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Abstract—In this paper, we propose low-complexity algo-
rithms based on Monte Carlo sampling for signal detection
and channel estimation on the uplink in large-scale multiuser
multiple-input–multiple-output (MIMO) systems with tens to hun-
dreds of antennas at the base station (BS) and a similar number of
uplink users. A BS receiver that employs a novel mixed sampling
technique (which makes a probabilistic choice between Gibbs sam-
pling and random uniform sampling in each coordinate update)
for detection and a Gibbs-sampling-based method for channel
estimation is proposed. The algorithm proposed for detection
alleviates the stalling problem encountered at high signal-to-noise
ratios (SNRs) in conventional Gibbs-sampling-based detection and
achieves near-optimal performance in large systems with M -ary
quadrature amplitude modulation (M -QAM). A novel ingredi-
ent in the detection algorithm that is responsible for achieving
near-optimal performance at low complexity is the joint use of
a mixed Gibbs sampling (MGS) strategy coupled with a multiple
restart (MR) strategy with an efficient restart criterion. Near-
optimal detection performance is demonstrated for a large num-
ber of BS antennas and users (e.g., 64 and 128 BS antennas and
users). The proposed Gibbs-sampling-based channel estimation
algorithm refines an initial estimate of the channel obtained during
the pilot phase through iterations with the proposed MGS-based
detection during the data phase. In time-division duplex systems
where channel reciprocity holds, these channel estimates can be
used for multiuser MIMO precoding on the downlink. The pro-
posed receiver is shown to achieve good performance and scale
well for large dimensions.

Index Terms—Channel estimation, detection, Gibbs sampling,
large-scale multiuser multiple-input–multiple-output (MIMO)
system, multiple restarts (MRs), randomized sampling, stalling
problem.

I. INTRODUCTION

THE CAPACITY of multiple-input–multiple-output
(MIMO) wireless channels is known to increase linearly

with the minimum number of transmit and receive antennas
in rich scattering environments [1]–[5]. Large-scale MIMO
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systems with tens to hundreds of antennas have attracted
much interest recently [6]–[17]. The motivation to consider
these large-scale MIMO systems is the potential to practically
realize the theoretically predicted benefits of MIMO, in
terms of very high spectral efficiency/sum rates, increased
reliability, and power efficiency, through the exploitation of
large spatial dimensions. Using a large number of antennas
is being recognized as a good approach to fulfilling the
increased throughput requirements in future wireless systems.
In particular, large multiuser MIMO wireless systems, where
the base station (BS) has tens to hundreds of antennas and
the users have one or more antennas, are widely being
investigated [9], [12]–[17]. Communications on the uplink
[13], [16] and on the downlink [9], [14], [15] in these large
systems are of interest. Key issues in large multiuser MIMO
systems on the downlink include low-complexity precoding
strategies and a pilot contamination problem encountered in
using nonorthogonal pilot sequences for channel estimation in
multicell scenarios [14]. In large multiuser MIMO systems on
the uplink, users with one or more antennas simultaneously
transmit to the BS having a large number of antennas, and their
signals are separated at the BS using their spatial signatures
toward the BS. Sophisticated signal processing is required at
the BS receiver to extract the signal of each user from the
aggregate received signal [4]. Using a large number of BS
antennas has been shown to improve the power efficiency of
uplink transmissions in multiuser MIMO systems using linear
receivers at the BS [16]. Linear receivers, including matched-
filter (MF) and MMSE receivers, are shown to be attractive
for a very large number of BS antennas [13]. Our focus in
this paper is to achieve near-optimal receiver performance at
the BS in large multiuser MIMO systems on the uplink at low
complexity. The receiver functions that we consider include
signal detection and channel estimation. The approach that we
adopt for both detection and channel estimation is a Monte
Carlo sampling approach.

The uplink multiuser MIMO architecture can be viewed as a
point-to-point MIMO system with colocated transmit antennas
with adequate separation between them (so that there is no or
negligible spatial correlation among them), and no cooperation
among these transmit antennas [4]. Because of this, receiver
algorithms for point-to-point MIMO systems are applicable
for receiving uplink multiuser MIMO signals at the BS re-
ceiver. Recently, there has been encouraging progress in the
development of low-complexity near-optimal MIMO receiver
algorithms that can scale well for large dimensions [8], [10],
[18]–[25]. These algorithms are based on techniques from local
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neighborhood search, including tabu search [8], [10], [18]–
[21], probabilistic data association [22], and message passing
on graphical models with factor graphs and Markov random
fields [23]–[25].

Another interesting class of low-complexity algorithms re-
ported in the context of code-division multiple access and
MIMO detection is based on Markov chain Monte Carlo
(MCMC) simulation techniques [26]–[33]. MCMC techniques
are computational techniques that make use of sampling from
probability distributions [34]. MCMC methods have their roots
in the Metropolis algorithm, which is an attempt by physicists
to compute complex integrals by expressing them as expecta-
tions for some distribution and then estimating this expectation
by drawing samples from that distribution [35], [36]. In MCMC
methods, statistical inferences are developed by simulating the
underlying processes through Markov chains. By doing so, it
becomes possible to reduce exponential detection complexity
to linear/polynomial complexity. Gibbs sampling is a popular
MCMC method. An issue with conventional Gibbs-sampling-
based detection, however, is the stalling problem, which de-
grades performance at high SNRs [27]. The stalling problem
arises because transitions from some states to other states in a
Markov chain can occur with very low probability [27]. Our
first contribution in this paper is that we propose a Monte-
Carlo-sampling-based detection algorithm that alleviates the
stalling problem encountered in conventional Gibbs sampling
and achieves near-optimal performance in large systems [37],
[38]. A key idea that is instrumental in alleviating the stalling
problem is a mixed Gibbs sampling (MGS) strategy that makes
a probabilistic choice between conventional Gibbs sampling
and random uniform sampling in each coordinate update. An
efficient stopping criterion aids complexity reduction. The pro-
posed MGS strategy is shown to achieve near-optimal per-
formance in large multiuser MIMO systems with 16–128 BS
antennas and the same or less number of uplink users for
4-quadrature amplitude modulation (4-QAM) [37]. However,
we find that this MGS strategy alone is not adequate to achieve
near-optimal performance at low complexity for higher or-
der QAM (e.g., 16-QAM and 64-QAM). We show that near-
optimal performance is also achieved in higher order QAM if a
multiple restart (MR) strategy is performed in conjunction with
the proposed MGS [38]. We refer to this as the “MGS with MRs
(MGS-MR)” strategy. Here, again, an efficient restart criterion
aids complexity reduction. The joint use of both MGS and
MR strategies is found to be crucial in achieving near-optimal
performance for higher order QAM in large systems. To our
knowledge, this mixed-sampling-based algorithm has not been
reported before for detection.

Channel estimation at the BS is an important issue in large
multiuser MIMO systems on the uplink. While channel estima-
tion at the BS is needed for uplink signal detection, in time-
division duplex systems where channel reciprocity holds, the
estimated channel can be also used for precoding purposes
on the downlink, avoiding the need for feeding back channel
estimates from the users. Our second contribution in this paper
is that we propose a Gibbs-sampling-based uplink channel
estimation algorithm at the BS receiver. The algorithm employs
Gibbs sampling to refine an initial estimate of the channel

Fig. 1. Large-scale multiuser MIMO system on the uplink.

obtained during the pilot phase, through iterations with the
proposed MGS-MR-based detection during the data phase. The
algorithm is shown to yield good MSE and bit error rate (BER)
performances in large multiuser MIMO systems (e.g., 128 BS
antennas and users). BER performance that is close to that with
perfect channel knowledge is shown to be achieved.

The remainder of this paper is organized as follows. The up-
link multiuser MIMO system model is presented in Section II.
The proposed MGS algorithm with and without MRs, and its
performance/complexity results are presented in Section III.
Section IV presents the proposed Gibbs-sampling-based chan-
nel estimation algorithm and its performance. Conclusions are
presented in Section V.

II. SYSTEM MODEL

Consider a large-scale multiuser MIMO system on the uplink
consisting of a BS with N receive antennas and K uplink users
with one transmit antenna each, i.e., K ≤ N (see Fig. 1). N
and K are in the range of tens to hundreds. All users transmit
symbols from a modulation alphabet B. Although we consider
single-antenna users here, the proposed schemes apply to a
general setting where user k can have ntk transmit antennas and
transmit ntk spatial streams of data subject to

∑
k ntk = K. It

is assumed that synchronization and sampling procedures have
been carried out, and that the sampled baseband signals are
available at the BS receiver. Let xk ∈ B denote the transmitted
symbol from user k. Let xc = [x1, x2, . . . , xK ]T denote the
vector that is comprised of the symbols simultaneously trans-
mitted by all users in one channel use. Let Hc ∈ C

N×K , which
is given by Hc = [h1,h2, . . . ,hK ], denote the channel gain
matrix, where hk = [h1k, h2k, . . . , hNk]

T is the channel gain
vector from user k to the BS, and hjk denotes the channel
gain from the kth user to the jth receive antenna at the BS.
Assuming rich scattering and adequate spatial separation be-
tween the BS antenna elements, hjk ∀j are assumed to be
independent Gaussian with zero mean and σ2

k variance, such
that

∑
k σ

2
k = K. σ2

k models the imbalance in the received
power from different users, and σ2

k = 1 corresponds to the
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perfect power control scenario. The received signal vector at
the BS in a channel use, which is denoted by yc ∈ C

N , can be
written as

yc = Hcxc + nc (1)

where nc is the noise vector whose entries are modeled as
independent and identically distributed CN (0, σ2). We will
work with the real-valued system model corresponding to (1),
which is given by

yr = Hrxr + nr (2)

where xr ∈ R
2K , Hr ∈ R

2N×2K , yr ∈ R
2N , and nr ∈ R

2N ,
which are given by

Hr =

[
�(Hc) −�(Hc)
�(Hc) �(Hc)

]
yr =

[
�(yc)
�(yc)

]
xr =

[
�(xc)
�(xc)

]
nr =

[
�(nc)
�(nc)

]
. (3)

Dropping the subscript r in (2) for notational simplicity, the
real-valued system model is written as

y = Hx+ n. (4)

For a QAM alphabet B, the elements of x will take values from
the underlying pulse-amplitude modulation (PAM) alphabet
A, i.e., x ∈ A

2K . The symbols from all the users are jointly
detected at the BS. The maximum-likelihood (ML) decision
rule is given by

xML = arg min
x∈A2K

‖y −Hx‖2 = arg min
x∈A2K

f(x) (5)

where f(x)
Δ
= xTHTHx− 2yTHx is the ML cost. While the

ML detector in (5) is exponentially complex in K (which is
prohibitive for large K), the algorithms that we propose in the
following have a per-symbol complexity that is quadratic in K,
and they achieve near-ML performance as well.

III. PROPOSED MIXED GIBBS SAMPLING

ALGORITHM FOR DETECTION

The ML detection problem in (5) can be solved by using
MCMC simulations [34]. First, consider a conventional Gibbs
sampler, which is an MCMC method used for sampling from
distributions of multiple dimensions. In the context of MIMO
detection, the joint probability distribution of interest is

p(x1, . . . , x2K |y,H) ∝ exp

(
−‖y −Hx‖2

σ2

)
. (6)

Here, we assume perfect knowledge of channel gain matrix H
at the BS receiver. We will relax the perfect channel knowledge
assumption by proposing a Gibbs-sampling-based channel esti-
mation algorithm in Section IV.

A. Conventional Gibbs Sampling Algorithm for Detection

In conventional Gibbs-sampling-based detection, the algo-
rithm starts with an initial symbol vector, which is denoted by
x(t=0). The initial vector can be a random vector or an output
vector from known detectors, such as MF, zero forcing (ZF),
and MMSE detectors. Let t denote the iteration index and i
denote the coordinate index, i = 1, 2, . . . , 2K. Each iteration
consists of 2K coordinate updates. In each iteration, 2K up-
dates are carried out by sampling from distributions as follows:

x
(t+1)
1 ∼ p

(
x1

∣∣∣x(t)
2 , x

(t)
3 , . . . , x

(t)
2K ,y,H

)
x
(t+1)
2 ∼ p

(
x2

∣∣∣x(t+1)
1 , x

(t)
3 , . . . , x

(t)
2K ,y,H

)
x
(t+1)
3 ∼ p

(
x3

∣∣∣x(t+1)
1 , x

(t+1)
2 , x

(t)
4 , . . . , x

(t)
2K ,y,H

)
...

x
(t+1)
2K ∼ p

(
x2K

∣∣∣x(t+1)
1 , x

(t+1)
2 , . . . , x

(t+1)
2K−1,y,H

)
. (7)

The updated symbol vector at the end of each iteration is fed
back to the next iteration for further coordinate updates. The
algorithm is run for a certain number of iterations. The detected
symbol vector is chosen to be that symbol vector that has the
least ML cost in all the iterations.

A problem with the given conventional Gibbs-sampling-
based detection is the stalling problem, which results in BER
floors at high SNRs [27]. This is shown in Fig. 2(a) for K =
N = 16, 4-QAM, a random initial vector, and 256 iterations,
where the BER of the conventional Gibbs sampler becomes
degraded for SNRs of more than 8 dB. The reason for this
flooring is that the algorithm becomes trapped in some poor
local solutions for a long time (i.e., for many iterations). This
can be observed in Fig. 2(b), which shows an evolution of the
ML cost of the state vector in the nth iteration as a function
of n for an SNR of 12 dB. Note that the ML cost of the state
vector does not change much from iterations 4 to 256, and
note that this trapped ML cost is quite poor compared with the
ML cost of the sphere-decoder solution. This leads to inferior
performance compared with the sphere-decoder performance.
Although the chain is guaranteed to converge to the target
distribution (6) asymptotically as n → ∞, stalling occurs and
degrades the performance with a finite number of iterations.

B. Motivation for the Proposed MGS

One might think that the most natural target distribution
for sampling is the posterior distribution itself, i.e., the dis-
tribution of x, given y and H in (6). Gibbs sampling with
this posterior distribution indeed guarantees taking us to this
target distribution in the limit n → ∞ [34]. However, this is
not the appropriate distribution to sample from if the goal
is to minimize the expected number of iterations for finding
the correct solution, as has been demonstrated in [39, pp. 5].
This result was shown in the context of guessing passwords
using MCMC. As in the result in [39, pp. 6], the correct
target distribution with which one must sample to minimize
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Fig. 2. BER performance and evolution of the ML cost of the state vector in a conventional Gibbs sampler, a Gibbs sampler with α = 1.5, the proposed mixed
Gibbs sampler, and the sphere decoder for K = N = 16 and 4-QAM.

the expected number of iterations is a tilted version of the
posterior; specifically, it must be proportional to the square
root of the posterior, i.e., (p(xi|y,H,x−i))

1/2 [39]. If there
are only a finite number of iterations and we need to maximize
the probability of arriving at the correct solution within these
iterations, a heuristic is to sample in such a way that minimizes
the higher moments of the number of iterations for finding
the correct solution (see [40] and [41]). This can be achieved
by choosing temperature parameter α ≥ 1 and by sampling
according to (p(xi|y,H,x−i))

1/α2
. The target distribution for

sampling proposed in [33] for MIMO detection used parameter
α, where the target distribution is taken as

p(x1, . . . , x2K |y,H) ∝ exp

(
−‖y −Hx‖2

α2σ2

)
. (8)

α represents a tunable positive parameter, which controls the
mixing time of the Markov chain; the larger the value of α, the
lesser will be the mixing time [33]. Conventional Gibbs sam-
pling results as a special case when α = 1. A larger α speeds



DATTA et al.: MONTE-CARLO-SAMPLING-BASED RECEIVER FOR UPLINK MULTIUSER MIMO SYSTEMS 3023

up the mixing and serves the purpose of reducing the higher
moments of the number of iterations for finding the correct
solution. However, the stalling problem persists even with large
α. This is illustrated for Gibbs sampling with α = 1.5 for an
SNR of 12 dB in Fig. 2(b); the corresponding evolution of the
ML cost of the state vector shows that the ML cost does not go
below a certain value (which is well above the ML cost of the
sphere-decoder solution) from iterations 20 to 256. These poor
local solutions, in turn, result in degraded BER performance
for SNRs of more than 10 dB, as shown in Fig. 2(a) for Gibbs
sampling with α = 1.5.

Motivated by the given observations, we propose a simple yet
effective mixed sampling strategy to avoid local traps, thereby
alleviating the stalling problem significantly. To break away
from traps that lead to stalling, one needs to use a noisy version
of the MCMC procedure. The noisiest is the one with infi-
nite temperature (i.e., α = ∞), which randomly and uniformly
samples from all the possibilities. Our proposal is to use an
intelligent mixture of: 1) Gibbs sampling with the posterior in
(6) (i.e., α = 1); and 2) random uniform sampling (i.e., α =
∞). We will see (in Figs. 2(a) and 5) that sampling with this
mixture distribution is able to achieve near-ML performance for
4-QAM. Another exploratory feature that enables us to get out
of local traps when using higher order QAM is to have parallel
explorations (i.e., MRs).

C. Proposed MGS

The key idea behind the proposed MGS approach is that, in
each coordinate update, instead of updating the x

(t)
i s as in the

update rule in (7) with probability of 1 as done in conventional
Gibbs sampling, we update them as in (7) with probability
1 − q, and use a different update rule with probability q. The
different update rule is as follows. Generate |A| probability
values from the uniform distribution as

p
(
x
(t)
i = j

)
∼ U [0, 1] ∀j ∈ A

such that
∑|A|

j=1 p(x
(t)
i = j) = 1; then, sample x

(t)
i from this

generated probability mass function (pmf). In other words, the
proposed mixture distribution for sampling is given by

p(x1, . . . , x2K |y,H) ∝ (1 − q)ψ(α1) + qψ(α2) (9)

where ψ(α) = exp(−‖y −Hx‖2/α2σ2), and q is the mixing
ratio. The choice of different values for (α1, α2) is possible.
Note that, with α1 = 1 and α2 = ∞, the first and second
distributions in (9) become the true distribution and uniform
distribution, respectively. That is, the sampling distribution is a
weighted combination of the true distribution and the uniform
distribution. We consider the (α1 = 1, α2 = ∞) combination
throughout this paper as this choice is simple and gives good
performance. Note that q = 0 in (9) corresponds to the conven-
tional Gibbs sampler, and q = 1 corresponds to pure random
walk. In the Appendix, we present an analysis of the effect of
the mixing ratio q and its optimal choice. Our analysis approach
is to define an absorbing Markov chain and to use the property
of absorbing Markov chains regarding the expected number

of iterations needed to reach the global minima for the first
time. The analysis and results in the Appendix show that the
optimum value of q, which minimizes the expected number of
iterations needed to reach the global minima for the first time,
is the inverse of the number of dimensions in the system. For
our system with a complex modulation alphabet, the number of
real dimensions is 2K; therefore, the optimum mixing ratio is
q = 1/2K.

Fig. 2(b) shows an evolution of the ML cost of the state vec-
tor in the nth iteration as a function of iteration index n in the
proposed MGS with q = 1/2K. It can be observed that, because
of the random uniform component in the sampling distribution,
the variation of ML cost between successive iterations is quite
significant. Two key observations can be made in Fig. 2(b) for
the proposed MGS: 1) Unlike in conventional Gibbs sampling
and Gibbs sampling with α = 1.5, the state vector does not get
trapped in local solutions for long; and 2) the quality of the
ML cost at several instances in the evolution is very good to
the extent that the ML cost of the sphere-decoder solution is
almost reached. This enables the sampling from the proposed
mixed distribution to almost achieve the BER performance of
the sphere decoder, as shown in Fig. 2(a).

Fig. 3 shows the effect of mixing ratio q on the BER perfor-
mance of the mixed Gibbs sampler for K = N = 8, 16, 32, 64,
and 4-QAM at an SNR of 10 dB. In Fig. 3, along the lines of the
optimal q result in the Appendix, the optimum value of q that
minimizes the BER is observed to be 1/2K. The optimum value
of q will be small for large values of K. For K = N = 64 in
Fig. 2(b), the optimum q is small, i.e., qopt = 1/128 = 0.0078.
The BER difference between the cases of q = 0.0078 and q = 0
for K = N = 64 is significant.

1) Stopping Criterion: A suitable termination criterion is
needed to stop the algorithm. A simple strategy is to terminate
the algorithm after a fixed number of iterations. However, a
fixed value of the number of iterations may not be appro-
priate for all scenarios. Fixing a large value for the number
of iterations can yield good performance, but the complexity
increases with the number of iterations. To address this issue,
we develop a dynamic stopping criterion that yields good
performance without unduly increasing the complexity. The
criterion works as follows. Stalling is said to have occurred if
the ML cost remains unchanged in two consecutive iterations.
Once stalling is identified, the algorithm generates positive
integer Θs (referred to as the stalling limit), and the iterations
are allowed to continue in stalling mode (i.e., without changing
the ML cost) up to a maximum of Θs iterations from the
occurrence of stalling. If a lower ML cost is encountered before
Θs iterations, the algorithm proceeds with the newly found
lower ML cost; else, the algorithm terminates. If termination
does not happen through the stalling limit as aforementioned,
the algorithm terminates on completing a maximum number of
iterations, i.e., MAX-ITER.

The algorithm chooses the value of Θs depending on the
quality of the stalled ML cost as follows. A large value for
Θs is preferred if the quality of the stalled ML cost is poor
because of the available potential for improvement from a poor
stalled solution. On the other hand, if the stalled ML cost quality
is already good, then a small value of Θs is preferred. The
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Fig. 3. BER performance of MGS as a function of mixing ratio q for K = N = 8, 16, 32, 64; 4-QAM; and SNR = 10 dB.

quality of a stalled solution is determined in terms of closeness
of the stalled ML cost to a value obtained using the statistics
(mean and variance) of the ML cost for the case when x is
detected error free. Note that, when x is detected error free,
the corresponding ML cost is nothing but ‖n‖2, which is scaled
chi-square distributed with 2N degrees of freedom with mean
Nσ2 and variance Nσ4. We define the quality metric to be the
difference between the ML cost of the stalled solution and the
mean of ‖n‖2, which is scaled by the standard deviation, i.e.,
the quality metric of vector x̂ is defined as

φ(x̂) =
‖y −Hx̂‖2 −Nσ2

√
Nσ2

. (10)

We refer to the metric in (10) as the standardized ML cost of
solution vector x̂. A small value of φ(x̂) can be viewed as
an indicator of increased closeness of x̂ to the ML solution.
Therefore, from the earlier discussion, it is desired to choose
the stalling limit Θs to be an increasing function of φ(x̂). For
this purpose, we choose an exponential function of the form1

Θs (φ(x̂)) = c1 exp (φ(x̂)) . (11)

The constant c1 is chosen depending upon the QAM size; a
larger value of c1 is chosen for a larger QAM size. As the QAM
size increases, the search space is also increased. Therefore, by
choosing a c1 proportional to the QAM size, we allow more
iterations before stopping and thereby allow search over a larger
region in the increased search space. In addition, we allow a
minimum number of iterations cmin following a stalling event.

1Intuitively, the number of iterations to wait in stalling mode should be
inversely proportional to the reliability of the vector that the process is stalled
in, which exponentially decreases with the ML cost of that vector. Hence, we
consider an exponential function in (11).

Based on the given discussion, we adopt the following rule to
compute the stalling count:

Θs(x̂) = �max (cmin, c1 exp (φ(x̂)))� . (12)

As we will see in the performance and complexity results, the
proposed randomization in the update rule and the stopping
criterion are quite effective in achieving low complexity and
near-optimal performance. A complete listing of the proposed
algorithm incorporating the MGS and stopping criterion ideas
is given in Algorithm 1.

Algorithm 1 Proposed MGS algorithm

1: input: y, H, x(0);
x(0): initial vector ∈ A

2K ; MAX-ITER: max. no.
of iterations;

2: t = 0; z = x(0); q = [q1, q2, . . . , q2K ];
3: β = f(x(0)); f(·): ML cost function; Θs(·): stalling

limit function;
4: while t < MAX-ITER do
5: for i = 1 to 2K do
6: generate κ ∼ U [0, 1]
7: if (κ > qi)

8: x
(t+1)
i ∼ p(xi|x(t+1)

1 , . . . , x
(t+1)
i−1 , x

(t)
i+1, . . . , x

(t)
2K)

9: else
10: generate pmf p(x(t+1)

i = j) ∼ U [0, 1], ∀j ∈ A

11: sample x
(t)
i from this pmf

12: end if
13: end for
14: γ = f(x(t+1));
15: if (γ ≤ β) then
16: z = x(t+1); β = γ;
17: end if
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Fig. 4. BER performance and complexity of the proposed MGS algorithm for K = N = 8, 16, 32, 64, and 128 and 4-QAM.

18: t = t+ 1;
19: β

(t)
v = β;

20: if β(t)
v == β

(t−1)
v then

21: calculate Θs(z);
22: if Θs < t then
23: if β(t)

v == β
(t−Θs)
v then

24: goto step 29
25: end if
26: end if
27: end if
28: end while
29: output: z. z : output solution vector

2) Performance and Complexity of the MGS Algorithm: The
simulated BER performance and complexity of the proposed
MGS-based detection in uplink multiuser MIMO systems with
4-QAM are shown in Fig. 4(a) and (b), respectively. The
following parameters are used in the simulations: cmin = 10,
c1 = 20, MAX-ITER = 16K, q = 1/2K, σ2

k = 0 dB ∀ k, and a
random initial vector. Perfect channel knowledge at the BS is
assumed. In Fig. 4(a), we see that the proposed MGS detector
almost achieves the same performance of a sphere decoder
for K = N = 8 and 16. Further, while the sphere decoder is
prohibitively complex for more than 32 real dimensions, the
proposed MGS algorithm scales very well in complexity. This
is shown in Fig. 4(b), where it can be seen that the average
per-bit complexity of the MGS detector only quadratically
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Fig. 5. Comparison between the performance of the MGS algorithm and that of the sphere decoder in uplink multiuser MIMO systems with K = N = 16 and
4-/16-/64-QAM.

grows in K (i.e., O(K2)). Because of this low complexity, the
MGS algorithm easily scales for K = N = 32, 64, and 128,
whose simulated BER performances are also shown in Fig. 4(a).
Since sphere-decoder simulation is prohibitive for such large di-
mensions, we have plotted unfaded single-input–single-output
(SISO) additive white Gaussian noise (AWGN) performance as
a lower bound on the ML performance for comparison. It can be
seen that the MGS detector achieves a performance that is very
close to SISO AWGN performance for large K = N , e.g., close
to within 0.5 dB at a BER of 10−3 for K = N = 128. This
shows the ability of the proposed MGS detector to achieve near-
optimal performance in large-scale multiuser MIMO systems.

D. MGS-MR Algorithm for Higher Order QAM

Although the MGS algorithm is very attractive in terms of
both performance and complexity for 4-QAM, its performance
for higher order QAM is far from optimal. This is shown in
Fig. 5, where MGS is seen to achieve sphere-decoder perfor-
mance for 4-QAM, whereas for 16-QAM and 64-QAM, it per-
forms poorly compared with a sphere decoder. This observation
motivates the need for ways to improve MGS performance in
higher order QAM. Interestingly, we found that using MRs2

coupled with MGS significantly improves the performance and
achieves near-ML performance in large systems with higher
order QAM.

1) Effect of MRs: In Fig. 6(a) and (b), we compare the effect
of random MRs in MGS and conventional Gibbs sampling
algorithms for 4-QAM and 16-QAM, respectively. For a given
realization of x, H, and n, we ran both algorithms for three
different random initial vectors and plotted the least ML cost up

2It is noted that MRs, which are also referred to as running multiple parallel
Gibbs samplers, have been tried with conventional and other variants of MCMC
in [27], [29], and [30]. However, the stalling problem is not fully removed, and
near-ML performance is not achieved. It turns out that restarts when coupled
with MGS is very effective in achieving near-ML performance.

to the nth iteration as a function of n. We show the results of this
experiment for multiuser MIMO with K = N = 16 at an SNR
of 11 dB for 4-QAM and of 18 dB for 16-QAM (these SNRs
give a BER of about 10−3 with sphere decoding for 4-QAM
and 16-QAM, respectively). The true ML vector cost (obtained
through sphere-decoder simulation for the same realization) is
also plotted. It is seen that MGS achieves a much better least
ML cost compared with conventional Gibbs sampling. This is
because conventional Gibbs sampling becomes locked up in
some state (with a very low state transition probability) for a
long time without any change in the ML cost in subsequent
iterations, whereas the mixed Gibbs sampling strategy is able
to exit from such states quickly and give improved ML costs in
subsequent iterations. This shows that MGS is preferred over
conventional Gibbs sampling. Interestingly, by comparing the
least ML costs of 4-QAM and 16-QAM (in Fig. 6(a) and (b),
respectively), we see that all the three random initializations
could converge to an almost true ML vector cost for 4-QAM
within 100 iterations, whereas only initial vector 3 converges to
the near true ML cost for 16-QAM and initial vectors 1 and 2 do
not. Since any random initialization works well with 4-QAM,
MGS is able to achieve near-ML performance without MRs
for 4-QAM. However, it is seen that 16-QAM performance
is more sensitive to the initialization, which explains the poor
performance of MGS without restarts in higher order QAM.
The MMSE vector can be used as an initial vector, but it is not
a good initialization for all channel realizations. This points to
the possibility of achieving good initializations through MRs to
improve the performance of MGS in higher order QAM.

2) MGS-MR: In MGS-MR, we run the basic MGS algo-
rithm multiple times, each time with a different random initial
vector, and choose that vector with the least ML cost at the end
as the solution vector. Fig. 7 shows the improvement in the BER
performance of MGS as the number of restarts R is increased
in multiuser MIMO systems with K = N = 16 and 16-QAM
at SNR = 18 dB. In each restart, 300 iterations are used. It can
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Fig. 6. Least ML cost up to the nth iteration versus n in conventional Gibbs
sampling and MGS for different initial vectors in multiuser MIMO systems with
K = N = 16. (a) 4-QAM and SNR = 11 dB. (b) 16-QAM and SNR = 18 dB.

Fig. 7. BER performance of the MGS algorithm as a function of the number
of restarts in multiuser MIMO systems with K = N = 16 and 16-QAM at
SNR = 18 dB.

be observed that, although BER improves with increasing R,
a large gap still remains between sphere-decoder performance
and MGS performance even with R = 10. A larger R could
get the MGS performance to be closer to the sphere-decoder
performance but at the cost of increased complexity. Whereas
a small R results in poor performance, a large R results in
high complexity. Therefore, instead of arbitrarily fixing R, there
is a need for a good restart criterion that can significantly
enhance the performance without incurring much increase in
complexity. We devise one such criterion in the following.

3) Proposed Restart Criterion: At the end of each restart,
we need to decide whether to terminate the algorithm or to go
for another restart. To do that, we propose using the following:

• the standardized ML costs [given by (10)] of solution
vectors;

• the number of repetitions of the solution vectors.
The nearness of the ML costs obtained so far to the error-free

ML cost in terms of its statistics can allow the algorithm to get a
near-ML solution. Checking for repetitions can allow restricting
the number of restarts and, hence, the complexity. We use the
minimum standardized ML cost obtained so far and its number
of repetitions to decide the credibility of the solution. Integer
threshold P is defined for the best ML cost obtained so far for
the purpose of comparison with the number of repetitions. In
Fig. 8, we plot the histograms of the standardized ML cost of
correct and incorrect solution vectors at the output of MGS with
restarts in multiuser MIMO systems with K = N = 8 and 4-/
16-QAM. We judge the correctness of the obtained solution
vector from MGS output by running sphere-decoder simulation
for the same realizations. It can be observed in Fig. 8 that
the incorrect standardized ML cost density does not stretch
into negative values. Hence, if the obtained solution vector has
negative standardized ML cost, then it can indeed be correct
with high probability. However, as the standardized ML cost
increases in the positive domain, the reliability of that vector
decreases; hence, it would require more repetitions for it to be
trusted as the final solution vector. It can be also observed in
Fig. 8 that the incorrect density in the case of 16-QAM is much
more than that of 4-QAM for the same SNR. Therefore, it is
desired that, for a standardized ML cost in the positive domain,
the number of repetitions needed to declare as the final solution
should increase with the QAM size. Accordingly, the number
of repetitions needed for termination (integer threshold P ) is
chosen as per the following expression:

P = �max (0, c2φ(x̃))�+ 1 (13)

where x̃ is the solution vector with minimum ML cost so
far, and c2 is a constant chosen depending on the QAM size;
a larger value of c2 is chosen for larger QAM size.3 Now,
denoting Rmax to be the maximum number for restarts, the
proposed MGS-MR algorithm (we refer to this as the MGS-MR
algorithm) can be stated as follows.

• Step 1: Choose an initial vector.

3We can observe in Fig. 8 that the probability of an output vector with
positive normalized ML cost being incorrect increases with QAM size. Hence,
we require more repetitions of the best vector to consider it to be reliable
enough. Therefore, c2 is chosen proportional to QAM size.
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Fig. 8. Histograms of standardized ML costs of correct and incorrect outputs from MGS with restarts in multiuser MIMO with K = N = 8 and 4-/16-QAM.
(a) 4-QAM. (b) 16-QAM.

• Step 2: Run the basic MGS algorithm in Section III-B.
• Step 3: Check if the Rmax number of restarts are com-

pleted. If yes, go to Step 5; else, go to Step 4.
• Step 4: For the solution vector with the minimum ML cost

obtained so far, find the required number of repetitions
needed using (13). Check if the number of repetitions of
this solution vector so far is less than the required number
of repetitions computed in Step 4. If yes, go to Step 1; else,
go to Step 5.

• Step 5: Output the solution vector with the minimum ML
cost so far as the final solution.

4) Soft-Decision Value Generation: As shown, the proposed
detection algorithm generates hard-decision outputs. In coded
systems, soft-decision values of the bits are preferred as inputs
to the channel decoder. Soft-decision values can be generated

from the hard-decision output vector from the MGS-MR algo-
rithm as follows. Let the output of the MGS-MR detector be de-
noted by x̄. Knowing y, H, and x̄, the receiver needs to obtain
soft-decision values of every transmitted bit. Let the set A be
partitioned into A

+
i and A

−
i for each i, i = 1, 2, . . . , log2

√
M ,

where A
+
i is the set of all the symbols in A in which the ith bit

is +1, and A
−
i is the set of all the symbols in A in which the

ith bit is −1. Let the soft value of the ith bit of the kth user be
denoted Lk, i. Let x̄−k denote the vector containing all elements
in x̄ other than x̄k. Now, Lk,i can be obtained as

Lk,i = log

(∑
a∈A+

i
p(x̄k = a|x̄−k,y,H)∑

a∈A−
i
p(x̄k = a|x̄−k,y,H)

)
(14)

where p(x̄k = a|x̄−k,y,H) is calculated from (6).
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Fig. 9. BER performance comparison between conventional Gibbs sampling (without and with restarts), the proposed MGS (without and with restarts), and the
sphere decoder in uplink multiuser MIMO systems with K = N = 16 and 16-QAM.

5) Performance and Complexity of the MGS-MR Algorithm:
The BER performance and complexity of the MGS-MR al-
gorithm are evaluated through simulations. The following pa-
rameters are used in the simulations of MGS and MGS-MR:
cmin = 10, c1 = 10 log2 M (i.e., c1 = 20, 40, 60 for 4-/16-/
64-QAM, respectively), MAX-ITER = 8K

√
M , Rmax = 50,

c2 = 0.5 log2 M , and q = 1/2K. In Fig. 9, we compare the
BER performance of conventional Gibbs sampling, MGS,
MGS-MR, and the sphere decoder in multiuser MIMO with
K = N = 16 and 16-QAM. In the first start, the MMSE so-
lution vector is used as the initial vector. In the subsequent
restarts, random initial vectors are used. For 64-QAM, the
mixed sampling is applied only to the one-symbol away neigh-
bors of the previous iteration index; this helps to reduce com-
plexity in 64-QAM. In Fig. 9, it is shown that the performance
of the conventional Gibbs sampler, either without or with
restarts, is quite poor. That is, using restarts in conventional
Gibbs sampling is not of much help. This shows the persistence
of the stalling problem. The performance of MGS (without
restarts) is better than conventional Gibbs sampling with and
without restarts, but its performance still is far from the sphere-
decoder performance. This shows that MGS alone (without
restarts) is inadequate to alleviate the stalling problem in higher
order QAM. However, the MGS when used along with restarts
(i.e., MGS-MR) gives strikingly improved performance. In fact,
the proposed MGS-MR algorithm almost achieves the sphere-
decoder performance (close to within 0.4 dB at a BER of
10−3). This points to the important observations that application
of any one of the two features, namely, mixture sampling
and restarts, to the conventional algorithm is not adequate
and that simultaneous application of both these features is
needed to alleviate the stalling problem and achieve near-ML
performance in higher order QAM. Fig. 10(a) shows that the
MGS-MR algorithm is able to achieve almost sphere-decoder

performance for 4-/16-/64-QAM in multiuser MIMO systems
with K = N = 16. Similar performance plots for 4-/16-/64-
QAM for K = N = 32 are shown in Fig. 10(b), where the
performance of the MGS-MR algorithm is seen to be quite close
to unfaded SISO AWGN performance, which is a lower bound
on true ML performance.

In Table I, we present a comparison of the BER performance
and the complexity of the proposed MGS-MR algorithm with
those of another detection algorithm based on local search
techniques, namely, the random-restart reactive tabu search
(R3TS) algorithm [21], which has been reported to have good
performance and complexity for large systems. Comparisons
are made for systems with K = N = 16, 32, and, 4-/16-/64-
QAM. Table I shows the complexity measured in an average
number of real operations at a BER of 10−2 and the SNR
required to achieve the BER of 10−2 for MGS-MR and R3TS
algorithms. It can be seen that the MGS-MR algorithm achieves
better performance at lower complexity for K = N = 16 with
16-QAM and 64-QAM. In 4-QAM and in K = N = 32, MGS-
MR achieves the same or slightly better performance than R3TS
at some increased complexity.

6) Performance as a Function of the Loading Factor: In
Figs. 11 and 12, we present the BER and complexity plots
as a function of the loading factor τ = K/N , the ratio be-
tween the number of uplink users K, and the number of BS
antennas N . In these figures, BER and complexity plots for
the proposed MGS-MR detector and linear detectors, such as
MF, ZF, and MMSE detectors, are presented and compared.
Fig. 11 and Fig. 12 shows this comparison for 4-QAM and
16-QAM, respectively. The number of BS antennas N is fixed
at 128, and the number of uplink users K is varied from small
values up to 128. In Figs. 11 and 12, it is observed that the
proposed MGS-MR detector performs better than MF, ZF, and
MMSE detectors, moderately better under low loading factors,
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Fig. 10. BER performance of the MGS-MR algorithm in uplink multiuser MIMO systems with K = N = 16 and 32, and higher order QAM (4-/16-/64-QAM).
(a) K = N = 16. (b) K = N = 32.

TABLE I
PERFORMANCE AND COMPLEXITY COMPARISON OF THE PROPOSED MGS-MR DETECTOR WITH THE TABU SEARCH-BASED DETECTOR

IN [21] FOR K = N = 16 AND 32 AND 4-/16-/64-QAM
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Fig. 11. BER performance and complexity of the proposed MGS-MR detector
in comparison with those of linear (MF, ZF, and MMSE) detectors as a function
of loading factor τ = K/N . N = 128 and 4-QAM. (a) BER. (b) Complexity.

and significantly better (about one to two orders of improved
BER) under medium to high loading factors. It is also seen that
the complexity increase in MGS-MR detection compared with
ZF/MMSE detection is nominal (not orders higher).

7) Hard-Decision Versus Soft-Decision Performance: Fig. 13
shows the coded BER performance of the system with rate-
1/2 and rate-1/3 turbo codes, 4-QAM, and MGS-MR detection,
for K = 64 and N = 128 (i.e., τ = K/N = 0.5). Performance
achieved using hard-decision output from the MGS-MR algo-
rithm and the soft-decision output obtained by the method in
Section III-D4 are plotted. In Fig. 13, it can be observed that,
by using the soft-decision values generated by the method in
Section III-D4, we achieve an improvement of about 1.5 dB
in coded BER performance compared with using hard-decision
values.

IV. PROPOSED GIBBS-SAMPLING-BASED

CHANNEL ESTIMATION

Earlier, we assumed perfect channel knowledge at the BS
receiver. Here, we relax the perfect channel knowledge assump-
tion and propose an MCMC channel estimation algorithm.

Fig. 12. BER performance and complexity of the proposed MGS-MR detector
in comparison with those of linear (MF, ZF, MMSE) detectors as a function of
loading factor τ = K/N . N = 128, 16-QAM. (a) BER. (b) Complexity.

Fig. 13. Coded BER performance with hard-decision and soft-decision. K =
64, N = 128, τ = K/N = 0.5, 4-QAM, MGS-MR detection, rate-1/2 and
rate-1/3 turbo codes.

A. System Model

Consider the uplink multiuser MIMO system model in
(1). As in Section II, perfect synchronization among users’
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Fig. 14. Frame structure for uplink multiuser MIMO system.

transmissions is assumed. However, the assumption of perfect
knowledge of the channel matrix at the BS is relaxed here. The
channel matrix is estimated based on a pilot-based channel esti-
mation scheme. Transmission is carried out in frames, where
each frame consists of several blocks, as shown in Fig. 14.
A slow-fading channel (typical with no/low mobility users) is
assumed, where the channel is assumed to be constant over one
frame duration. Each frame consists of a pilot block (PB) for the
purpose of initial channel estimation, followed by Q data blocks
(DBs). The PB consists of K channel uses in which a K-length
pilot symbol vector comprising of pilot symbols transmitted
from K users (one pilot symbol per user) is received by N
receive antennas at the BS. Each DB consists of K channel
uses, where K number of K-length information symbol vectors
(one data symbol from each user) are transmitted. Taking both
pilot and data channel uses into account, the total number of
channel uses per frame is (Q+ 1)K. DBs are detected using the
MGS-MR algorithm that uses an initial channel estimate. The
detected DBs are iteratively used to refine the channel estimates
during the data phase using the proposed Gibbs-sampling-based
channel estimation algorithm.

B. Initial Channel Estimate During the Pilot Phase

Let xk
P = [xk

P (0), x
k
P (1), . . . , x

k
P (K − 1)] denote the pilot

symbol vector transmitted from user k in K channel uses in a
frame. Let XP =[(x1

P )
T , (x2

P )
T , . . . , (xK

P )T ]T denote the K ×
K pilot matrix formed by the pilot symbol vectors transmitted by
the users in the pilot phase. The received signal matrix at the
BS, i.e., YP , of size N ×K is given by

YP = HcXP +NP (15)

where NP is the N ×K noise matrix at the BS.
We use the pilot sequence given by

xk
P = [0(k−1)×1 p 0(K−k)×1]. (16)

We choose p =
√
KEs, where Es is the average symbol en-

ergy. Using the scaled identity nature of xP , an initial channel
estimate Ĥc is obtained as

Ĥc = YP /p. (17)

C. Data Detection Using Initial Channel Estimate

Let xk
i =[xk

i (0), x
k
i (1), . . . , x

k
i (K−1)] denote the data sym-

bol vector transmitted from user k in K channel uses during the
ith DB in a frame. LetXi=[(x1

i )
T , (x2

i )
T , . . . , (xK

i )T ]T denote
theK ×K data matrix formed by the data symbol vectors trans-
mitted by the users in the ith DB during the data phase, i.e.,
i = 1, 2, . . . , Q. The received signal matrix at the BS in the ith
DB, i.e., Yi of size N ×K, is given by

Yi = HcXi +Ni (18)

where Ni is the N ×K noise matrix at the BS during the
ith DB. We perform the detection on a vector-by-vector
basis using the independence of data symbols transmitted
by the users. Let y

(t)
i denote the tth column of Yi, t =

0, 2, . . . ,K − 1. Denoting the tth column of Xi as x
(t)
i =

[x1
i (t), x

2
i (t), . . . , x

K
i (t)]T , we can rewrite the system equation

(15) as

y
(t)
i = Hcx

(t)
i + n

(t)
i (19)

where n(t)
i is the tth column of Ni. The initial channel estimate

Ĥc obtained from (17) is used to detect the transmitted data
vectors using the MGS-MR algorithm shown in Section III.

From (15) and (17), we observe that Ĥc = Hc +NP /p.
This knowledge about the imperfection of channel estimates is
used to calculate the statistics of error-free ML cost required in
the MGS-MR algorithm. In Section III, we have observed that,
in the case of perfect channel knowledge, the error-free ML cost
is nothing but ‖n2‖. In the case of imperfect channel knowledge
at the receiver, at channel use t, we have∥∥∥y(t)

i − Ĥcx
(t)
i

∥∥∥2

=
∥∥∥n(t)

i −NPx
(t)
i /p

∥∥∥2

.

Each entry of the vector n(t)
i −NPx

(t)
i /p has mean zero and

variance 2σ2. Using this knowledge at the receiver, we detect
the transmitted data using the MGS-MR algorithm and obtain
x̂
(t)
i . Let the detected data matrix in DB i be denoted as X̂i =

[x̂
(0)
i , x̂

(1)
i , . . . , x̂

(K−1)
i ].

D. Channel Estimation Using the Gibbs Sampling
Algorithm in the Data Phase

Let Ytot = [YP Y1 Y2 · · · YQ], Xtot = [XP X1 X2 · · ·
XQ], and Ntot = [NP N1 N2 · · · NQ] denote the matrices
corresponding to one full frame. We can express Ytot as

Ytot = HcXtot +Ntot. (20)

This system model corresponding to the full frame is converted
into a real-valued system model, as done in Section II. That is,
(20) can be written as

Y = HX+N (21)
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where

Y =

[
�(Ytot) −�(Ytot)
�(Ytot) �(Ytot)

]
H =

[
�(Hc) −�(Hc)
�(Hc) �(Hc)

]
X =

[
�(Xtot) −�(Xtot)
�(Xtot) �(Xtot)

]
N =

[
�(Ntot) −�(Ntot)
�(Ntot) �(Ntot)

]
.

Equation (21) can be written as

YT = XTHT +NT . (22)

Vectorizing the matrices YT , HT , and NT , we define

r
Δ
= vec(YT ) g

Δ
= vec(HT ) z

Δ
= vec(NT ).

With the given definitions, (22) can be written in vector form as

r = I2N ⊗XT︸ ︷︷ ︸
Δ
=S

g + z. (23)

Now, our goal is to estimate g knowing r, the estimate of S,
and the statistics of z using the Gibbs sampling approach. The
estimate of S is obtained as

Ŝ = I2N ⊗ X̂T

where

X̂ =

[
�(X̂tot) −�(X̂tot)

�(X̂tot) �(X̂tot)

]
and X̂tot = [XP X̂1 X̂2 · · · X̂Q]. The initial vector for the
algorithm is obtained as

ĝ(0) = vec(ĤT ) (24)

where

Ĥ =

[
�(Ĥc) −�(Ĥc)

�(Ĥc) �(Ĥc)

]
. (25)

1) Gibbs-Sampling-Based Estimation: Vector g is of length
4KN × 1. To estimate g, the algorithm starts with an initial es-
timate, takes samples from the conditional distribution of each
coordinate in g, and updates the estimate. This is carried out
for a certain number of iterations. At the end of the iterations, a
weighted average of the previous and current estimates is given
as the output.

Let the ith coordinate in g be denoted by gi, and let g−i de-
note all elements in g other than the ith element. Let ŝq denote
the qth column of Ŝ. The conditional probability distribution
for the ith coordinate is given by

p(gi|r, Ŝ,g−i)

∝ p(gi).p(r|gi, Ŝ,g−i) (26)

∝ exp(−|gi|2) exp

⎛⎜⎜⎜⎝−
‖r−

4KN∑
q=1,q �=i

gq ŝq − giŝi‖2

σ2

⎞⎟⎟⎟⎠ (27)

= exp

(
−|gi|2 −

‖r̃(i) − giŝi‖2
σ2

)
(28)

= exp

(
−‖r̄(i) − gis̄i‖2

σ2

)
(29)

where r̃(i)=r−
∑4KN

q=1,q �=i gq ŝq, r̄(i)=[r̃(i), 0]T , s̄i=[̂si, σ]
T ,

and σ2 is assumed to be known at the receiver. The quantity
‖r̄(i) − gis̄i‖2 in (29) is minimized for gi = (r̄(i))T s̄i/‖s̄i‖2.
Hence, we can write

‖r̄(i) − gis̄i‖2 =

∥∥∥∥r̄(i) − (
(r̄(i))T s̄i
‖s̄i‖2

+ gi −
(r̄(i))T s̄i
‖s̄i‖2

)
s̄i

∥∥∥∥2

=

∥∥∥∥r̄(i) − (r̄(i))T s̄i
‖s̄i‖2

s̄i

∥∥∥∥2

+

(
gi −

(r̄(i))T s̄i
‖s̄i‖2

)2

‖s̄i‖2. (30)

Hence

p(gi|r, Ŝ,g−i) ∝ exp

⎛⎜⎝−

(
gi − (r̄(i))T s̄i

‖s̄i‖2
)2

σ2

‖si‖2

⎞⎟⎠ (31)

which is Gaussian with mean μgi = (r̄(i))T s̄i/‖s̄i‖2 and vari-
ance σ2

gi
= σ2/2‖si‖2. Let MAX denote the number of iter-

ations. In each iteration, for each coordinate, the probability
distribution specified by its mean and variance has to be
calculated to draw samples. Let the mean and variance in
the rth iteration and the ith coordinate be denoted as μ

(r)
gi

and σ2
gi

(r), respectively, where r = 1, 2, . . . ,MAX, and i =

1, 2, . . . , 4KN . We use ĝ(0) in (24), which is the estimate from
the pilot phase, as the initial estimate. In the rth iteration, we
obtain ĝ(r) from ĝ(r−1) as follows:

• Take ĝ(r) = ĝ(r−1).
• Update the ith coordinate of ĝ(r) by sampling from
N (μ

(r)
gi , σ2

gi

(r)
) for all i. Let ĝ(r)i denote the updated ith

coordinate of g(r).
• Compute weights α

(r)
i = exp(−(ĝ

(r)
i − μ

(r)
gi )

2/2σ2
gi

(r)
)

for all i. This gives more weight to samples closer to the
mean.

After MAX iterations, we compute the final estimate of the
ith coordinate, which is denoted by g∗i , to be the following
weighted sum of the estimates from previous and current
iterations:

g∗i =

∑MAX
r=1 α

(r)
i ĝ

(r)
i∑MAX

r=1 α
(r)
i

. (32)
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Fig. 15. MSE and BER performance of iterative channel estimation/detection using Gibbs-sampling-based channel estimation and MGS-MR based detection in
the uplink multiuser MIMO system with K = N = 128, Q = 9, and 4-QAM. (a) MSE. (b) BER.

Finally, the updated 2N × 2K channel estimate Ĥ is obtained
by restructuring g∗ = [g∗1, g

∗
2, . . . , g

∗
4KN ]T as

Ĥ(p, q) = g∗n, p = 1, 2, . . . , 2N ; q = 1, 2, . . . , 2K
(33)

where n = 2N(p− 1) + q, and Ĥ(p, q) denotes the element in
the pth row and qth column of Ĥ. A full listing of the pro-
posed Gibbs-sampling-based algorithm for channel estimation
is given in Algorithm 2.

The matrix Ĥ obtained is thus used for data detection us-
ing the MGS-MR algorithm. This ends one iteration between
channel estimation and detection. The detected data matrix is
fed back for channel estimation in the next iteration, whose

output is then used to detect the data matrix again. This iterative
channel estimation and detection procedure is carried out for a
certain number of iterations.

Algorithm 2 Proposed channel estimation algorithm based
on Gibbs sampling

1: input: r, Ŝ, σ2, ĝ(0): initial vector ∈ R
4KN ; MAX: max.

no. of iterations;
2: r = 1; g∗(0) = ĝ(0); α(0)

i = 0, ∀i = 1, 2, . . . , 4KN ;
3: while r < MAX do
4: ĝ(r) = ĝ(r−1);
5: r̃∗ = r− Ŝĝ(r);
6: for i = 1 to 4KN do
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7: Compute r̃(i)= r̃∗+ĝ
(r)
i ŝi, r̄(i)=[r̃(i), 0]T , and s̄i =

[̂si, σ]
T ;

8: Compute μ
(r)
gi = (r̄(i))T s̄i/‖s̄i‖2 and σ2

gi

(r)
= σ2/

2‖si‖2;

9: Sample ĝ
(r)
i ∼ N (μ

(r)
gi , σ

2
gi

(r)
);

10: r̃∗ = r̃(i) − ĝ
(r)
i ŝi;

11: Compute α
(r)
i = exp(−(ĝ

(r)
i − μ

(r)
gi )

2/2σ2
gi

(r)
);

12: g∗i (r) = (α
(r)
i ĝ

(r)
i + (

∑r−1
z=o α

(z)
i )g∗i (r − 1))/

(
∑r

z=0 α
(z)
i );

13: end for
14: r = r + 1;
15: end while
16: output: g∗ = g∗(MAX). g∗: output solution vector

E. Performance Results

In Fig. 15(a), we plot the MSE performance of the iterative
channel estimation/detection scheme using the proposed Gibbs-
sampling-based channel estimation and MGR-MR-based de-
tection with 4-QAM for K = N = 128 and Q = 9. In the
simulations, the MGS-MR algorithm parameter values used
are the same as in Section III-D5. For the channel estimation
algorithm, the value of MAX used is 2. The MSEs of the
initial channel estimate and the channel estimates after one and
two iterations between channel estimation and detection are
shown. For comparison, we also plot the Cramer–Rao lower
bound (CRLB) for this system. It can be seen that, in the
proposed scheme, results show good MSE performance with
improved MSE for an increased number of iterations between
channel estimation and detection. For the same set of system
and algorithm parameters in Fig. 15(a), we plot the BER
performance curves in Fig. 15(b). For comparison, we also plot
the BER performance with perfect channel knowledge. It can
be seen that, with two iterations between channel estimation
and detection, the proposed algorithms can achieve 10−3 BER
within about 1 dB of the performance with perfect channel
knowledge.

V. CONCLUSION

We have proposed novel Monte-Carlo-sampling-based de-
tection and channel estimation algorithms that achieved near-
optimal performance on the uplink in large-scale multiuser
MIMO systems. The proposed MGS detection algorithm with
MRs was shown to alleviate the stalling problem and achieve
near-ML performance in large systems with tens to hundreds
of antennas and higher order QAM. Key ideas that enabled
such attractive performance and complexity include: 1) a mixed
sampling strategy that gave the algorithm opportunities to
quickly exit from stalled solutions and move to better solutions;
and 2) random MRs that facilitated the algorithm to seek
good solutions in different parts of the solution space. MRs
alone (without the random uniform sampling component in
the sampling distribution) could not achieve near-ML perfor-
mance at low complexity. Sampling from the proposed mix-
ture distribution alone (without MRs) could achieve near-ML
performance at low complexity in the case of 4-QAM. How-

Fig. 16. Markov chain with state transition probabilities for the 2 × 2 system
(N = K = 2) with BPSK modulation.

ever, for higher order QAM (16-/64-QAM) sampling from the
mixture distribution alone was not adequate. Joint use of both
mixed sampling and MRs was found to be crucial to achieve
a near-ML performance for 16-/64-QAM. We also proposed
a Gibbs-sampling-based channel estimation algorithm that, in
an iterative manner with the MGS-MR detection, achieved
performance close to the performance with perfect channel
knowledge. We have considered a perfect synchronization and
single-cell scenario in this paper. Other system-level issues,
including uplink synchronization and multicell operation in
large-scale MIMO systems, can be considered as future work.

APPENDIX

ANALYSIS OF THE OPTIMAL CHOICE OF MIXING RATIO q

Here, we analyze the effect of the mixing ratio q in (9) and
its optimal choice for the (α1 = 1, α2 = ∞) combination using
the theory of Markov chains. Note that q = 0 corresponds to
the conventional Gibbs sampler and that q = 1 corresponds to
pure random walk. Our analysis approach here is to define an
absorbing Markov chain and to use the property of absorbing
Markov chains on the expected number of iterations needed to
reach the global minima for the first time.

Let us consider the Markov chain where all possible transmit
vectors are states and the transition probabilities are calcu-
lated from their difference in ML costs. Fig. 16 shows the
state-space diagram for a 2 × 2 system (N = K = 2) with
binary phase-shift keying (BPSK) modulation alphabet A =
{a1 = 1, a2 = −1}. Let S denote the set of all possible states,

i.e., S Δ
= [[−1,−1]T , [−1, 1]T , [1,−1]T , [1, 1]T ]. Without loss

of generality, let us assume that [1, 1]T is the global minima,

i.e., the vector with the least ML cost. Let us define c(x̂)
Δ
=

‖y −Hx̂‖2. We construct the transition probability matrix T
of size |S| × |S|, whose (i, j)th element denotes the probability
of going from state Si to state Sj . For conventional Gibbs
sampling, we have

T =

⎡⎢⎣
p′22p

′
12 p′22p12 p22p

′
11 p22p11

p′21p
′
12 p′21p12 p21p

′
11 p21p11

p′22p
′
12 p′22p12 p22p

′
11 p11p22

0 0 0 1

⎤⎥⎦ (34)
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Fig. 17. (a) CCDF of rq for the 2 × 2 system (N = K = 2) with BPSK modulation for different values of q. (b) Average rq as a function of q in 2 × 2,
3 × 3, and 4 × 4 systems (N = K = 2, 3, 4) with 4-QAM modulation.

where pij denotes the probability that vector x with xi = aj ,
j ∈ {1, 2}, is updated to vector x′, where the ith coordinate of
x′ remains the same as that of x, and the other coordinate of x′

is 1, and p′i,j
Δ
= 1 − pi,j . Based on this, p11 can be written as

p11 =
1

1 + exp
(

c([1,1]T )−c([1,−1]T )
σ2

) . (35)

Expressions for other pi,js can be written likewise. The global
minima, i.e., state [1, 1]T , is considered an absorbing state as we
keep track of the best vector visited so far, and we are interested
in finding the number of iterations required to reach global
minima for the first time. This makes the Markov chain an
absorbing Markov chain. A basic property of an absorbing
Markov chain [42, Ch. 11, pp. 418–419] is that the expected
number of iterations before being absorbed when starting in
transient state Si is the ith entry of vector

r = N1 (36)

where 1 is a vector whose entries are all 1, and N is the
fundamental matrix of the Markov chain, which is given by

N =

∞∑
k=0

Qk = (I−Q)−1 (37)

where Q is a (|S| − 1)× (|S| − 1) submatrix of T, such that

T =

[
Q t
0 1

]
. (38)

Let r denote the average of the entries in r. For a given
realization of H and n, r gives the expected number of steps
to reach the global minima averaged out over starting points.

Now, depending on the channel matrix and noise vector
realization, the ML costs of the states may be ordered in
the following three ways (because of symmetry, [1,−1]T and
[−1, 1]T can exchange places):

Case 1: c([1, 1]T )<c([1,−1]T )<c([−1, 1]T )<c([−1,−1]T );
Case 2: c([1, 1]T )<c([1,−1]T )<c([−1,−1]T )<c([−1, 1]T );
Case 3: c([1, 1]T )<c([−1,−1]T )<c([−1, 1]T )<c([1,−1]T ).

As σ → 0, the probability of going from a state to its neigh-
boring state with a lower ML cost tends to 1. Hence, in Cases 1
and 2, the Markov chain starting from any state will reach the
global minima in two iterations with high probability. Note that,
in Case 3, as σ → 0, p11 → 1, p21 → 1, p12 → 0, and p22 → 0.
Therefore, in Case 3, if the Markov chain starts in [−1,−1]T

or [1,−1]T , then the chain is trapped in state [−1,−1]T , i.e.,
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Tq =

⎡⎢⎢⎣
(
q′p′22 +

q
2

) (
q′p′12 +

q
2

) (
q′p′22 +

q
2

) (
q′p12 +

q
2

) (
q′p22 +

q
2

) (
q′p′11 +

q
2

) (
q′p22 +

q
2

) (
q′p11 +

q
2

)(
q′p′21 +

q
2

) (
q′p′12 +

q
2

) (
q′p′21 +

q
2

) (
q′p12 +

q
2

) (
q′p21 +

q
2

) (
q′p′11 +

q
2

) (
q′p21 +

q
2

) (
q′p11 +

q
2

)(
q′p′22 +

q
2

) (
q′p′12 +

q
2

) (
q′p′22 +

q
2

) (
q′p12 +

q
2

) (
q′p22 +

q
2

) (
q′p′11 +

q
2

) (
q′p22 +

q
2

) (
q′p11 +

q
2

)
0 0 0 1

⎤⎥⎥⎦ (38a)

the probability of coming out of this state is very low. This
means that, with q = 0 (i.e., in conventional Gibbs sampling),
the expected number of iterations needed to reach the global
mimima for the first time will be high if the chain starts from
the states [−1,−1]T or [1,−1]T .

Now, we write the transition probability matrix for the pro-
posed MGS, which is denoted by Tq, as a function of q, as

in (38a), shown at the top of the page, where q′
Δ
= 1 − q. Note

that Tq specializes to T in (34) for q = 0. Tq for systems with
more number of antennas and other modulation alphabets can
be written likewise. For a given realization of H and n, the
expected number of iterations to reach the global minima for
the first time averaged out over the starting points (i.e., rq) can
be computed using (38a) and (36).

We computed rq from Tq for multiple realizations of H
and n, and obtained the complementary cumulative density
function (CCDF) of rq . In Fig. 17(a), we plot the CCDF of
rq for q = 0, 0.125, 0.25, 0.5, 0.75, and 1, at an average SNR
of 16 dB. The ordinate denotes the probability of not reaching
the global minima (i.e., the ML solution). In Fig. 17(a), it can
be observed that the CCDF plot reaches zero earliest when
q = 0.5 compared with other values of q. Note that q = 0.5 is
the same as the inverse of the number of real dimensions in
the 2 × 2 system (N = K = 2) with BPSK, which is 2. Next,
in Fig. 17(b), we plot the rq averaged out over H and n as a
function of q at an average SNR of 12 dB for 2 × 2, 3 × 3, and
4 × 4 systems (N = K = 2, 3, 4) with 4-QAM modulation,
where the number of real dimensions is 2K. The following
interesting observations can be made in Fig. 17(b). First, the
conventional Gibbs sampler is not optimum, i.e., q = 0 does
not result in minimum average rq . Second, in pure random
walk (i.e., sampling from uniform distribution), the average rq
is nothing but 2nd , where nd is the number of dimensions in the
system; we can see that this result is captured by the analysis
by noting in Fig. 17(b) that, for q = 1, the average rq = 16, 64,
256 for 2 × 2, 3× 3, 4 × 4 systems with 4-QAM (i.e., nd = 4,
6, 8), respectively. Finally, the average minimum rq occurs at
the inverse of the number of dimensions in the system; this
can be seen by noting that the minimum average rq occurs at
q = 1/4 = 0.25, q = 1/6 = 0.167, and q = 1/8 = 0.125 for 2 ×
2, 3 × 3, and 4 × 4 systems with 4-QAM, respectively.
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