only from

the alphabet A. With these additional constraints, the signal

detection problem in MU-MBM BS is to recover x from the

observation vector

y = Hx+ n s.t. ‖xk‖0 = 1, sk ∈ A ∀k = 1, · · · ,K, (12)

where xk is the kth user’s transmit MBM vector with sk ∈
A. In the following subsections, we present the proposed

compressed sensing based detection algorithms to solve this

detection problem.

C. Iterative sparse recovery (ISR)

The ISR algorithm consists of iteratively performing a

sparse recovery algorithm (OMP or CoSaMP or SP) for

the reconstruction of the MU-MBM signal vector till certain

conditions are met. The listing of the proposed ISR based

detection algorithm is given in Algorithm 1.

The SR in Algorithm 1 denotes the sparse recovery al-

gorithm, which can be any one of OMP, CoSaMP, and SP.

The signal vector reconstructed by SR (·, ·, ·) is denoted by

x̃. Detecting the MU-MBM signal vector involves detecting

Algorithm 1 Iterative sparse recovery

1: Inputs: y,H,K
2: Initialize: j = 0
3: repeat

4: x̃ = SR(y,H,K + j) ⊲ Sparse Recovery algorithm

5: uj = UAP(x̃) ⊲ Extract User Activity Pattern

6: if ‖uj‖0 = K
7: for k = 1 to K
8: x̂k = argmin

s∈SSU-MBM

‖x̃k − s‖2 ⊲ Nearest MBM signal
9: mapping

10: end for

11: break;

12: else j = j + 1
13: end if

14: until j < K(M − 1)
15: Output: The estimated MU-MBM signal vector

x̂ = [x̂T
1 , x̂

T
2 , · · · , x̂T

K ]T

the MBM signal vector transmitted by each user. An MBM

signal vector from a user has exactly one non-zero entry out

of M entries as observed in the example MBM signal set in

(4). Hence, SR is expected to reconstruct a MU-MBM signal

vector with the MBM sub-vector of each user having only one

non-zero entry. But this constraint on the expected support set

is not built in the conventional sparse recovery algorithms.

In general, a sparse recovery algorithm can reconstruct K
non-zeros at any of the KM locations of x̃. This may result

in reconstruction of an invalid signal vector. For example,

SR(·, ·, ·) can reconstruct two non-zeros in the sub-vector of

one user and no non-zeros in the sub-vector of another user.

Though the former can be mapped to the nearest vector in

SSU-MBM based on the Euclidean distance, the latter can not be

mapped. To overcome this issue, we define user activity pattern

(UAP), denoted by u, as a K-length vector with the kth entry

uk = 1 if there is at least one non-zero entry in the kth user’s

sub-vector, and uk = 0 otherwise. A valid reconstructed signal

vector is one which has all ones in u, i.e., at least one non-zero

is reconstructed in each user’s sub-vector.

SR is initially performed with a sparsity estimate of K. If

the reconstructed signal vector has a valid UAP, then each

user’s sub-vector is mapped to the nearest MBM vector and

the algorithm terminates. If the reconstructed signal vector has

an invalid UAP, then there can be more than one non-zeros in

the sub-vectors of some users and all zeros in sub-vectors of

some other users. In this case, the SR is performed multiple

times with a range of sparsity estimates starting from K (K+j
in the algorithm listing, where j is the iteration variable) till

the signal vector with the valid UAP is reconstructed (i.e., till

the algorithm reconstructs at least one non-zero entry for each

user’s MBM signal vector). In the algorithm listing, uj denotes

the UAP at the jth iteration. It should be noted that, a signal

vector with valid UAP will be reconstructed for j < K(M−1),
since at j = K(M − 1), the sparsity input K + j = KM ,

which is equal to the length of the MU-MBM signal vector.
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However, it has been observed that, a signal vector with valid

UAP is reconstructed for j << K(M − 1). On recovering an

x̃ with valid UAP, the reconstructed signal vector of each user

is mapped to the nearest (in the Euclidean sense) MBM signal

vector in SSU-MBM. This is shown in the Step 8 in the algorithm

listing, where x̃k denotes the recovered MBM signal vector of

the kth user and x̂k denotes the MBM signal vector to which

x̃k gets mapped to. Finally, the MU-MBM signal vector is

obtained by concatenating the detected MBM signal vectors

of all the users, i.e., , x̂ = [x̂T
1 , x̂

T
2 , · · · , x̂T

K ]T .

D. Inclusion-exclusion subspace pursuit (IESP)

The ISR detection algorithm requires multiple iterations

of the SR algorithm to reconstruct the MU-MBM signal

vector. The computational complexity of this compressed

sensing based detection process can be further reduced if

the inclusion-exclusion structure of the sparse MU-MBM

signal is exploited. Using subspace pursuit (SP), we propose

the inclusion-exclusion SP (IESP) detector, which exploits

this structure to perform low complexity MU-MBM signal

detection. Further, IESP has lesser computational complexity

compared to ISR. The listing of the proposed IESP algorithm

is presented in Algorithm 2.

Algorithm 2 Inclusion-exclusion subspace pursuit

1: Inputs: y,H,K
2: Initialize:

3: S0 = {l01, l02, · · · , l0K} s.t l0k = argmaxj∈Bk
hH
j y,

∀k = 1, · · · ,K
4: a0 = H

†
S0y

5: r0 = y −HS0a0

6: Iteration: In the ith iteration, do the following

7: S̃i = Si−1 ∪ {l′1, · · · , l′K} s.t

l′k = argmaxj∈Bk
hH
j ri, ∀k = 1, · · · ,K

8: z = H
†

S̃i
y

9: Si = {lik = argmaxli−1
k

,l′
k
[zli−1

k
, zl′

k
], for k = 1, · · · ,K}

10: ai = H
†
Siy

11: ri = y −HSiai

12: If ‖ri‖ > ‖ri−1‖, let Si = Si−1 and quit the iteration

13: S = Sl and a = H
†
Sy

14: sk = argmins∈A
‖ak − s‖2, ∀k = 1, · · · ,K

15: Output: The estimated MU-MBM signal vector x̂ satisfy-

ing x̂{1,··· ,KM}\S = 0 and x̂S = a.

Let Bk , {(k−1)M+1, (k−1)M+2, · · · , (k−1)M+M}.
The set Bk denotes the set of all possible values of the index

of the non-zero element in xk. Let Si denote the set of the

estimates of the non-zero indices of x at the ith iteration, lik
be the kth element of Si, and |Si| = K. In all iterations,

we restrict the values of lik to be from Bk, i.e., lik ∈ Bk.

This ensures the inclusion-exclusion sparsity structure in the

reconstructed MU-MBM signal vector. We initialize S0, such

that l0k takes a value from the set Bk that maximizes hH
l0
k

y, for

k = 1, 2, · · · ,K. Let ri , y−HSiH
†
Siy; if the estimate Si is

not the same as the true support set of x, then ri is a non-zero

vector. We iteratively try to minimize this residue ‖ri‖.

In each iteration, a candidate support set S̃i is constructed

with a maximum of 2K indices. The set S̃i is obtained by

adding the indices l′k to Si−1, k = 1, · · · ,K, where l′k is an

element from the set Bk that maximizes hH
l′
k
ri. Let z be the

projection of y on to HS̃i , i.e., z = HS̃iy. Now, we update

the support set as Si such that

lik =

{
li−1
k zli−1

k
> zl′

k

l′k else
.

The residue is computed at every iteration; the algorithm

terminates when the current residue is higher than the previous

residue. The final value of the set Si is the detected support

of the MU-MBM signal vector. The MU-MBM signal vector

is reconstructed at the BS by obtaining ŝk as

ŝk = argmin
s∈A

‖h′
li
k
y − s‖2,

where h′
li
k

is the likth row of H†. The decoding of the kth

user’s information bits from the detected MU-MBM signal

vector consists of two parts: (1) the activated mirror index

bits are decoded from the value of lik, and (2) the modulation

symbol bits are decoded from the detected ŝk values.

Note 1: MU-SM has a similar signal structure as that of

MU-MBM. A difference is that, in the case of MU-MBM, the

length of the MBM sub-vectors can only be powers of 2. This

is because, if mrf is the number of RF mirrors used, then the

length of the MBM vector is 2mrf . However, there is no such

length constraint for SM signal vectors. That is, the length

of SM vectors is equal to the number of antennas per user,

which need not be power of 2. Since IESP is independent of

this small difference in the signal structure, it can also be used

in the signal detection of MU-SM signal vectors.

Note 2: In [30], an algorithm similar to the IESP algo-

rithm, called ‘spatial modulation matching pursuit (SMMP)’,

is proposed in the context of generalized spatial modulation

in multiple access. The following are some similarities and

differences between SMMP and IESP.

• The SMMP detector is designed for the signal structure

of generalized spatial modulation which allows more than

one non-zero entry in the sub-vector corresponding to

each user, depending on the number of active antennas

per user. The IESP detector, on the other hand, considers

a signal structure which can only have a single non-

zero entry per user as per the structure of MU-MBM

signal vector. However, SMMP can be specialized to the

inclusion exclusion structure of the MU-MBM and hence

can be used for MU-MBM signal detection.

• While SMMP is an extension of CoSaMP, IESP is based

on SP. It has been shown in [29] that SP is superior

to CoSaMP in terms of the reconstruction performance.

Therefore, IESP which is an extension of SP is expected

to achieve better performance compared to SMMP which

is an extension of CoSaMP. We will see this in the

simulation results in Sec. III-F.

• In any greedy sparse recovery algorithm, one of the key

steps contributing to complexity is the least squares (LS)

step used to obtain the values of the non-zero entries,

after the support is recovered in a greedy manner. Since



8

SMMP is an extension of CoSaMP, the LS step in SMMP

is computationally more expensive compared to IESP.

While the IESP requires inversion of an nr ×K matrix

in the LS step, the SMMP requires inversion of nr × L
(L > K) matrix.

E. Computational complexity

The computational complexity of OMP, CoSaMP, and SP

for an m × l matrix and a K-sparse vector is O(mlK) [29].

From Algorithm 1, the computational complexity of the sparse

vector reconstruction of the ISR algorithm is given by

O
(

KM︸︷︷︸
maximum number

of iterations

× KM︸︷︷︸
worst case

sparsity estimate

×nr ×KM
)
= O(K3M3nr).

The worst case complexity of ISR detector is cubic in the

number of users and mirrors. It is observed from simulations

that the worst case occurs only for low values of SNR.

This is because, the SR algorithm is executed for several

iterations to obtain a valid MU-MBM signal vector. However,

the complexity of ISR detector is observed to be lesser than

the worst case complexity at moderate to high values of SNR.

The order of the computational complexity of the IESP

detector is same as that of SP algorithm. Therefore, the

complexity of IESP detector is given by O(K2nrM), which

is lesser than that of the ISR detector.

F. Performance of the proposed detectors

In this subsection, we present the BER performance of

the proposed detectors for MU-MBM in a massive MIMO

setting. Further, we compare this performance with that of

other multiuser systems using conventional modulation (MU-

CM) and spatial modulation (MU-SM) schemes.

Performance of the ISR detector: In Fig. 4, we show the

BER performance of a MU-MBM system with K = 16 and

nr = 128. Each user uses nt = 1, mrf = 6, 4-QAM, spectral

efficiency of 8 bpcu per user, and a sparsity factor of 1/64. We

compare the performance of the proposed ISR detector with

that of MMSE detector. We consider ISR detector with three

different SR algorithms: 1) OMP, 2) CoSaMP, and 3) SP. From

Fig. 4, we observe that the ISR detector with OMP, CoSaMP,

and SP algorithms achieve significantly better performance

compared to MMSE. The ISR detector with SP algorithm

outperforms all other detectors.

Performance comparison between ISR, IESP, SMMP, and

MMSE detectors: In Fig. 5, we compare the performances

of the proposed ISR (with SP) and IESP detectors with

those of SMMP [30] and MMSE detectors. We consider MU-

MBM with K = 20, nt = 1, nr = 128, mrf = 3, 4-

QAM, and 5 bpcu per user. We observe that the sparsity

exploiting detectors (ISR, IESP, and SMMP detectors) perform

better than the MMSE detector. Among the sparsity exploiting

detectors, the IESP detector outperforms the ISR and SMMP

detectors. The IESP detector achieves better performance than

ISR detector since it exploits the inclusion-exclusion structure

of the MU-MBM signal vector. The better performance of

IESP compared to SMMP follows from the fact that SP has
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Fig. 4: BER performance of MU-MBM in a massive MIMO

setting with K = 16, nr = 128, nt = 1, mrf = 6, 4-

QAM, 8 bpcu per user, using ISR detection. MMSE detection

performance is also shown for comparison.
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Fig. 5: BER Performance of MU-MBM with K = 20, nt = 1,

nr = 128, mrf = 3, 4-QAM, 5 bpcu per user using ISR (with

SP), IESP, SMMP, and MMSE detectors.

better reconstruction performance compared to CoSaMP [29].

Performance comparison with MU-CM and MU-SM: In Fig.

6, we compare the BER performances of i) MU-MBM with

nt = 1, mrf = 3, and 4-QAM, ii) MU-CM with nt = 1
and 32-QAM, and iii) MU-SM with nt = 4 and 8-QAM.

We consider all the systems in a massive MIMO setting with

K = 16, nr = 128, and a spectral efficiency of 5 bpcu per

user. The IESP detector is used for detection of MU-MBM

and MU-SM. Sphere decoder (ML detection) is used for MU-

CM signal detection. The sparsity factors in MU-MBM and

MU-SM are 1/8 and 1/4, respectively. It can be seen that

the MU-MBM system clearly outperforms MU-CM and MU-

SM systems. For example, at a BER of 10−5, MU-MBM

outperforms MU-CM and MU-SM by about 7 dB and 4 dB,

respectively. This performance advantage of MU-MBM can

be attributed to its signal distance properties [13]. MU-MBM

also has the advantages of lower sparsity factor and using

lower-order QAM size as additional bits are conveyed through

indexing mirrors.
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Fig. 7: BER performance of MU-MBM, MU-CM, and MU-

SM as a function of nr in a massive MIMO setting with K =
16, 5 bpcu per user, and SNR = 4 dB.

Effect of the number of receive antennas: Here, we analyze the

performance of MU-MBM, MU-CM, and MU-SM systems as

the number of BS receive antennas is increased (Fig. 7). We

consider systems with K = 16, 5 bpcu per user, SNR = 4 dB,

and nr is varied from 48 to 624. The parameters of the systems

are the same as described before. It is observed that the MU-

MBM system requires only 130 receive antennas to achieve

a BER of 3 × 10−3; whereas, the MU-CM system requires

620 receive antennas to achieve the same BER performance.

To achieve a BER of 10−5, the MU-SM also requires 230

receive antennas more than the number of antennas in MU-

MBM to achieve the same BER. This advantage of MU-MBM

system can be mainly attributed to its better signal distance

properties, particularly when nr is large [13]. Thus, we see that

the multiuser MBM is a promising candidate for the uplink in

massive MIMO systems.

IV. MESSAGE PASSING BASED MU-MBM SIGNAL

DETECTION

It is known that message passing based detection algorithms

can achieve very good performance in large-dimensional

MIMO systems [20]-[22]. In this section, we present message

passing based MU-MBM signal detectors. In the first detection

algorithm, we model the MU-MBM system using a bipartite

probabilistic graph and perform inference over this graph

using belief propagation to detect the MBM signals. Next,

we develop a receiver that exploits the channel hardening

phenomenon that occurs in large MIMO channels.

A. BP based MBM signal detector (BP-MSD)

The MU-MBM system model described in (6) can be

represented using a bipartite graph as illustrated in Fig. 8.

This bipartite graph consists of K variable nodes, each cor-

responding to a user’s transmit vector xj , and nr observation

nodes, each corresponding to a received signal value yi. We

develop a BP based detection algorithm that estimates x given

the observation y and the channel matrix H. Here, we assume

that the BS has perfect knowledge of H. From (6), the received

signal yi can be written as

yi = hi,[j]xj +

K∑

l=1,l 6=j

hi,[l]xl + ni

︸ ︷︷ ︸
, qi,j

, (13)

where hi,[l] is a row vector of length M , given by[
Hi,(l−1)M+1 Hi,(l−1)M+2 · · · Hi,lM

]
, Hi,j is the (i, j)th

entry of the matrix H, and qi,j is the total interference in the

ith received signal. In large-scale multiuser MBM systems,

the value of KM is large. Hence, we employ Gaussian

approximation of interference. That is, we approximate the

interference term qi,j to be Gaussian with mean µi,j and

variance σ2
i,j , where

µi,j = E

[ K∑

l=1,l 6=j

hi,[l]xl + ni

]
=

K∑

l=1,l 6=j

∑

s∈SSU-MBM

pli(s)hi,[l]s, (14)

σ
2
i,j = Var

( K∑

l=1,
l 6=j

hi,[l]xl + ni

)

=

K∑

l=1,
l 6=j

( ∑

s∈SSU-MBM

pli(s)hi,[l]ss
H
h
H
i,[l]

−
∣∣

∑

s∈SSU-MBM

pli(s)hi,[l]s
∣∣2
)
+ σ

2
, (15)

where pji(s) is the message passed by the jth variable node to

the ith observation node. The a posteriori probability (APP) or

‘belief’ pji(s) is defined as p(xj = s|y\i), where y\i denotes

the vector of all elements in y except yi. The message pji(s)
can be evaluated as

pji(s) ∝
nr∏

m=1, m 6=i

exp

(−
∣∣ym − µm,j − hm,[j]s

∣∣2

σ2
m,j

)
. (16)

The belief propagation schedule is given below.

1) Initialize pji(s) =
1

|SSU-MBM| , ∀j, i, s.

2) Compute µij and σ2
i,j , ∀i, j.

3) Compute pji, ∀j, i.
The belief values computed through (16) are damped with a

damping factor β ∈ (0, 1]. It is known that damping of beliefs
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Fig. 8: Graphical model for BP-MSD.

improves the convergence of the message passing algorithm

[37]. The steps 2 and 3 are repeated till the APP values

converge or a maximum number of iterations is reached.

When the algorithm is terminated, the probabilities p(xj = s),
j = 1, 2, · · · ,K, are computed as

pj(s) ∝
nr∏

i=1

exp

(−
∣∣yi − µi,j − hi,[j]s

∣∣2

σ2
i,j

)
, (17)

Finally, the estimates x̂js are obtained by choosing the MBM

signal vector s ∈ S that has the largest APP. That is,

x̂j = argmax
s∈SSU-MBM

pj(s). (18)

The x̂js obtained are demapped to get the MAP, which are

then demapped to obtain the bits corresponding to the MAP

of each user. The non-zero entry in x̂j is demapped to get the

conventional modulation symbol bits transmitted by each of

the K users. The listing of the steps in BP-MSD is given in

Algorithm 3.

B. Channel hardening-exploiting message passing for MU-

MBM signal detection (CHEMP-MSD)

Large MIMO channels are known to exhibit the channel

hardening phenomenon [20], this phenomenon can be ex-

plained as follows. In an m× l channel matrix, when m and

l are increased, with their ratios fixed, the distribution of the

singular values of the matrix becomes less sensitive to the

actual distribution of the entries of the matrix (as long as the

entries are i.i.d.) [1], [20], [33]. This is referred to as the chan-

nel hardening phenomenon. Because of the channel hardening

effect, very tall or very wide channel matrices become very

well conditioned. As a result, the off-diagonal terms of the

HHH matrix become increasingly weaker compared to the

diagonal terms as the size of the channel matrix H increases.

We exploit this phenomenon to develop a message passing

algorithm that can efficiently detect large-scale MU-MBM

signals. We refer to this algorithm as the channel hardening-

exploiting message passing for MU-MBM signal detection

(CHEMP-MSD).

In order to exploit the channel hardening effect, the detec-

tion algorithm works on the matched filtered received signal

vector, which is obtained as

HHy = HH(Hx+ n). (19)

In the above equation, since the channel matrix H is a large

matrix with i.i.d. complex Gaussian entries, it exhibits channel

hardening phenomenon. Thus, HHH has strong diagonal com-

ponents and weak off-diagonal elements. After normalizing by

Algorithm 3 Listing of the BP-MSD algorithm

1: Input : y, H, σ2; β: damping factor

2: Initialize: p
(0)
ji (s)← 1

|S|
, ∀i, j, s.

3: for t = 1→ number of iterations do
4: for i = 1→ N do
5: for j = 1→ K do

6: µ̃ij ←
∑
s∈S

p
(t−1)
ji (s)

∑
l∈I(s)

slHi,(j−1)nt+l

7: σ̃2
ij ←

∑
s∈S

p
(t−1)
ji (s)hi,[j]ss

HhH
i,[j] − |µ̃ij |

2

8: end for

9: µi ←
K∑

j=1

µ̃ij

10: σ2
ij ←

K∑
j=1

σ̃2
ij + σ2

11: for j = 1→ K do
12: µij ← µi − µ̃ij

13: σ2
ij ← σ2

i − σ̃2
ij

14: end for
15: end for
16: for j = 1→ K do
17: for s ∈ S do

18: ln(p
(t)
j (s)←

N∑
i=1

−|yi−µij−hi,[j]s|
2

σ2
ij

19: end for
20: for i = 1→ N do
21: for all s ∈ S do

22: p̃
(t)
ji (s)← ln(p(t)(s)) +

|yi−µij−hi,[j]s|
2

σ2
ij

23: p
(t)
ji = 1−β

Cji
exp(p̃

(t)
ji (s)) + βp

(t−1)
ji (s)

24: (Cji is a normalizing constant)
25: end for
26: end for
27: end for
28: end for
29: Output : pj(s) and x̂j = argmax

s∈S

pj(s), ∀j

nr, we can rewrite (19) as

z = Gx+w, (20)

z ,
HHy

nr
, G ,

HHH

nr
, w ,

HHn

nr
. (21)

As in (6), z in (20) constitutes K sub-vectors, each of

length M , i.e., z = [zT1 z
T
2 · · · zTi · · · zTK ]T . Similarly, w =

[wT
1 w

T
2 · · ·wT

i · · ·wT
K ]T , where wj =

nr∑
l=1

H∗ljnl

nr
is the jth

element of w and Hji is the (j, i)th element of H. Using

central limit theorem, for large values of nr (tens to hundreds),

wj can be approximated to be Gaussian with zero mean and

variance σ2
w , σ2

nr
. We also employ Gaussian approximation of

interference in the computation of the messages in the message

passing algorithm. From (20), zi can be expressed as

zi = Giixi +

K∑

j=1,j 6=i

Gijxj +wi

︸ ︷︷ ︸
, gi

, (22)

where Gij is a M×M sub-matrix of G formed by taking the

elements in rows (i−1)M+1 to iM and columns (j−1)M+1



11

to jM . The matrix G can thus be written in terms of the sub-

matrices as

G =




G11 G12 · · · G1K

G21 G22 · · · G2K

...
. . .

...

GK1 GK2 · · · GKK


 . (23)

The interference-plus-noise term gi, for the ith user, is formed

by the off-diagonal elements of HHH
nr

(i.e., Gij , i 6= j). Due to

the channel hardening effect, the matrix G has strong diagonal

elements compared to the off-diagonal elements for large nr

and K. We approximate gi to be a multivariate Gaussian

random vector with mean µi and variance Σi, which can be

obtained as

µi = E(gi) =

K∑

j=1,j 6=i

GijE(xj), (24)

Σi = Var(gi) =

K∑

j=1,j 6=i

GijVar(xj)G
H
ij + σ2

wIM . (25)

Let pi denote the |A|M × 1 vector of probability values

corresponding to the MBM signal vector xi. The entries of

pi are given by

pi(s) = Pr
(
xi = s

)
, s ∈ Snt,A. (26)

Now, we have

E(xj) =
∑

∀s, s∈Snt,A

spj(s) (27)

Var(xj) =
∑

∀s, s∈Snt,A

ssHpj(s)− E(xj)E(xj)
H . (28)

We approximate pis with the corresponding APPs, i.e.,

pi(s)← Pr(xi = s|zi,G), (29)

where

Pr(xi = s|zi,G) ∝ e−
1
2 (zi−Giis−µi)

HΣ
−1
i

(zi−Giis−µi). (30)

Message passing: In CHEMP-MSD, the MU-MBM system

model can be represented by a fully-connected graph with K
nodes, where the ith node computes an approximate APP value

corresponding to the ith user’s transmit vector xi. Each node

computes the APP using the incoming messages, the matrix G

and the vector zi. The message passing schedule is as follows.

1) Initialize the probability vectors pis with equiprobable

values.

2) Each node computes the probabilities pi as per (29)

using (24) and (25).

The steps 1 and 2 are repeated till the probability values

converge or till a maximum number of iterations is reached.

As before, the messages are damped with a damping factor

β to improve the convergence rate [37]. At the end of the

tth iteration, the messages are damped with a damping factor

β ∈ [0, 1). Thus, if p̃t
i is the computed probability vector at

the tth iteration, the message at the end of tth iteration is given

by

pt
i = (1− β)p̃t

i + βpt−1
i . (31)

Algorithm 4 Listing of the CHEMP-MSD algorithm

1: Input : z, G, σ2; β: damping factor

2: Initialize: p
(0)
i (s)← 1

|S|
, i = 1, · · · ,K, ∀s ∈ S.

3: for t = 1→ number of iterations do
4: for i = 1→ K do
5: E(xi)←

∑
s∈S

sp
(t−1)
i (s)

6: Cov(xi)←
∑

s∈S
ssHp

(t−1)
i (s)− E(xi)E(xi)

H

7: end for
8: for i = 1→ K do
9: µi ←

∑K

j=1,j 6=i GijE(xj)

10: Σi ←
∑K

j=1,j 6=i GijCov(xj)G
H
ij + σ2

wINm

11: for all s ∈ S do
12: p̃t

i
(s) ← 1

Ci
exp

(

− (zi −Giis − µi)
HΣ
−1
i

(zi −Giis − µi)
)

13: (Ci is a normalizing constant)

14: pti(s) = (1− β)p̃ti(s) + βp
(t−1)
i (s)

15: end for
16: end for
17: end for
18: Output : pi(s)

After the iterative algorithm is terminated, an estimate of

the conventional modulation symbol transmitted by the kth

user is obtained as

ŝk = argmax
s∈A

∑

∀s, s∈Snt,A
:X (s)=s

pk(s), (32)

where X (s) gives the non-zero element in s. An estimate of

the MAP chosen for transmission by the kth user is obtained

as

q̂k = argmax
q∈{1,··· ,Nm}

∑

∀s, s∈Snt,A
: I(s)=q

pk(s), (33)

where I(s) gives the index of the non-zero element in s. The

estimated MAP and the modulation symbols obtained are then

demapped to obtain the kth user’s bits. The listing of the steps

involved in CHEMP-MSD is given in Algorithm 4.

C. MBM signal detection with estimated CSI

In this subsection, we consider a practical scenario where

perfect channel knowledge is not available at the BS. Hence,

the channel matrix has to be estimated at the BS to detect the

MU-MBM signals. We refer to the system with a combined

channel estimator and detector as a receiver. Here, we extend

the message passing based detectors described in the previous

section to develop large-scale MU-MBM signal receivers.

Here, the transmission happens in frames. Let the length of

the transmission frame be FL. We assume that the coherence

time of the channel to be equal to the duration of the frame

(hence, the channel becomes invariant over a frame duration).

In each frame, the users transmit a pilot part and a data part.

Pilot symbols are transmitted during the pilot part. The pilot

part has KM channel uses, and the data part consists of FL−
KM channel uses. Let Xp = AIKM denote the pilot matrix.

In the ith channel use, 1 ≤ i ≤ KM , the ⌈ i
M ⌉th user transmits

a pilot symbol using a MAP, whose index is given by
(
(i−1)

mod M
)
+1, with amplitude A. Only one user transmits at a
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time and all other users remain silent. The received signal at

the BS during the pilot phase is given by

Yp = HXp +Np = AH+Np, (34)

where A =
√
KEs, Es is the average symbol energy, and Np

denotes the noise matrix.

1) BP receiver: We extend the proposed BP-MSD algo-

rithm to formulate the belief propagation based receiver (BP

receiver). Using an MMSE channel estimator, we estimate the

channel matrix H. The estimated channel matrix is then used

instead of H in the BP-MSD algorithm as described in the

Section IV-A.

2) CHEMP receiver: This CHEMP receiver employs the

detection algorithm described in Section IV-B for the detec-

tion of MBM signals. However, the CHEMP receiver, does

not use the conventional method of estimating the channel

matrix H directly (as in MMSE channel estimation). Instead,

the CHEMP receiver directly obtains an estimate of HHH

(which is defined as G in Section IV-B). This is because,

the equivalent system model obtained in (20) through the

matched filtering operation can work with a direct estimate of

G without the knowledge of H. We show that this approach

of direct estimation of G performs better compared to the

conventional method of explicitly estimating H and detecting

x. In the CHEMP receiver, the matrix G is estimated as

Ĝ =
YT

p Yp

nrA2
− σ2

w

A2
IKM . (35)

An estimate of the vector z is obtained as

ẑ =
YT

p y

nrA
, (36)

where y is the received signal vector in each channel use of

the data part. These estimates Ĝ and ẑ obtained from (35) and

(36) are used in place of G and z in the CHEMP detection

algorithm.

D. Computational complexity

In BP-MSD, the computation of the messages from the

observation nodes to the variable nodes has an order of

O(nrM
2K2|SSU-MBM|). The messages from the variable nodes

to the observation nodes require a computational complexity

order of O(n2
rMK|SSU-MBM|).

In CHEMP-MSD, the complexity order for the computation

of the APP is given by O(M3K(|SSU-MBM| + K)). The com-

putation of G has a complexity order of O(nrK
2M2). For

nr > K and K > M , the overall complexity of the algorithm

is dominated by the computation of G.

The CHEMP receiver has no additional computational com-

plexity for channel estimation. That is, the CHEMP receiver

has the same computational complexity as the CHEMP-MSD

algorithm despite performing channel estimation. In contrast,

other receiver algorithms require additional computations to

explicitly estimate the channel matrix H.

ML and MMSE based detectors are a conventionally used

detectors for MIMO systems. The complexity order of the

MMSE detector is O(K2M2(nr+KM)+KM |SSU-MBM|). The

order of complexity for ML detection is O(nrKM |SSU-MBM|K).
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Fig. 9: BER performance of BP-MSD and CHEMP-MSD for

multiuser MBM system with K = 16, nt = 1, mrf = 3,

4-QAM, 5 bpcu per user, and nr = 64, 128.

Therefore, both the proposed message passing algorithms have

much lesser computational complexity than the MMSE and

ML detectors for large-scale MU-MBM signal detection.

E. Performance results and discussions

In this subsection, we present the BER performance of the

proposed BP and CHEMP algorithms in MU-MBM systems.

We also compare it with the performance of other MU-MBM

detectors discussed before.

Performance of the message passing based detection algo-

rithms: We simulate an MU-MBM system with nt = 1,mrf =
3,K = 16, 4-QAM, 5 bpcu per user, and nr = 64, 128. Note

that for nr = 64, the MU-MBM system becomes an under-

determined system as the transmit vector x is of dimension

128× 1. For nr = 128, the system is fully-determined.

In Fig. 9, we present the performance of the proposed BP-

MSD and CHEMP-MSD algorithms when perfect channel

knowledge is available at the BS. From Fig. 9, it can be seen

that both the detectors have almost the same BER performance

for nr = 128. For nr = 64, BP-MSD performs better than

CHEMP-MSD by about 1 dB at 10−4 BER. This is because,

for under-determined systems, the HHH
nr

matrix will have

relatively strong off-diagonal elements. Therefore, the channel

hardening effect is less pronounced.

Figure 10 shows the performance of the BP and CHEMP

receivers (i.e., with estimated channel knowledge at the BS).

From Fig. 10, it can be seen that the BP receiver performs

better than the CHEMP receiver by about 1 dB at 10−4 BER

for nr = 64. This is because, as seen before, the system is

under-determined for nr = 64. For nr = 128, the CHEMP

receiver outperforms the BP receiver by about 0.8 dB at

10−4 BER. This is because, when the MBM channel is fully-

determined, directly estimating HHH in CHEMP without

explicitly estimating H improves the detection performance.

This shows that the BP receiver algorithm is efficient for

under-determined MBM channels and the CHEMP receiver

algorithm is efficient for fully- and over-determined MBM

channels.
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Fig. 10: BER performance of BP receiver and CHEMP re-

ceiver for multiuser MBM system with K = 16, nt = 1,

mrf = 3, 4-QAM, 5 bpcu per user, and nr = 64, 128.

Comparison with other receiver algorithms: Here, we com-

pare the BER performance of the BP and CHEMP receivers

with that of the ISR receiver (Sec. III-C), IESP receiver

(Sec. III-D), and MMSE receiver. In Fig. 11, we present

the performance comparisons between (i) MMSE detector

(perfect CSI) and MMSE receiver (MMSE detector with

MMSE channel estimator), (ii) ISR(SP) detector (perfect CSI)

and ISR(SP) receiver (ISR-SP detector with MMSE channel

estimator), iii) IESP detector (perfect CSI) and IESP receiver

(IESP detector with MMSE channel estimator), (iv) BP-

MSD and BP receiver, and (v) CHEMP-MSD and CHEMP

receiver. The MU-MBM system configuration chosen is nt =
1,mrf = 3,K = 16, nr = 128, 4-QAM, and 5 bpcu per user.

From Fig. 11, it can be seen that for both perfect channel

knowledge and estimated channel knowledge, the proposed BP

and CHEMP algorithms outperform MMSE, ISR, and IESP

based algorithms. For instance, at a BER of 10−4, BP-MSD

and CHEMP-MSD outperform MMSE detector by about 8.5

dB, ISR(SP) detector by about 2 dB, and IESP detector by

about 1.5 dB. For the same BER, the BP receiver outperforms

the MMSE receiver by about 10 dB, the ISR(SP) receiver by

about 2 dB, and IESP detector by about 1 dB. The CHEMP

receiver outperforms the MMSE receiver by about 11 dB,

ISR(SP) receiver by about 3 dB, and IESP detector by about

2 dB at a BER of 10−4.

Computational complexity comparison between BP-MSD,

CHEMP-MSD, ISR(SP), and IESP:

In Fig. 12, we present a computational complexity comparison

between the BP-MSD, CHEMP-MSD, ISR(SP), and IESP

detectors obtained through simulations. The simulations are

performed for SNR values of 2 dB and 6 dB, and varying

number of users. It can be observed that ISR(SP) and IESP

algorithms have lesser complexity compared to BP-MSD and

CHEMP-MSD algorithms. It can be further observed from

Fig. 12(a) that the complexity of ISR(SP) detector increases

polynomially with the number of users at a lower SNR value of

2 dB, whereas Fig. 12(b) shows that the complexity of ISR(SP)

increases almost linearly with the number of users at a higher
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Fig. 11: BER performance comparison between i) MMSE

receiver (MMSE detector + MMSE channel estimator), ii)
ISR(SP) receiver (ISR(SP) detector + MMSE channel esti-

mator), iii) IESP receiver (IESP detector + MMSE channel

estimator), iv) BP receiver, and v) CHEMP receiver for

multiuser MBM system with K = 16, nt = 1, mrf = 3,

4-QAM, and 5 bpcu per user, and nr = 128.
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Fig. 12: Computational complexities of CHEMP-MSD, BP-

MSD, ISR(SP), and IESP detectors in number of real opera-

tions as a function of K for nt = 1, nr = 128, mrf = 3, and

5 bpcu per user. (a) SNR = 2 dB, (b) SNR = 6 dB.

SNR value of 6 dB. For all values of SNR, the IESP detector

has the lowest complexity compared to the other considered

detectors. From Figs. (11) and (12), we can observe that

message passing detectors achieve better BER performance

at the expense of higher computational complexity.

V. CONCLUSION

MBM is a recent and attractive modulation scheme that em-

ploys RF mirrors (parasitic elements) as controlled scatterers

near the transmit antenna to create the channel alphabet so that

additional information bits are conveyed through indexing of

these mirrors. In the literature, MBM has been shown to offer

RF hardware complexity and performance advantages in point-

to-point single user communications. Here, we investigated

the use of MBM in multiuser communication on the uplink.

We showed that MBM can offer significant performance gains

in multiuser settings as well. Our results showed that MU-

MBM significantly outperforms MU-CM and MU-SM, which
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are other popularly known systems with users having single

transmit RF chain. We also proposed detection algorithms

based on compressive sensing and message passing tech-

niques. An efficient channel estimation scheme that exploited

the channel hardening effect was also proposed. The results

of the proposed detectors/receivers demonstrated that MBM is

an attractive modulation scheme suited for use in large-scale

multiuser communications on the uplink.

APPENDIX A

ASYMPTOTIC CAPACITY OF MBM

Consider an MBM system with a single transmit antenna

and mrf RF mirrors placed near it. Let nr be the number of

receive antennas. The received MBM signal vector is given by

y = Hx+ n, (37)

= Hmx+ n, (38)

where y ∈ C
nr×1 is the received signal vector, x ∈ SSU-MBM is

the M × 1 transmit MBM signal vector, SSU-MBM is the single-

user MBM signal set defined in (2), n ∈ C
nr×1 is the noise

vector distributed CN (0, σ2Inr
), and H ∈ C

nr×M is the

channel matrix with ith column being the nr × 1 channel

vector corresponding to the ith MAP. The entries of H are

i.i.d CN (0, 1). The transmit signal vector can be written as

x = mx, where m is the MAP vector; if ith MAP is selected,

then mi = 1 and mj = 0, ∀ j 6= i. Further, x is the con-

ventional source modulation symbol (e.g. QAM/PSK). In the

case of pure MBM (without source modulation), x = 1 (tone).

For the rest of this Appendix, we consider an MBM system

with a tone. Thus, if ith MAP is selected for transmission in

a channel use, then the the received signal vector is given by

y = Hmi + n = hi + n (39)

where hi is the ith column of H, which is the channel vector

corresponding to the ith MAP, with mi denoting the ith MAP.

The capacity of this MBM system can be written as

C = EH(h(y)− h(y|x))
= EH(h(y)− h(n))

= EH(h(y)− log2 det(πeσ
2INr

)), (40)

where h(·) denotes the differential entropy. We first consider

the case of one receive antenna and then extend it to the

case of nr receive antennas. If ith MAP is selected, with the

knowledge of H, the received signal becomes

y = hi + ni, (41)

where ni ∼ CN (0, σ2). Therefore,

f(y|H,mi) = f(y|hi) =
1

πσ2
e−|y−hi|

2/σ2

. (42)

Since all the M MAPs are equally likely

f(y|H) =
1

M

M∑

i=1

f(y|H,mi) (43)

=
1

M

M∑

i=1

1

πσ2
e−|y−hi|

2/σ2

. (44)

This equation can not be simplified further. However, in the

case when M →∞ (i.e, mrf →∞), every possible value of

hi occurs according to its distribution. The received signal y
can then be expressed as [23]

f(y|H) = fh(h) ∗ fn(n) (45)

=

∫

T

fh(τ)fn(y − τ)dτ (46)

=

∫

T

1

π
e−|y−τ |2 1

πσ2
e−
|τ|2

σ2 dτ (47)

=
1

π(1 + σ2)
e
−
|y|2

σ2+1 , (48)

where T denotes the support set of τ , which is the entire

complex plane. Equation (45) follows from the fact that h and

n are independent R.Vs and y is a sum of independent R.Vs.

Hence, distribution of y is the convolution of distributions of

h and n. The differential entropy of the received signal is then

given by

h(y) = −
∫

1

π(1 + σ2)
e
−
|y|2

σ2+1 log2

(
1

π(σ2 + 1)
e
−
|y|2

σ2+1

)
dy

(49)

= log2
[
πe(σ2 + 1)

]
. (50)

Therefore, the capacity of MBM system with mrf →∞ and

single receive antenna is given by

C = log2
[
πe(σ2 + 1)

]
− log2(πeσ

2) (51)

= log2

(
1 +

1

σ2

)
(52)

= log2(1 + γ), (53)

where γ is the SNR. From (53), we see that the capacity of

MBM system with single receive antenna, as mrf → ∞, is

same as that of SISO AWGN channel capacity.

Next, we consider the case of nr receive antennas. Since

y1, y2, · · · , ynr
, the received signals across nr Rx antennas,

are independent and uncorrelated, the joint pdf of received

signal y is just the product of pdfs of received signals across

nr receive antennas. Therefore, the pdf of y as mrf →∞, is

given by

f(y) =
1

[π(1 + σ2)]nr
e
−
‖y‖2

1+σ2 , (54)

where y = [y1y2 · · · ynr
]T is the received signal vector. It

also follows from the independence of y1, y2, · · · , ynr
that,

the joint entropy is just the sum of their individual entropies.

Hence, the capacity of MBM system with nr receive antennas,

as mrf →∞, is given by

C = nr log2[πe(1 + σ2)]− nr log2(πeσ
2) (55)

= nr log2

(
1 +

1

σ2

)
(56)

= nr log2(1 + γ). (57)

From (57), it can be seen that the capacity of an MBM system

with nr receive antennas asymptotically (as mrf → ∞)

achieves the capacity of nr parallel AWGN channels.
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