
1

Channel and Radar Parameter Estimation with
Fractional Delay-Doppler Using OTFS

Sai Pradeep Muppaneni, Sandesh Rao Mattu, and A. Chockalingam

Abstract—Orthogonal time frequency space (OTFS) waveform
is suited for both communication as well as radar sensing.
In this paper, we propose an algorithm for efficient channel
estimation at the receiver and range/velocity estimation at the
transmitter using OTFS. The algorithm processes received pilot
frames for channel estimation at the receiver and data frames
echoed from the target/user for range and velocity estimation
at the transmitter. A key component in the proposed algorithm
is the cancellation of inter-path interference (IPI) in the DD
domain. The algorithm works for fractional delay-Doppler which
is a source of IPI. The proposed algorithm outperforms other
channel estimation schemes and also achieves good root mean
square error performance of range and velocity estimation.

Index Terms—OTFS, fractional delay-Doppler, inter-path in-
terference, channel estimation, radar parameter estimation.

I. INTRODUCTION

Orthogonal time frequency space (OTFS) waveform has
recently garnered much attention because of its suitability
for both communication as well as radar sensing applications
[1]-[6]. OTFS waveform is defined and processed in the
delay-Doppler (DD) domain. In communications, accurate
channel estimation is needed at the receiver for reliable data
detection/decoding. In radar sensing, accurate estimation of
range and velocity parameters is needed at the transmitter to
identify and track targets/users in the sensing environment.
This paper is focused on the above two tasks using OTFS, viz.,
i) channel estimation at the receiver and ii) range and velocity
estimation of targets/users at the transmitter by observing the
received echoes from them. Specifically, we propose a novel
algorithm for efficient estimation of channel at the receiver
as well as range/velocity estimation at the transmitter using
OTFS. At the receiver, the algorithm operates on the received
pilot frame for channel estimation. At the transmitter, the same
algorithm operates on the data frames echoed from the target
for range and velocity estimation. The proposed algorithm
differs from the existing approaches by way of employing a
scheme for canceling the DD domain inter-path interference
(IPI) arising due to fractional delay-Dopplers. We term the
proposed algorithm DD inter-path interference cancellation
(DDIPIC) algorithm. IPI cancellation in time domain in the
context of code division multiple access has been considered
in [7]. Here, we perform IPI cancellation in the DD domain.

Several techniques have been proposed in the OTFS lit-
erature for channel estimation in the DD domain [8]-[12].
In [8], channel estimation is carried out using an exclusive
pilot frame, assuming integer delay-Doppler values. In [9],
an embedded pilot frame is considered where both data and
pilot symbols are multiplexed in the same frame, with guard
symbols in between. Although fractional Doppler values are
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considered, delays are assumed to take integer values. In [10],
sparse Bayesian learning (SBL) algorithm is used to estimate
channel coefficients, assuming integer delay and fractional
Doppler values. In [11] and [12], SBL algorithm and a
modified maximum likelihood estimate (M-MLE) algorithm,
respectively, are used to estimate the channel with fractional
delays and Dopplers. The M-MLE scheme is shown to perform
better than the SBL scheme. A two-step estimation (TSE) al-
gorithm is also proposed in [12]. While the M-MLE algorithm
estimates both delay and Doppler jointly, the TSE algorithm
individually estimates the delay and Doppler in two steps
(estimate the delay in the first step and Doppler in the second
step). Our proposed DDIPIC algorithm also estimates the
delay and Doppler jointly. A key difference, however, is that
we perform refinement of the estimated channel parameters,
whereas the M-MLE and TSE algorithms do not, and hence
the proposed algorithm achieves better performance.

The use of OTFS waveform for range and velocity esti-
mation in radar sensing applications has been studied in [3]-
[6]. The works in [3],[4],[5] on OTFS for communication
and sensing consider integer delay-Dopplers. Whereas, the
performance of parameter estimation in these schemes are
compromised when fractional delay-Dopplers are encountered
(which is typical in practical channels). In [6], an iterative
scheme for range and velocity estimation with fractional
delay-Doppler is proposed. But this scheme assumes perfect
knowledge of the number of DD domain paths in the channel.
It also considers symbol detection at the receiver/target for
which perfect channel knowledge is assumed. In contrast, our
DDIPIC algorithm does not assume knowledge of number of
DD paths at the transmitter and perfect channel knowledge
at the receiver, and it achieves range and velocity estimation
performance which is very close to Cramer-Rao lower bound.

II. SYSTEM MODEL

In OTFS, MN information symbols are multiplexed in the
DD domain to obtain the symbol matrix XDD ∈ AM×N that
is to be transmitted, where A is the modulation alphabet from
where the information symbols are drawn. M and N symbols
are placed along the delay and Doppler axes, respectively,
with widths T/M and ∆f/N , where ∆f = 1/T . The
symbols in the DD domain are converted to frequency-time
(FT) domain using inverse symplectic finite Fourier transform
(ISFFT), to obtain XFT ∈ CM×N , as XFT = FMXDDFH

N ,
where FM is the unitary discrete Fourier transform (DFT)
matrix of size M . XFT is then converted into a continuous
time domain signal using the Heisenberg transform given by
x(t) =

∑M−1
m=0

∑N−1
n=0 XFT[m,n]gtx(t − nT )ej2πm∆f(t−nT ),

where gtx(t) is the transmit pulse. The time domain signal x(t)
is passed through the channel, which is considered to have P
paths in the DD domain, where the pth path has delay τp with
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0 < τp < T and Doppler shift νp. The channel is represented
in the DD domain as h(τ, ν) =

∑P
p=1 αpδ(τ − τp)δ(ν − νp),

where τps and νps are assumed to take fractional values. This
can be written in the time domain as h(t) =

∑P
p=1 αpδ(t −

τp)e
j2πνp(t−νp). The received signal thus becomes y(t) =∑P

p=1 αpx(t − τp)e
j2πνp(t−νp) + w(t), where w(t) is the

additive white Gaussian noise (AWGN). The received signal
is converted back to DD domain by first converting to the FT
domain, using the Wigner transform to obtain YFT ∈ CM×N ,
as YFT[m

′, n′] =
∫
t
y(t)grx(t − n′T )e−j2πm′∆f(t−n′T )dt,

where m′ = 0, 1, · · · ,M−1, n′ = 0, 1, · · · , N−1, and grx(t)
is the receive pulse. This FT domain signal is converted to DD
domain using the symplectic finite Fourier transform (SFFT),
to obtain YDD ∈ CM×N as YDD = FH

MYFTFN . gtx(t) and
grx(t) are assumed to be rectangular pulses of duration T and
amplitude 1/

√
T . Using the above equations, the input output

relation between YDD and XDD can be written as [12]

yDD =
P∑

p=1

αpAp(τp, νp)xDD + w, (1)

where w ∈ CMN×1 with entries distributed as i.i.d.
CN (0, σ2), yDD ∈ CMN×1, xDD ∈ AMN×1 are vector-
ized forms of YDD and XDD, respectively, i.e., yDD[q

′] =
yDD[k

′M + l′] = YDD[l
′, k′], xDD[q] = xDD[kM + l] =

XDD[l, k], l′, l = 0, 1, · · ·M − 1, k′, k = 0, 1, · · · , N − 1,
and q′, q = 0, 1, · · · ,MN − 1, and Ap is an MN ×
MN matrix whose entries are given by Ap[q

′, q] =

e−j2πτpνpaa′, where a = 1
N

∑N−1
n=0 e

−j2πn
(

k′−k
N − νp

∆f

)
, a′ =

1
M

∑M−1
m=0 ej2π

m
M (l′−l−M

τp
T )rτp,νp,k,l′(m), and rτp,νp,k,l′(m)

is evaluated using (2) given at the bottom of this page.

A. Integrated communication and sensing architecture
Figure 1 shows the block diagram of the considered commu-

nication and sensing architecture. At the transmitter, two types
of frames are transmitted, i) pilot frame (marked in yellow),
and ii) data frame (marked in purple). The pilot frame is used
at the receiver to estimate the DD channel parameters using
the proposed algorithm. The estimated channel parameters are
then used to detect and decode the transmitted data frames.
Since the channel remains almost time-invariant in the DD
domain, channel once estimated can be used for multiple
data frames. This describes the communication chain from
the transmitter to the receiver. Next, the symbols reflected
from the receiver (referred to as target in the sensing liter-
ature) are received back at the transmitter. These frames (also
called echoes), marked in blue, along with the knowledge
of the corresponding transmitted frames are used to estimate
the sensing parameters corresponding to the target, at the
transmitter. The same proposed algorithm is used to estimate
the sensing parameters at the transmitter. A key challenge for
accurately estimating the channel and radar parameters is the
inter-path interference (IPI) resulting due to the fractional DD
values as explained in the following subsection.

rτp,νp,k,l′ (m)=

M−1−m∑
s=−m

ej2π
sl′
M

[(
1−

τp

T

)
e
jπ

(
1+

τp
T

)(
νp
∆f

−s
)

sinc
((

1−
τp

T

)(
νp

∆f
−s

))
+e−j2π k

N

( τp

T

)
e

jπτp
T

(
νp
∆f

−s
)

sinc
(( τp

T

)(
νp

∆f
−s

))]
.

(2)

Fig. 1. Communication and sensing architecture.

(a) Integer DD (b) Fractional DD

Fig. 2. Received DD domain pilot signal for integer and fractional delay-
Dopplers.

B. Inter-path interference
Multiple copies of each transmitted symbol are received

when there are P paths (P > 1) in the channel. For the pth
path, the delay is τp =

γp

M∆f and the Doppler is νp =
ηp

NT .
In the case of integer DD, the received symbol corresponding
to the pth path is localized well in the DD bin specified by
the (γp, ηp) tuple, where γp ∈ Z+ (the set of all non-negative
integers) and ηp ∈ Z (the set of all integers), as illustrated
in Fig. 2a. On the other hand, for the fractional DD case,
each transmitted symbol spreads into adjacent bins, resulting
in received symbols interfereing with each other (see Fig. 2b).
Here, γp ∈ R+ (the set of all non-negative real numbers) and
ηp ∈ R (the set of all real numbers). To obtain Fig. 2a, the
fractional DD values used in Fig. 2b are rounded off to the
nearest integer. The extent of IPI is dependent on how close
or far the channel paths are in the DD grid (e.g., paths 2
and 3 in Fig. 2b exhibit higher IPI compared to other paths).
IPI is a source of degradation in the channel/radar parameter
estimation performance. To overcome this, we propose an
algorithm that cancels the effect of IPI in a sequential manner.
This enables the proposed algorithm to perform well for both
the channel estimation and radar parameter estimation tasks.

III. PROPOSED DDIPIC ALGORITHM

OTFS frames consisting of pilot frames interleaved among
the data frames are transmitted at the transmitter (see Fig.
1). For the communication chain, the pilot frames received
at the receiver are used to estimate the channel parameters,
(α̂p, τ̂p, ν̂p) for p = 1, 2, · · · , P , which is then used to
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construct the effective channel matrix, Ĥ =
∑P

p=1 α̂pAp ∈
CMN×MN (see (1)). The estimated channel matrix is used
for detection of data symbols in the data frames. For the
sensing chain, the reflected OTFS symbols (echoes), along
with the knowledge of the transmitted OTFS symbols are used
to estimate the range (d) and velocity (v) parameters of the
target at the transmitter. Both these tasks are carried out using
the proposed DDIPIC algorithm. The algorithm details are as
follows. We can write (1) in an alternate form as

y =

P∑
p=1

bp(τp, νp)αp + w = B(τ ,ν)α+ w, (3)

where bp(τp, νp) = ApxDD ∈ CMN×1, B(τ ,ν) =
[b1(τ1, ν1) · · · bP (τP , νP )] ∈ CMN×P , α = [α1 · · · αP ]

T ∈
CP×1, and w ∼ CN (0, σ2) ∈ CMN×1. Maximum likelihood
(ML) estimate of the (α, τ ,ν)-tuple can be evaluated as

(α̂, τ̂ , ν̂) = argmin
α,τ ,ν

∥y − B(τ ,ν)α∥2, (4)

which is an optimization problem with three unknowns. In
order to reduce the complexity, we first estimate τ and ν and
subsequently estimate α. Towards this, we note that for a given
(τ ,ν), the ML estimate of α is given by

α̂ =
[
BH(τ ,ν)B(τ ,ν)

]−1
BH(τ ,ν)y. (5)

Representing (4) as (y − B(τ ,ν)α)
H
(y − B(τ ,ν)α), simpli-

fying, and substituting for α from (5) yields the estimate as

[τ̂ , ν̂] = argmax
τ ,ν

[
Φ(B)

]
, (6)

where Φ(B) = yHB(τ ,ν)(BH(τ ,ν)B(τ ,ν))−1BH(τ ,ν)y.
Using the estimates τ̂ and ν̂, the estimate of the channel
coefficient is obtained as

α̂ =
[
BH(τ̂ , ν̂)B(τ̂ , ν̂)

]−1
BH(τ̂ , ν̂)y. (7)

To solve (6), we employ the proposed DDIPIC algorithm.
Estimation of delay and Doppler values is carried out on a
path by path basis. Further, this estimation is carried out in two
phases, first, the coarse estimation where the search space is
over integer multiples of

(
1

M∆f ,
1

NT

)
, and second, the fine es-

timation where the search space is over fractional values. The
algorithm runs for a maximum of Pmax iterations. In each iter-
ation, one path is estimated so that a maximum of Pmax paths
are estimated. Pmax is chosen to be more than the number of
paths P in the channel. The algorithm begins by initializing
B(τ ,ν) = [b1(τ1, ν1) b2(τ2, ν2) · · · bPmax

(τPmax
, νPmax

)] =
0MN×Pmax

.
Coarse estimation: This is carried out over the search
space defined by τ ∈

{
0

M∆f ,
1

M∆f , · · · ,
L

M∆f

}
, ν ∈{

− K
NT , · · · ,

0
NT , · · · ,

K
NT

}
, where L = ⌈τmaxM∆f⌉, K =

⌈νmaxNT ⌉, and τmax, νmax are the maximum delay and
Doppler, respectively. For estimating the first path, b1(τ1, ν1)
is evaluated with (τ1, ν1) taking all possible combinations
of (τ, ν) in the search space. To obtain the optimal coarse
estimate (τ ′1, ν

′
1), we maximize the cost function Φ(B) in (6).

Fine estimation: This is carried out in a search space around
the optimal coarse value obtained in the previous step. Fine
estimation of the parameters is carried out iteratively, where
the search space is narrowed down as the iterations progress.
The search space along the delay and Doppler axes are
divided into

(
2
⌊
mτ

2

⌋
+ 1

)
and

(
2
⌊
nν

2

⌋
+ 1

)
equally spaced

bins, respectively. This iterative procedure is presented in

Algorithm 1 Fine estimation of channel parameters
1: Inputs: Coarse estimates (τ ′p, ν

′
p), refinements (mτ , nν),

convergence indicators (ϵτ , ϵν), and max iter
2: Initialize: s = 1, τ̂ (1) = τ ′p, and ν̂(1) = ν′p
3: repeat
4: search width in delay, w(s)

τ = 1
M∆fms−1

τ

5: search width in Doppler, w(s)
ν = 1

NTns−1
ν

6: F(s) =
{
w

(s)
τ Γ + τ̂ (s)

}
⊗

{
w

(s)
ν Λ + ν̂(s)

}
, search

space for fractional DD
7: τ̂ (s+1), ν̂(s+1) = argmax

(τ,ν)∈F(s)

Φ(B)

8: update s = s+ 1
9: until s = max iter or

(
|τ̂ (s+1)− τ̂ (s)| < ϵτ and |ν̂(s+1)−

ν̂(s)| < ϵν
)

10: Output: τ̂p = τ̂ (s+1) and ν̂p = ν̂(s+1)

Algorithm 1, where Γ =
{
0, · · · , ⌊mτ

2 ⌋
}

for τ ′1 = 0
and Γ =

{
−⌊mτ

2 ⌋, · · · , 0, · · · , ⌊mτ

2 ⌋
}

for τ ′1 > 0, Λ ={
−⌊nν

2 ⌋, · · · , 0, · · · , ⌊nν

2 ⌋
}

, and the operator ⊗ denotes the
Cartesian product of two sets. At the end of Algorithm 1,
fine estimates for the first path τ̂1 and ν̂1 are obtained.

For the estimation of parameters of the tth path (t > 1),
columns 1, 2, · · · , t − 1 in B are filled using the already
obtained (τ̂p, ν̂p)s, p = 1, 2, · · · , t − 1. The coarse estimates
for τt and νt are obtained by maximizing the cost function in
(6) over different values of (τ, ν) in the tth column of B, as
described in the coarse estimation stage. This is followed by
the fine estimation stage using Algorithm 1, which gives the
fine estimates (τ̂t, ν̂t).
Stopping criterion: At the end of fine estimation for tth
path, t > 1, the matrix B(τ̂ , ν̂) is obtained, using which
α̂ is obtained using (7). A residue vector E(t) is obtained
as E(t) = y − B(τ̂ , ν̂)α̂. If ∥E(t) − E(t−1)∥2 > ϵ and
t < Pmax, then the algorithm makes t = t+ 1 and continues
with the estimation of the next path. The algorithm stops if
∥E(t) − E(t−1)∥2 < ϵ or t = Pmax.

Refinement of parameter estimates: After the estimation of
tth path, 1 < t < Pmax, if the stopping criterion is not met, we
refine the previously obtained estimates before estimating the
parameters of the (t+ 1)th path. This refinement proceeds as
follows. For the zth path, with 1 ≤ z ≤ t, we use the estimates
(τ̂i, ν̂i)s with i = 1, 2, · · · , z − 1, z + 1, · · · , t, to obtain the
matrix B (i.e., fill all the columns in B except the zth column).
We then evaluate the refined estimates of the zth path again,
by optimizing the cost function in (6) for the zth column of
B. This is carried out first over the coarse search space and
then over the fine search space. Following this, the estimate of
parameters of the (t+ 1)th path is obtained using the refined
estimates of all the paths till t. This is illustrated with the
following example. When t = 3, three paths are estimated,
and the stopping criterion is not met, then

• 1st path is refined using the 2nd and 3rd paths (both
unrefined),

• 2nd path is refined using the refined first path and the 3rd
path (unrefined), and

• 3rd path is refined using the refined 1st and 2nd paths.
The estimate of the parameters of the 4th path is obtained
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(a) Channel coefficients (b) Delay (c) Doppler
Fig. 3. MSE of estimated parameters as a function of pilot SNR.

TABLE I
COMPUTATIONAL COMPLEXITY FOR COST FUNCTION.

Operation Complex multiplications Complex additions Total complexity
Ξ = yHB(τ ,ν) PmaxMN Pmax(MN − 1) 2PmaxMN − Pmax

Υ = BH(τ ,ν)B(τ ,ν) P 2
maxMN P 2

max(MN − 1) 2P 2
maxMN − P 2

max

Υ−1 - - O(P 3
max)

ΞΥ−1 P 2
max Pmax(Pmax-1) 2P 2

max- Pmax

ΞΥ−1ΞH Pmax Pmax-1 2Pmax-1

TABLE II
COMPLEXITY IN DIFFERENT STAGES OF ESTIMATION.

Estimation stage Complexity (value × C)
Coarse estimation C′ = (L+ 1)(2K + 1)Pmax

Fine estimation C′′ =
(
2⌊mτ

2
⌋+ 1

) (
2⌊nν

2
⌋+ 1

)
Pmax

Refinement
(

(Pmax−1)Pmax
2

− 1
)
(C′ + C′′)

Channel coefficient 1

using the refined 1st, 2nd, and 3rd path estimates. We note
that an estimated path maybe refined multiple times depending
on how many paths are estimated before convergence of the
DDIPIC algorithm. For example, when Pmax = 3, after the
estimation of two paths, both first and second paths are refined.
Next, after the third path is estimated, first, second, and third
paths are refined. So, at the end of the DDIPIC algorithm, first
and second paths are refined twice and third path is refined
once. This multiple refinements possibility allows effective
cancellation of interference between different paths.
Remark on choice of ϵ: We note that the algorithm defined
above can have multi-checks and misses depending on the
value chosen for ϵ. A high value of ϵ can lead to paths (with
small amplitudes) being missed, while a small value of ϵ
can lead to false paths or multi-checks, wherein an already
estimated path is picked for estimation again. Simulations have
shown that the chances of multi-checks and misses are reduced
when ϵ is chosen to be about 1% of the noise energy in the
frame. Consequently, we have used ϵ to be 0.01MNσ2.
Complexity: Table I shows the computation complexity of

the proposed estimator (6) in terms of number of complex
additions and multiplications. The sum of the last column,
C = 2PmaxMN + 2P 2

maxMN + P 2
max +O(P 3

max)− 1 is the
total number of operations required to compute (6). Table II
shows the maximum number of times the cost function in (6)
is evaluated in each stage of estimation. The sum of the last
column multiplied with C denotes the maximum complexity
of the proposed algorithm.

IV. RESULTS AND DISCUSSIONS

In this section, we present the numerical results on the
performance of the proposed DDIPIC algorithm. We consider
M = 64 , N = 32 , ∆f = 30 kHz, and fc = 5.1 GHz. The
channel is assumed to have P = 5 resolved paths with a line

of sight (LOS) path and a Rice factor of 15 dB [12]. The
delay of the first and second paths are taken to be 0.667µs,
0.867µs, respectively, and the delays of other paths are uni-
formly distributed in (0.867µs, 7µs]. Doppler frequencies for
all the paths are generated from Jake’s Doppler spectrum using
νp = νmaxcos(θp) where θp is uniformly distributed in (0, 2π]
and νmax is 1700 Hz. The fixed absolute squared value of the
channel gain of LOS path is taken according to the Rice factor,
and exponential power delay profile is used for the other paths
as in [12]. Further, mτ = nν = 10, ϵτ = 10−10, ϵν = 10−2,
Pmax = 15 and ϵ = 0.01MNσ2.

A. Channel estimation performance at receiver
1) MSE performance of channel parameters: Figure 3

shows the MSE performance of the channel parameters ob-
tained using the proposed DDIPIC algorithm for the LOS
path. Specifically, MSE of the channel coefficient, delay,
and Doppler values are presented in Figs. 3a, 3b, and 3c,
respectively. The MSE performance of the channel parameters
obtained using the M-MLE algorithm is also presented for
comparison. It is seen that for all the channel parameters, the
MSE performance using the proposed DDIPIC is observed to
decrease almost linearly with pilot SNR. On the other hand,
the MSE performance of M-MLE algorithm is seen to floor.

2) NMSE performance: Normalized mean square error
(NMSE) is evaluated as E

[
∥H−Ĥ∥2

F

∥H∥2
F

]
. Figure 4 shows the

NMSE performance of the channel matrix obtained using
the proposed DDIPIC algorithm. The NMSE performance
obtained using the M-MLE algorithm in [12] is also presented
for comparison. It is seen that the NMSE performance of
both the schemes decrease almost linearly with pilot SNR.
However, the NMSE performance with the proposed DDIPIC
is better when compared to that of the M-MLE scheme. For
example, NMSE value of -30 dB is obtained at around 10 dB
of pilot SNR with the proposed scheme, as opposed to 15 dB
with the M-MLE scheme.

3) BER performance: Figure 5 shows the BER versus SNR
performance of the proposed DDIPIC algorithm for a pilot
SNR of 10 dB. BER performance with perfect CSI is also
added for reference along with the performance of M-MLE
scheme. Minimum mean square error (MMSE) detection is
used and the data symbols are drawn from 64-QAM modula-
tion alphabet. First, it is observed that the proposed DDIPIC
algorithm achieves better performance compared to the M-
MLE scheme. For example, a BER of 10−3 is achieved at 24
dB for the proposed scheme, while it is achieved at about
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Fig. 4. NMSE performance of the proposed DDIPIC algorithm as a function
of pilot SNR.

Fig. 5. BER performance of the proposed DDIPIC algorithm as a function
of SNR.
28 dB for the M-MLE scheme. This performance gain is
attributed to the refinement of parameter estimates achieved
through IPI cancellation in the proposed algorithm. Further,
the proposed algorithm is observed to perform close to that
with perfect CSI. Figure 6 shows the BER performance of the
proposed DDIPIC algorithm as a function of Pmax at 10 dB
pilot SNR and 20 dB data SNR. Performance with perfect CSI
at 20 dB data SNR is also plotted for comparison. It is seen that
as the number of iterations increase, the BER converges close
to the performance with perfect CSI. This is because, due to
IPI cancellation, the channel estimates get more refined as the
number of iterations is increased. Even two or three iterations
show significant improvement in BER.

B. Radar parameter estimation performance at transmitter
In this subsection, we present range and velocity estima-

tion performance of the proposed algorithm with M = 64,
N = 50, fc = 5.89 GHz, and ∆f = 156.25 kHz. The range
and velocity of the target are considered to be 20 m and 80

Fig. 6. BER performance of the proposed DDIPIC algorithm as a function
of Pmax.

(a) RMSE of range (b) RMSE of velocity

Fig. 7. RMSE of range and velocity as a function of SNR.

km/h, respectively, The above parameters are as in [6]. Figure
7a shows the root mean square error (RMSE) performance
of range estimation as a function of SNR achieved with the
proposed DDIPIC algorithm. The performance achieved with
the scheme in [6] is also shown for comparison. Further, the
Cramer-Rao lower bound (CRLB) for the considered system
is also plotted. It is seen that the proposed scheme and the
scheme in [6] perform similarly and this performance is close
to the CRLB. Figure 7b shows the RMSE performance of
velocity estimation as a function of SNR for the proposed
algorithm and the scheme in [6] along with the CRLB. Similar
to the delay estimation performance, both the approaches
exhibit similar velocity estimation performance that is close
to CRLB. However, we note that the scheme in [6] assumes
the knowledge of the number of paths, whereas the proposed
DDIPIC algorithm requires no such knowledge.
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