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Abstract— In this paper, we present an analysis for the bit error
rate (BER) performance of space-time block codes (STBC) from
generalized complex orthogonal designs for M-PSK modulation.
In STBCs from complex orthogonal designs (COD), the norms of
the column vectors are the same (e.g., Alamouti code). However,
in generalized COD (GCOD), the norms of the column vectors
may not necessarily be the same (e.g., the rate-3/5 and rate-7/11
codes by Su and Xia in [1]). STBCs from GCOD are of interest
because of the high rates that they can achieve (in [2], it has been
shown that the maximum achievable rate for STBCs from GCOD
is bounded by 4/5). While the BER performance of STBCs from
COD (e.g., Alamouti code) can be simply obtained from existing
analytical expressions for receive diversity with the same diver-
sity order by appropriately scaling the SNR, this can not be done
for STBCs from GCOD (because of the unequal norms of the col-
umn vectors). Our contribution in this paper is that we derive an-
alytical expressions for the BER performance of any STBC from
GCOD. Our BER analysis for the GCOD captures the perfor-
mance of STBCs from COD as special cases. We validate our
results with two STBCs from GCOD reported by Su and Xia in
[1], for 5 and 6 transmit antennas (G5 and Gs in [1]) with rates
7/11 and 3/5, respectively.

I. INTRODUCTION

A generalized complex orthogonal design (GCOD) in vari-
ables z1, z2, ...,z Of sizen and rate k/p, p > nisap x n
matrix G such that

« the entries of G are complex linear combinations of
x1, T2, ..., Tk and their complex conjugates z7, 3, ..., T},
o« G*G = D where G* is the complex conjugate and trans-
pose of G, and D is an n x n diagonal matrix with the
(4, 1)th diagonal element of the form

Liglee|? + Liglze)® + oo+ Lig|zk|?

where all the coefficients ;. 1,1; 2, ...., l; 1 are strictly positive
numbers. Complex orthogonal designs (COD) are special cases
of GCOD where

li,l = li,? = .... = li,k; Vl,

Su and Xia, in [1], has given two space-time block codes
(STBC) from GCOD (G5 with 5 transmit antennas and G
with 6 transmit antennas).

It is known that the bit error rate (BER) performance of or-
thogonal STBCs from COD’s can be simply obtained from
existing analytical results for receive diversity maximal ratio
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combining (MRC) with the same diversity order by appropri-
ately scaling the SNR [3]. However, this can not be done for
STBC’s from GCOD’s. In this paper, our focus is to derive an-
alytical expressions for the BER performance of STBCs from
GCOD'’s for M-PSK modulation. We show that our general
BER expressions absorb the results for STBC’s from GCOD’s
as special cases.

The rest of the paper is organized as follows. Section Il gives
the system model. Section Il presents the performance anal-
ysis. Section 1V gives the numerical results and discussions.
Conclusions are given in V.

Il. SYSTEM MODEL

Consider a wireless communication system with n transmit
antennas and m receive antennas. Assume that the m x n
channel matrix H is static for the code length which is p time
slots. The entries of H, h;;’s are independent complex Gaus-
sian random variables (i.e., the fade amplitudes are Rayleigh
distributed). The m x 1 receive vector, y;, at time slot ¢ can
be expressed as

th + e, (1)

where x; is the transmitted n x 1 complex symbol vector at
time ¢, and 7 is the m x 1 noise vector with independent zero
mean complex Gaussian random variables with variance N, /2
per complex dimension.

y: =

For a code of length p, the transmitted code block X is given
by X = [X;, Xt 41, +, Xe1p] T, Where [.] T represents the trans-
pose operation. The corresponding received code block Y can
be expressed as

Y = HX+y, 2)
where H is the block diagonal channel matrix given by
H 0 --- 0
. 0O H --- 0
H = ; @)
and the noise block 7 is given by n = [1¢, 41, -+, Detp) -

If s(I) = Vei%, 1 = 1,2,---,k are the complex symbols
taken from the M -PSK signal set to be transmitted in p time
slots, the transmitted code block X can be expressed in the
form



X =Av, 4)
where v a 2k x 1 vector, given by

ka] ) (5)

where v;r and wv;q, respectively, are the real and imaginary
parts of the I** complex symbol, s(1). A is the np x 2k com-
plex matrix which performs the space-time coding on v. Now,
A =[Aq,Ay,---,Ap], where A; performs the linear opera-
tion at time slot 4. Using this, the received code block Y in (2)
becomes

vV = ['Ul[,'UQI,'",ka,UlQ,UQQ,"';

Y = H,v+n, (6)

where H,, = HA isamp x 2k equivalent channel matrix.
For example, for Alamouti code with one receive antenna (i.e.,

n=k=p=2andm = 1), the A, H,,, and v are given by
1 0 g
_ 0o 1 0 g4
A = 0o -1 0 -5 |’ )
1 0 -5 0
10 7 0
ac= e 029 ©
0 -1 0 —j
_ hi  hy jhi jhs
He = [ —hy hy jhy —jhy (10)
v = [$1[,$21,$1Q,$2Q]T. (ll)

At the receiver, linear combining is performed. We assume
that the channel matrix H is perfectly known at the receiver.
We use the form of the optimum decision metric for the or-
thogonal STBCs presented in [4], which is given by

Y = R(H;,Y) = Av + 7, (12)
where $(z) denotes the real part of z, A is a 2« x 2« diagonal
matrix and fj = R(H},n) where x denotes the Hermitian oper-
ator. 7j can be shown to be WGN. Hence, the optimal receiver,
is taking the real and imaginary values from Y and performing
symbol by symbol detection. From (12), the decision metric
for the 1t* complex symbol is given by

ZO) =Y + YU +k), 1=1,2,---,k.  (13)

A. Equivalenceto Generalized MRC

The system model and the decision metric presented above is
valid for STBC’s from both GCOD’s as well as from COD’s
In [3], the equivalence of the above decoding to receive di-
versity MRC has been shown for equal-weight STBCs. In the
following, we show that a non-equal weight orthogonal STBC
is equivalent to a MRC scheme in which the channels can be
classified into independent but not identically distributed sets.
From (12), the I** entry of Y is given by

YU = Ayv()+i(), (14)

where A;; is the [t" diagonal entry of A and is given by [4]

n—1
Ay = erfZIa (15)
f=0 i=0

where r ¢ is the (f, f)** component of H*H, given by
> |hyil* and ag) is the (,4)** component of A;, and

i) = REY*p). HY is the 1t column of H,,. From
the definition of H,,, it can be shown that

)m) ,

,a” )] and n; is p x 1 vector of

i=1 j=1

where a;(I) = [a 51,),a5 ,),
i.i.d noise samples Define

hy) = hy; Z a2 v, (17)
- a; (l) .
a;(l) = Z |a(f)|2 Vi, 1. (18)
Now (16) can be rewritten as
o (a0 + e a0m; )
Z Z Ryt (19)
2
i=1 j=1
where (p( ) is the angle of ﬁg.). Letting
- nya;(l) + e 2¢iua;(l)n;
Ni; = ( = D) J)a (20)
{a;(l);i=1,---,n} forms a set of orthonormal vectors for

all I (see Appendix A for proof of the orthogonality) Hence,
7);; forms a set of independent and identically distributed noise

variables for all 4, j. It is also easy to show that E(hg)ﬁ”) =
0, and since both are Gaussian random variables, they are in-
dependent as well.

The same set of arguments hold for the imaginary part Y (I +
k) as well. Hence the combiner output for the I** symbol,
1=1,2,---,k, can be expressed as



(21)

)+ S

i=1 j=1

iim(l)
Jj=1

i=1

It is noted that the combined output Z(l) in (21) is the same
as that of MRC scheme of nm receive diversity order with
independent but not identically distributed paths.

I1l. PERFORMANCE ANALYSIS

In this section, we derive an exact expression for the BER of
the orthogonal STBC schemes with non-equal weights. To
do that, we need to obtain the pdf of the angle of the deci-
sion variable Z(1) in (21). We observe that our formulation
in (21) has dissimilar sets of paths in which the channel gains
are independent and identically distributed within the sets and
non-identically distributed across the sets.

The pdf of the angle of Z(l), 6, conditioned on ¢; and the
instantaneous SNR per bit v is given by [5]

—a~xD)
e~
fo(orlor,v") =
2w
e_‘”(” 2
+ \/ Amay(Dcos(¢; — Gl)eawcos (¢1-61)
O

2
v/ amay(Mcos(g; — 0;)e®71%%S (G1=00 eric(, /aycos(d; — 0;))
(22)

4w

where erfc(z) = %f;’o e~t'dt, and a = log,M. P(§; €
[0L,0y)) is the probability of the phase angle 6; lying in the
decision region [f,, 8t ), which is given by

P(6; € [01,00))) = / / fo(811d1, v D) £, (v)dy D df;. (23)
6, Jo

Let mg) denote the number of values ¢ for which value of
14 all)|? is same, and let p,(cl) denote this value. Let there

be K™ such sets. Note that S m{") = nm. The pdf of
'yl(l) is obtained as (see Appendix B for the derivation)

(1)

KO m! c®  _wi-1
0y — ik - /7"
k=1 i=1 Vi

where 7(” is the SNR per bit of the k%" set and is given by
A0 = pkl)E,,/No. Define

Ty (8, 61,7") / " 1o(O1lé1,7 ),
(27
L 9% om0
'(N—l)! SN e k dy\Y. (25)
Then
KW m®P

P(0, € [01,0v))) = (26)

> quf (60,01,7,)-

k=1 i=1

Eqn (25) can be solved in closed-form as in [6] (Eqn. 18).

For equally probable symbols in AM-PSK, the symbol error
rate on the Ith symbol, Ps(”, is obtained as

PY =2P(; € [r,7/M)). (27)
The bit error on the It* symbol, P, is obtained as
M
pO = Lz PO € Fi), 28)

loga M

where R; = [Z8T 21T ang ¢, is the number of bit

errors made in the region R;.
The average symbol error rate and bit error rate is obtained as

_! i PO, - i PO, (29)
k =1 k =1
For example, for 8-PSK
P, = %l_zlp(ol € [r,7/8)) (30)
P, = % Z[zp(e, € [37/8,7/8))
+ 4P( € [57/8,37/8))
+ 4P(6; € [7r/8,57/8))
+ 4P(6; € [r,Tr/8))]. (31)

It is noted that the BER expression in the above absorbs the
equal-weight condition the number of sets K equal to the
total number of paths nm.

IV. RESULTS AND DISCUSSION

In this section, we present some numerical and simulation
results that illustrate the BER performance of STBCs from
GCOD’s G5 and Gg, which are given by [1]

X T2 I3 0 T4
-5 oz 0 T3 s
x5 0 -zt =z x6
0 x3 —T3 —T1 7
) 0 0 —z7 —xi
Gy = 0 ) 0 xy  —x5 (32)
0 0 Ty Ty —x3
0 —zf -z O z1
xE 0 x3 0 Z2
—zg —xz7 O 0 T3
T7 —Tg —Ts T4 0




1 T2 T3 0 T4 T8
-5 z] 0 x3 x5 Tg
mg —xI T2 Tg T10
0 T3 —T5 —x1 x7 T11
a;: 0 0 —z; —z; 12
0 T 0 —zg -5 T13
0 0 z; z} —Z3  T14
0 a:g —a:g —x1 T15
z 0 zy 0 T2 T16
Tg x5 0 0 —x3 T17
x7 —Tg —Ts5 T4 0 T18
3 0* 0 Z11 Tis *wi
0 Tg 0* 5”1*0 w19 fwz
oY 5 3
Ge = 0 IS L S I W CE)
Lo "o "%
—Tig 0* 9 0 z}ﬂl -7
O* -z a:}ﬂo 0 1}}(2 T
zg* 0* T 0 113 T2
—a:io —zp O* 0 Ti, T3
—:cp —113 —Zly 0* 0 T4
ac%6 Tl (3 f:cy 0 Ts5
—Tiy 0* $1§ fw*ls 0 T6
0 —Iiy —Zig Ty 0 T7
0 T4 —Z13 —T15  T11 0
T14 0 —T12 —T16  T10 0
—Z13  T12 0 17 T9 0
Ti5  —T1e  T17 0 s 0
—T11  Zi0 Z9 —Ig  ZT18 0

The following Table gives the various parameters for the above
codes.

# symbols Symbol # sets setvaluesp(” cardinality m®
K index KO | gp=1.k" k=1.K"
Gs 7 =14 1 1 nm
1=4.7 2 {1,2} {(n —1)m,m}
G 18 =17 1 1 nm
1=8.15 2 {1,2} {(n —1)m,m}
1=16..18 2 {1,2} {(n — 2)m,2m}

Using the parameters of the codes G5 and Gg given in Ta-
ble 1, we computed the analytical BER performance from the
expressions obtained in the previous section, for the case of 8-
PSK and one receive antenna (i.e., m = 1). We also evaluated
the same performance through simulations. Fig. 1 shows both
the analytical as well as the simulation results of the BER for
G5 and Gg codes. It can be seen that, because of the larger
diversity order (6th order), G¢ code performs better than G5
code (5th order diversity) as expected, and that there is a close
match between the analytical and the simulation results.

V. CONCLUSION

We presented an analysis for the bit error performance STBCs
from GCOD’s (G5 and Gg codes given by Su and Xia), for
M-PSK modulation. We showed that our general BER ex-
pressions absorb the results for equal weight STBCs as special
cases.

APPENDIX A

Claim: {a;(1);7 = 1..n} forms a set of orthogonal vectors V[.
Proof: Let B; = [a;1(l),az2(]),...,a,(l)]. Then the GCOD,
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Fig. 1. BER performance of G5 and G orthogonal STBCs with 8-PSK.

One Rx. antenna. Analysis and simulations.

G, can be written as

G =" (virBi + vigBitr)- (34)

i=1
Now the orthogonality condition, G*G = D, implies that

B:Bz :DZ,Z = 1,..,2[6,
B;B;+ B;B; =0,1<i#j <2k

(35)
(36)

Eqn. (35) implies that < a; (1),
the result.

a;(l) >=0,Vi # j. Hence

APPENDIX B

In this appendix, we derive the pdf of 4("). The moment gen-
erating function v() is given by

KO . m,)
M(v) = (*) @37)
kl;[l L+ v
Expanding in partial fractions,
K(l)m() (l)
=> Z - (38)
k=1 i—1 1+ﬂ
whereC & equals
P () ym
m (14 gy M ()
1 av"e v=—(j7{")"
Cin = i 7 (39)
(my) i)

The pdf of () in (24) is obtained by taking the Fourier trans-
form of the above.
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