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Abstract— In this paper, we consider the problem of precoding
in large multiuser MISO systems, where by ‘large’ we mean i)
large number of transmit antennas (Nt) at the base station of
the order of tens to hundreds of transmit antennas, and ii) large
number of downlink users (Nu) of the order of tens to hundreds
of users where each user has one receive antenna. Such large
MISO systems will be of immense interest because of the high
capacities (sum-rates) of the order of hundreds of bits/channel
use possible in such systems. We propose a vector perturbation
based low-complexity precoder, termed as norm descent search
(NDS) precoder, which has a complexity of just O(NuNt) per in-
formation symbol. This low complexity attribute of the precoder
is achieved by searching for the perturbation vector over a re-
duced search space. Interestingly, in terms of BER performance,
the proposed precoder achieves increasingly better BER for in-
creasing Nt, Nu, such that for large Nt, Nu it achieves near-
exponential diversity with some SNR loss, thus making it suited
for large MISO systems both in terms of complexity as well as
performance. The results of uncoded/turbo-coded simulations
without and with channel estimation errors are presented.

Keywords – Large multiuser MISO systems, low-complexity precoding,

dirty paper coding, ZF/MMSE precoders, vector perturbation.

I. INTRODUCTION

There is growing interest in MIMO techniques applied to mul-
tiuser communications [1],[2]. Of particular interest is down-
link communications where a base station (BS) equipped with
multiple transmit antennas sends data to multiple downlink
users, each having one receive antenna [3]. Availability of
channel status information (CSI) at the transmitter allows in-
teresting signal processing to be carried out at the transmitter
in multiuser MIMO systems [1],[3]. Such pre-processing of
signals before transmission, for instance, can achieve other-
user interference suppression at the transmitter itself. For
example, in a downlink multiuser MISO system, with the
knowledge of both the channel matrix (obtained through feed-
back from receivers) as well as the information symbols of all
the users, the BS can perform precoding on the information
symbol vector so that the transmitted signals when they arrive
at a desired user terminal will have no or less other-user inter-
ference, rendering the user terminal receiver simple. This is
the idea of dirty paper coding (DPC) [4],[5], which, in Gaus-
sian broadcast multiuser MIMO channels, has been shown to
achieve sum capacity (i.e., maximum aggregation of all users’
data rates) that grows linearly with the minimum of the num-
ber of antennas (Nt) and the number of users (Nu), provided
the transmitter and receivers all know the channel [6],[7].

Practical MIMO transmit pre-processing techniques that aim
to achieve the sum capacity promised by DPC have been a
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key topic of recent research [8]-[18]. Linear precoders in-
cluding normalized zero-forcing (ZF) and minimum mean
square error (MMSE) precoders [8]-[10], and non-linear pre-
coders including Tomlinson-Harashima precoder (THP) [11]-
[13] have relatively less complexity, but do not achieve full di-
versity in the system. Precoders based on vector perturbation
[8],[9] and several of their variants [15]-[17] have been shown
to achieve good performance at the expense of increased com-
plexity.

It is desired that large number of users be supported in prac-
tical systems. However, in much of the multiuser MISO pre-
coder literature, the number of downlink users reported is typ-
ically less than ten. Most precoders in the literature either
do not scale well (in terms of complexity) or show poor per-
formance for large number of users. Large multiuser MISO
systems1 will be of immense interest because of the practical
importance of supporting large number of users and high ca-
pacities (sum-rates) of the order of hundreds of bits/channel
use possible in such systems.

Our new contribution in this paper is that we propose a low-
complexity precoder for large MISO systems. The proposed
precoder, termed as norm descent search (NDS) precoder, is
a vector perturbation based precoder which achieves its low-
complexity attribute by searching for the perturbation vec-
tor over a reduced search space. Interestingly, in terms of
BER performance, the proposed precoder achieves increas-
ingly better BER for increasing Nt, Nu, such that for large
Nt, Nu it achieves near-exponential diversity with some SNR
loss, thus making it suited for large MISO systems in terms
of both complexity as well as performance. We present the
results of both uncoded and turbo-coded simulations without
and with channel estimation errors.

The rest of the paper is organized as follows. In Sec. II, we
present the system model. The proposed precoder algorithm
is presented in Sec. III. Results and discussions are presented
in Sec. IV. Conclusions are presented in Sec. V.

II. SYSTEM MODEL

We consider a multiuser MISO system, where a base station
(BS) communicates with Nu users on the downlink. A block
diagram of the system considered is shown in Fig. 1. The
BS employs Nt transmit antennas and each downlink user
is equipped with one receive antenna. Let uc ∈ C

Nu×1 be
the complex information symbol vector2. Precoding on the
symbol vector uc is carried out to obtain the precoded symbol
vector xc ∈ C

Nt×1, which is transmitted using Nt transmit

1By ‘large’ multiuser MISO systems we mean systems having hundreds of
BS transmit antennas and hundreds of single-antenna downlink users.

2Vectors are denoted by boldface lowercase letters, and matrices are de-
noted by boldface uppercase letters. [.]T and [.]H denote the transpose and
Hermitian operation, respectively.
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antennas such that ith symbol of xc is transmitted on the ith
transmit antenna, i = 1, 2, · · · , Nt.

Let yi denote the received complex signal at user i, and yc =
[y1y2 · · · yNu

]T . Let Hc ∈ C
Nu×Nt denote the channel ma-

trix such that its (i, j)th entry hi,j is the complex channel
gain from the jth transmit antenna to the ith user’s receive
antenna. Assuming rich scattering, we model the entries of
Hc as i.i.d and CN (0,1). Let nc denote the vector of noise
samples at the Nu users. The elements of nc are modelled as
i.i.d and CN (0, σ2). Therefore, yc can be expressed in terms
of Hc, xc, and nc as

yc = Hcxc + nc. (1)

Let uc, xc, yc, Hc, and nc be decomposed into real and imag-
inary parts as follows:

uc = uI + juQ, xc = xI + jxQ, yc = yI + jyQ,

Hc = HI + jHQ, nc = nI + jnQ. (2)

Further, we define ur ∈ R
2Nu×1, xr ∈ R

2Nt×1, Hr ∈
R

2Nu×2Nt , yr ∈ R
2Nu×1, and nr ∈ R

2Nu×1 as

ur = [uT
I uT

Q]T , Hr =
(

HI − HQ

HQ HI

)
,

xr = [xT
I xT

Q]T , yr = [yT
I yT

Q]T , nr = [nT
I nT

Q]T . (3)

Now, (1) can also be written as

yr = Hrxr + nr. (4)

In the discussions to follow, we shall work with the real-
valued system in (4). For notational convenience, we drop
the subscripts r in (4) and write

y = Hx + n, (5)

where H = Hr ∈ R
2Nu×2Nt , y = yr ∈ R

2Nu×1, x = xr ∈
R

2Nt×1, u = ur ∈ R
2Nu×1, and n = nr ∈ R

2Nu×1. With
the above real-valued system model, the real part of the origi-
nal complex information symbols (i.e., uc) will be mapped to
[u1, · · · , uNu

] and the imaginary part of these symbols will
be mapped to [uNu+1, · · · , u2Nu

]. For M -PAM modulation,
[uNu+1, · · · , u2Nu

] will be zeros since M -PAM symbols take
only real values. In the case of M -QAM, [u1, · · · , uNu

] can
be viewed to be from an underlying M -PAM signal set and
so is [uNu+1, · · · , u2Nu

].

A. Vector Perturbation

With the real-valued system model defined in the above, let
G ∈ R

2Nt×2Nu denote the precoding matrix. Therefore, the
unit-norm transmitted symbol vector x can be written as

x =
Gu
‖Gu‖ , (6)

where ‖v‖ =
√

vT v. For example, for the well known zero-
forcing (ZF) linear precoder with Nt ≥ Nu, the precoding
matrix is given by

GZF = HT (HHT )−1, (7)

Precoding

1

2

Base station
User 1

User 2

User Nu

Data streams
for downlink

Matrix�
Channel

�� feedback
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��

Fig. 1. Multiuser MIMO system on the downlink.

and the corresponding received signal vector y is given by

y =
u

‖Gu‖ + n. (8)

From (8), we see that ‖Gu‖ has a scaling effect on the in-
stantaneous received SNR at the users, and for poorly condi-
tioned channels this results in a loss in SNR. It is assumed
that ‖Gu‖ is known at the receiver so that the received sig-
nal is scaled by ‖Gu‖ prior to detection3. Hence, in order
to improve performance ‖Gu‖ needs to be minimized. One
technique suggested in the literature is to perturb the infor-
mation symbol vector u in such a way that the transformed
vector ũ is another point in the lattice but ‖Gũ‖ is much less
than ‖Gu‖ [9]. Specifically, we can define ũ as

ũ = u + τ p, (9)

where p ∈ Z
2Nu×1 is the perturbation vector and τ is a posi-

tive real number. The optimal value of ũ, denoted by ũopt, is
given by

ũopt = u + τ popt, where

popt =
arg min

p ∈ Z2Nu×1
‖G(u + τp)‖2. (10)

Exact solution of the above problem requires exponential com-
plexity in Nu. Approximate methods (with polynomial com-
plexity) have been proposed in the literature to solve the above
problem [17]. Even these polynomial complexity precoders
are prohibitively complex for large MISO systems with hun-
dreds of transmit antennas/users. Our contribution here is to
propose an approximate low-complexity solution to (10); the
proposed solution is given in Sec. III.

In terms of detection at the receiver, let p̃ be an approximate
(or optimal) solution to (10). Then, the received signal vector
(after scaling by ‖Gu‖) is given by

y = (u + τ p̃) + ñ, where (11)

ñ = ‖G(u + τ p̃)‖n.

The detected symbol vector at the receiver is given by

û = y − τ

⌊
y + τ

2

τ

⌋
. (12)

3It has been shown via simulations that using E(‖Gu‖) instead of the
instantaneous value of ‖Gu‖ results in almost the same performance [9].
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In (12), the operation is defined on each entry of the vec-
tor since each user gets only one entry of the vector y. τ
is a positive real scalar whose value is fixed. Choice of the
value of τ affects the overall performance. Too high a value
is good as far as mitigating the effect of receiver noise is con-
cerned (since the constellation replicas are placed far apart,
and there is little probability that noise may push a point from
one replica to another), but on the other hand a high value of
τ results in a high value of ‖G(u + τ p̃)‖. It has been empir-
ically observed that a good choice of τ is given by [9]

τ = 2|cmax| + δ, (13)

where |cmax| is the maximum value of either the real or imag-
inary component of the constellation symbols, and δ is the
spacing between the constellation symbols. For example, 16-
QAM is effectively two 4-PAM constellations in quadrature
(taking values of -3, -1, 1, 3 on the real and imaginary axis).
Therefore, for 16-QAM, |cmax| is 3, δ is 2, and so τ is 8.
Similarly, for 4-QAM, τ is 4.

III. PROPOSED NDS PRECODER

In this section, we present the proposed NDS precoder (see
Fig. 2 for a block diagram), which is iterative in nature and
achieves a suboptimal solution to the problem in (10). Let
ũ(k) be the perturbed information symbol vector after the kth
iteration. We initially start with ũ(0) = u, where u is the
unperturbed information symbol vector. We perturb ũ(k) to
get ũ(k+1) as

ũ(k+1) = ũ(k) + τ p(k), (14)

where p(k) ∈ Z
2Nu×1 for M -QAM, and p(k) ∈ Z

Nu×1 for
M -PAM. To reduce the overall computational complexity of
the proposed algorithm, we constrain p(k) to have only one

non-zero entry. Let F
�
= GT G, where G ∈ R

2Nt×2Nu is
the precoding matrix. Further, let q(k) be the power (squared-
norm) of the precoded symbol vector after the kth iteration.
Therefore, q(k) is given by

q(k) = ‖Gũ(k)‖2 = ũ(k)T

F ũ(k). (15)

In the (k + 1)th iteration, the algorithm finds a constrained
integer vector p(k) such that q(k+1) ≤ q(k). Let

∆q(k+1) �
= q(k+1) − q(k). (16)

Let ei denote a 2Nu-dimensional unit vector with its ith entry
only to be one, and all the other entries to be zero. Since
we allow only one non-zero entry in p(k), we can express
p(k) as a scaled integer multiple of any ei, i = 1, · · · , 2Nu.
∆q(k+1) can be negative for more than one choice of i. The
natural question is therefore to select the appropriate i. Let
us denote by ∆q

(k+1)
i , the value of ∆q(k+1) when p(k) is

a scaled integer multiple of ei. For each i, there exists an
integer λ

(k)
i which minimizes ∆q

(k+1)
i . Let this minimum

value of ∆q
(k+1)
i be denoted by ∆q

(k+1)
i,opt . We can therefore

express ∆q
(k+1)
i,opt as

∆q
(k+1)
i,opt = λ

(k)
i

2
τ2 Fi,i + 2λ

(k)
i τ zi

(k), (17)

Proposed

NDS
Algorithm

Channel

Proposed NDS Precoder

Normalized
Linear Precoder

(e.g., ZF/MMSE)

��

�

�

�

��

��

Matrix, �

Fig. 2. Proposed norm-descent search (NDS) precoder

where Fi,i is the ith diagonal entry of F, zi
(k) is the ith entry

of the vector

z(k) �
= Fũ(k), (18)

and

λ
(k)
i =

arg min
λ ∈ Z

∆q
(k+1)
i ,

=
arg min
λ ∈ Z

‖G(ũ(k) + λτei)‖2 − ‖Gũ(k)‖2,

=
arg min
λ ∈ Z

λ2Fi,i +
2λ

τ
ũ(k)T

Fei,

=
arg min
λ ∈ Z

λ2F(i,i) +
2λ

τ
zi

(k). (19)

It can be shown that the exact solution to the minimization
problem in (19) is given by

λ
(k)
i = −sgn(zi

(k))
⌊ |zi

(k)|
τF(i,i)

⌉
, (20)

where sgn(.) is the signum function and �.� is the rounding
operator. It can also be shown that the value of ∆q

(k+1)
i,opt is al-

ways non-positive (proof omitted here for lack of space). This
guarantees a monotonic descent in the value of ‖Gũ(k)‖2

with every iteration until a local minima is reached; hence
the name norm descent search (NDS) algorithm.

Though (19) gives a closed-form solution to λ
(k)
i , we have

observed (in the simulations) that in cases when λ
(k)
i is large,

the algorithm tends to get trapped in some poor local min-
ima early in the algorithm. In order to alleviate this phe-
nomenon, we constrain the value of λ

(k)
i to be within a set

S = {−smax,−(smax−1), · · · , (smax−1), smax}, which is
a finite subset of Z, and smax denotes the maximum absolute
value in S. For example, for 4-QAM, we have found (through
simulations) the appropriate set S to be S = {−1, 0, 1}. If
|λ(k)

i | > smax, then λ
(k)
i is set to 0 and so is ∆q

(k+1)
i,opt . If

|λ(k)
i | ≤ smax, then ∆q

(k+1)
i,opt is computed as per (17). We

shall refer to this correction in λ
(k)
i as λ-adjustment. In the

(k+1)th iteration, we can therefore calculate ∆q
(k+1)
i,opt for i =

1, 2, · · · , 2Nu. Given these values of λ
(k)
i , i = 1, · · · , 2Nu,

we update ũ(k) as follows

ũ(k+1) = ũ(k) + τ λ
(k)
j ej , where (21)

j =
arg min

i
∆q

(k+1)
i,opt .
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The values of λ
(k)
j used in (21) are after the λ-adjustment

described above. We also need to evaluate z(k+1). From (18),
we can write

z(k+1) − z(k) = F(ũ(k+1) − ũ(k)). (22)

Using (21), we can rewrite (22) as

z(k+1) = z(k) + τλ
(k)
j fj . (23)

where fj refers to the jth column of F. Finally, the algorithm
terminates after some iteration n if{

min
i

∆q
(n+1)
i,opt

}
≥ 0. (24)

It is easy to see that the algorithm guarantees a monotonic
descent in ‖Gũ(k)‖2 with every iteration until a local minima
is reached. Since i) λ

(k)
i can take values only from a finite

integer valued set S, and ii) ‖Gũ(k)‖2 has a global minima
for perturbations with λ

(k)
i ∈ S, we can see that the proposed

algorithm will terminate in a finite number of iterations. The
summary of the proposed NDS algorithm is given below.

1. Choose the set S; smax = max
s∈S

s

2. ũ(0) = u; F = GT G; k = 0 (k is iteration index)
3. z(0) = Fũ(0); τ = 2|cmax| + δ
4. nsymb = 2Nu; (nsymb is 2Nu for QAM and Nu for PAM)
5. for i = 1, 2, · · · , nsymb

6. λ
(k)
i = −sgn(zi

(k))� |zi
(k)|

τF(i,i)
�

7. if (|λ(k)
i | > smax) λ

(k)
i = 0

8. ∆q
(k+1)
i,opt = λ

(k)
i

2
τ2Fi,i + 2λ

(k)
i τzi

(k)

9. end; (end of for in Step 5)

10. ∆qmin = min
i ∆q

(k+1)
i,opt

11. if (∆qmin ≥ 0) goto Step 16

12. j = arg min
i

∆q
(k+1)
i,opt

13. ũ(k+1) = ũ(k) + τλ
(k)
j ej

14. z(k+1) = z(k) + τλ
(k)
j fj

15. k = k + 1, goto Step 5
16. Terminate the algorithm

A. Complexity of the proposed NDS algorithm

The complexity of the proposed NDS algorithm in the above
can be analyzed as follows. The per-symbol computation
complexities of GT G in Step 2 and z(0) in Step 3 are O(NuNt)
and O(Nu), respectively. Step 5 to Step 15 is one basic itera-
tion of the proposed algorithm, whose per-symbol complexity
is constant. The mean number of iterations till the algorithm
terminates, which we have obtained through simulations, has
been found to be proportional to Nu (see Fig. 5); i.e., constant
per-symbol complexity. Putting the above individual com-
plexities together, the overall per-symbol complexity of the
proposed NDS algorithm is O(NuNt). This low-complexity
feature makes practical precoding for large number of users
(of the order of hundreds) to be feasible.
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Fig. 3. Uncoded BER performance of the proposed NDS-MMSE precoder
for different values of (Nt, Nu). Nr = 1, BPSK. Achieved diversity in-
creases with increased (Nt, Nu).

IV. RESULTS AND DISCUSSIONS

In this section, we present the uncoded and turbo-coded sim-
ulation results of the BER performance of the proposed pre-
coder. In all our simulation results, we have taken the G
matrix to be the MMSE precoding matrix. Hence, we refer
to the proposed precoder as the NDS-MMSE precoder4. In
Fig. 3, we illustrate the uncoded BER as a function of av-
erage received SNR with BPSK and Nr = 1, for different
values of (Nt, Nu). In Fig. 3, perfect knowledge of the chan-
nel matrix is assumed. The performance of uncoded BPSK
in SISO AWGN

(
given by Q(

√
SNR)

)
is also plotted for

comparison purposes. From Fig. 3, it can be observed that
the proposed precoder achieves increased diversity with in-
creasing (Nt, Nu); observe the slope of the BER curves from
small to large (Nt, Nu). For example, an uncoded BER of
2× 10−3 is achieved at an SNR of 16 dB for Nt = Nu = 20,
whereas the same BER is achieved at an SNR of 13.5 dB for
Nt = Nu = 200. This is due to the large system effect in the
proposed precoder. For large (Nt, Nu) the BER curves show
near-exponential fall (parallel to SISO AWGN curve) with
some SNR loss from the SISO AWGN performance. The
SNR loss is likely due to the reduced search space employed
in the algorithm. We have observed similar performance be-
havior for 4-QAM as well.

We also evaluated the turbo coded BER performance of the
proposed precoder without and with channel estimation er-
rors. Figure 4 shows the coded BER performance of a system
with Nt = Nu = 300, 4-QAM, rate-3/4 turbo code, and
Nr = 1. The sum rate (sum-capacity) in this system is given
by 300 × 2 × 3

4 = 450 bits/channel use. The ergodic sum-
capacity of the model in (1) is given by [9]

Csum = E
{ sup

D ∈ A log
(∣∣INt

+ ρHH
c DHc

∣∣)} , (25)

where INt
is the Nt×Nt identity matrix, A is the set of Nu×

Nu diagonal matrices D with non-negative elements that sum
to 1 (i.e., tr(D) = 1), and ρ is the average SNR defined as

4If G is taken to be the ZF precoding matrix, then the resulting precoder
is referred to as NDS-ZF precoder. However, we do not present the results of
NDS-ZF precoder for lack of space.
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Fig. 4. Turbo coded BER performance of the proposed NDS-MMSE pre-
coder without and with channel estimation errors. Nt = Nu = 300,
Nr = 1, rate-3/4 turbo code, 4-QAM. Sum rate = 300 × 2 × 3/4 = 450
bits/channel use.

1/σ2. We have evaluated the sum-capacity in (25) as a func-
tion of SNR for a Nt = Nu = 300 system through Monte-
Carlo simulations, and obtained the minimum SNR required
to achieve a sum-capacity of 450 bits/channel use. This limit
SNR at 450 bits/channel use capacity (obtained to be 3 dB
from simulations) is also shown in Fig. 4. To illustrate the
effect of channel estimation errors on performance, we con-
sider a channel estimation error model where the estimated
channel matrix, Ĥc, is taken to be Ĥc = Hc + ∆Hc, where
∆Hc is the estimation error matrix, the entries of which are
assumed to be i.i.d complex Gaussian with zero mean and
variance σ2

e . The values of σ2
e considered are 0, 0.01, 0.02.

Note that σ2
e = 0 corresponds to perfect channel estimation.

The following observations can be made from Fig. 4.

• With perfect channel estimation (i.e., σ2
e = 0), the pro-

posed NDS-MMSE precoder achieves vertical fall in turbo
coded BER at about 13 dB (i.e., 10 dB away from the
limit SNR at capacity). The linear MMSE precoder (with-
out the proposed NDS algorithm), on the other hand,
achieves the vertical fall only at about 16 dB. It is noted
that the order of complexity for the NDS-MMSE and
the linear MMSE are the same, with the proposed NDS-
MMSE performing better than the linear MMSE.

• Interestingly, the robustness of the proposed NDS-MMSE
precoder to imperfect channel estimation is superior com-
pared to the linear MMSE. For example, for σ2

e = 0.02,
the vertical fall occurs at about 15 dB for the NDS-MMSE,
whereas for the linear MMSE vertical fall does not oc-
cur and a high error floor results (i.e., uncoded error rate
with channel estimation errors is high in linear MMSE
to an extent that even the turbo code is unable to avoid
the error floor).

V. CONCLUSIONS

We proposed a low-complexity precoder for large multiuser
MISO systems. The proposed precoder is suited, in terms of
both complexity as well as performance, for large multiuser
MISO systems with hundreds of downlink users. The pro-
posed precoder was shown to be robust to channel estimation
errors. We believe feasibility of low-complexity precoders,
like the one we have proposed in this paper, can potentially
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Fig. 5. Average number of iterations per information symbol till the NDS
algorithm terminates as a function of (Nt, Nu). Nr = 1, 4-QAM.

trigger wide interest in the theory and implementation of large
multiuser MISO systems.
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