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Abstract— An exact bit error rate (BER) expression, in closed-
form, for parallel interference cancellation (PIC) with a decor-
relator based initial data estimates has been derived earlier by
Verdu [1], for non-fading channels. In this paper, we extend this
work to Rayleigh fading channels. Specifically, we derive an ex-
act BER expression for a PIC with decorrelator based initial data
estimates on flat Rayleigh fading channels. The BER expression
is obtained in terms of the elliptic integral of the third kind. It
is noted that this BER expression is one of the rare closed-form
expressions one can obtain for the BER of a nonlinear multiuser
detector.
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I. INTRODUCTION

Parallel interference cancellation (PIC) is a multistage, non-
linear multiuser detection scheme that can be used to sepa-
rate and demodulate signals in a multiuser system [1],[2]. The
multistage approach can be used with tentative decisions pro-
vided by either the conventional single-user matched filters
(MF) or other multiuser detectors (for example, a decorrelat-
ing detector can serve as the first stage of the PIC receiver).
Several papers have reported the bit error rate (BER) perfor-
mance of PIC receivers, based on mainly simulations. Be-
cause of the complexity involved in the derivation, exact an-
alytical BER expressions obtained for PIC are rather limited.
Even the available exact analytical BER expressions are for
simplified system models (e.g., two-user systems, non-fading
channels, BER expressions only for the first few stages, and so
on). In [2],[3], exact analytical BER expressions for the first
and second stage of a PIC, which obtains initial data estimates
from conventionalMFs, on non-fading channels are presented.
It has been pointed out that generalizing the analysis for any
arbitrary stage in the PIC is extremely complex, which would
involve volume integrals over a K-dimensional jointly Gaus-
sian density function, where K is the number of users in the
system. In [1] (Ch. 7.3.2), Verdu derived an exact BER ex-
pression for a PIC, which uses initial data estimates from a
decorrelating detector, on non-fading channels in a two-user
system.

In this paper, we present the BER performance analysis of
a PIC on Rayleigh fading channels. Specifically, we derive
an exact BER expression for a PIC, which uses decorrelator
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based initial data estimates, on flat Rayleigh fading in a two-
user system. The BER expression is obtained in terms of the
elliptic integral of the third kind.

The rest of the paper is organized as follows. In Section II,
we present the system model. In Section III, we present exact
BER analysis of a PIC with decorrelator as the first stage on
Rayleigh fading channels. Section IV provides the numerical
results and Section V gives the conclusions.

II. SYSTEM MODEL

Consider a synchronous multiuser system with K users. Let
y = (y1, y2, · · · , yK) denote the received signal vector at the
output of the MFs at the receiver. The kth user’s MF output is
given by

yk = Akhkbk +
K∑

j=1j �=k

ρjkAjhjbj + zj , (1)

where Ak and bk ∈ {+1,−1} denote the transmit amplitude
and data bit, respectively, of the kth user, hk denotes the com-
plex channel fade coefficient corresponding to the kth user,
ρjk is the correlation coefficient between the signature wave-
forms of the jth and the kth users, and zi denotes the com-
plex Gaussian noise for the kth user with zero mean and vari-
ance 2σ2. The fade coefficients hk’s are assumed to be i.i.d
complex Gaussian r.v’s (i.e., fade amplitudes are Rayleigh dis-
tributed) with zero mean and E[h2

kI ] = E[h2
kQ] = 1, where

hkI and hkQ are the real and imaginary parts of hk. For a
two-user system, the MF outputs for users 1 and 2 are given
by

y1 = A1h1b1 + ρA2h2b2 + z1 (2)

y2 = A2h2b2 + ρA1h1b1 + z2, (3)

where ρ = ρ12 = ρ21.

We consider a PIC with decorrelator as the first stage. The ini-
tial bit estimates from this decorrelator is used by the second
stage of the PIC for interference cancellation. We are inter-
ested in obtaining an expression for the BER at the output of
the second stage of the PIC.

Let b̂(i)
1 and b̂

(i)
2 denote the bit decisions made by the ith stage

for users 1 and 2, respectively. Assuming perfect estimates of
the channel coefficients at the receiver, the bit decisions made
by the first stage (i.e., the decorrelator stage), b̂(1)

1 and b̂
(1)
2 , are



given by [1]

b̂
(1)
1 = sgn

(
Re(h∗

2y2 − ρh∗
2y1)

)
(4)

b̂
(1)
2 = sgn

(
Re(h∗

1y1 − ρh∗
1y2)

)
, (5)

where (·)∗ denotes the complex conjugate operation. The prob-
ability of bit error for user k at the output of the decorrelator
stage, P (1)

k , k = 1, 2, can be obtained as [1]

P
(1)
k =

1
2

(
1 − Ak

√
1 − ρ2√

σ2 + A2
k(1 − ρ2)

)
, k = 1, 2. (6)

The bit estimates b̂
(1)
1 and b̂

(1)
2 are given as inputs to the second

stage of the PIC. After reconstruction and cancellation of the
interference at the second stage, the bit decisions at the output
of the second stage for the users 1 and 2, b̂

(2)
1 and b̂

(2)
2 , are

given by

b̂
(2)
1 = sgn

(
Re
(
h∗

1y1 − h∗
1h2A2 ρ b̂

(1)
2

))
(7)

b̂
(2)
2 = sgn

(
Re
(
h∗

2y2 − h∗
2h1A1 ρ b̂

(1)
1

))
. (8)

III. BER ANALYSIS

We derive the probability of bit error for the kth user at the
output of the second stage, P (2)

k , as follows. Let user 1 be the
desired user. The probability of bit error for the desired user,
P

(2)
1 , can be written as

P
(2)
1 = Pr

(
b̂
(2)
1 �= b1

∣∣∣b̂(1)
2 = b2

)
Pr
(
b̂
(1)
2 = b2

)
+ Pr

(
b̂
(2)
1 �= b1

∣∣∣b̂(1)
2 �= b2

)
Pr
(
b̂
(1)
2 �= b2

)
.(9)

The first term in the above Eqn. (9) is easy to obtain, whereas
the derivation of the second term is rather involved. The first
term in (9) can be written as

Pr
(

b̂
(2)
1 �= b1

∣∣∣b̂(1)2 = b2

)
Pr
(

b̂
(1)
2 = b2

)
=(

1 − E

[
Q

(
A2|h2|2(1 − ρ2)

σ
√

|h2|2(1 − ρ2)

)])
· E

[
Q

(
A1|h1|2
σ
√

|h1|2

)]
, (10)

which results because of the fact that the correct bit decision
in the previous stage (i.e., b̂

(1)
2 = b2) makes the current stage

decision b̂
(2)
1 independent of bit b2 (i.e., independent of inter-

ference). The expectations of the Q-functions in (10) are w.r.t
the channel fades, which can be obtained as [1]

E

[
Q

(
A2|h2|2(1 − ρ2)

σ
√

|h2|2(1 − ρ2)

)]
=

1

2

(
1 −

A2

√
1 − ρ2√

σ2 + A2
2(1 − ρ2)

)
, (11)

and

E

[
Q

(
A1|h1|2
σ
√

|h1|2

)]
=

1

2

(
1 − A1√

σ2 + A2
1

)
. (12)

Note that the expression in (11) corresponds to the BER ex-
pression for the simple decorrelating detector on flat Rayleigh
fading, and the expression in (12) corresponds to the BER ex-
pression for a single-user scheme on flat Rayleigh fading.

As mentioned earlier, the derivation of the second term in (9)
is rather involved, since an error in the bit estimation in the
previous stage (i.e., b̂

(1)
2 �= b2) makes the current decision of

the first user’s bit b̂
(2)
1 depend on the second user’s bit esti-

mate b̂
(1)
2 . Consequently, the evaluation of the second term

in (9) involves evaluating the expectation of a product of two
Q-functions, as

Pr
(

b̂
(2)
1 �= b1

∣∣∣b̂(1)2 �= b2

)
Pr
(

b̂
(1)
2 �= b2

)
=

E

[
Q

(
A2|h2|2(1 − ρ2)

σ
√

|h2|2(1 − ρ2)

)
Q

(
A1|h1|2 + 2A2Re(h∗

1h2)ρ

σ
√

|h1|2

)]
,(13)

where the expectation is over h1 and h2. Averaging over h1,
(13) can be simplified to

Pr
(

b̂
(2)
1 �= b1

∣∣∣b̂(1)2 �= b2

)
Pr
(

b̂
(1)
2 �= b2

)
=

E

[
Q

(
A2|h2|2

√
1 − ρ2

σ
√

|h2|2

)
Q

(
2h2IρA2

σ

)]

− A1√
A2

1 + σ2

· E
[

Q

(
A2|h2|2

√
1 − ρ2

σ
√

|h2|2

)
Q

(
2h2IρA2A1

σ
√

A2
1 + σ2

)
e

−4h2
2I

ρ2A2
2

2(A2
1
+σ2)

]
,(14)

where h2I denotes the real part of h2. To average over h2,
we convert h2 into polar form, i.e., h2 = rejθ , where r is
Rayleigh distributed and θ is uniformly distributed in [0, 2π].
The first expectation on the RHS of (14) can be obtained as

E

[
Q

(
A2|h2|2

√
1 − ρ2

σ
√|h2|2

)
Q

(
2h2IρA2

σ

)]
=

1
4

(
1 − A2

√
1 − ρ2√

σ2 + A2
2(1 − ρ2)

)
. (15)

The second expectation on the RHS of (14) is obtained as fol-
lows. Substituting h2I = r cos θ, we can write



E

[
Q

(
A2|h2|2

√
1 − ρ2

σ
√

|h2|2

)
Q

(
2A2A1h2Iρ

σ
√

A2
1 + σ2

)
e

−4h2
2I

ρ2A2
2

2(A2
1
+σ2)

]
=

1

2π

∫ ∞

0

e−r2/2rQ

(
A2r
√

1 − ρ2

σ

)
dr

·
∫ 2π

0

Q

(
2A2A1r cos θρ

σ
√

A2
1 + σ2

)
e

−4r2 cos2 θρ2A2
2

2(A2
1
+σ2) dθ. (16)

Substituting cos2 θ = p/2, we can write

∫ 2π

0

Q

(
2A2A1r cos θρ

σ
√

A2
1 + σ2

)
e

−4r2A2
2cos2 θρ2

2(A2
1+σ2) dθ =

∫ 2

0

e−r2A2
2ρ2p/(1+σ2)√
p(2 − p)

dp, (17)

From [4], (Eqn. GW(312)(7a), pp. 341), we get

∫ 2

0

e−r2A2
2ρ2p/(1+σ2)√
p(2 − p)

dp = πe
−A2

2r2ρ2

1+σ2 Io

(
A2

2r
2ρ2

1 + σ2

)
, (18)

where Io(x) = 1
π

∫ π

0 ex cos θdθ. Using (18) in (16), we can
write

E

[
Q

(
A2|h2|2

√
1 − ρ2

σ
√

|h2|2

)
Q

(
2A2A1h2Iρ

σ
√

A2
1 + σ2

)
e

−4h2
2I

ρ2A2
2

2(A2
1+σ2)

]

=
1

2π

∫ ∞

0

∫ π

0

re
− r2

2

[
2A2

2ρ2

A2
1
+σ2 +1− 2A2

2r2ρ2 cos θ

A2
1
+σ2

]

· Q
(

A2r
√

1 − ρ2

σ

)
drdθ

=
1

4π

∫ π

0

1

a(θ)

(
1 −

√
a(θ)σ2

A2
2(1 − ρ2)

+ 1

)
dθ, (19)

where the second step in (19) is due to [1] (Eqn. 3.61), and

a(θ) =
2A2

2ρ
2(1 − cos θ)

A2
1 + σ2

+ 1. (20)

Also, ∫ π

0

1
a(θ)

dθ =
π√

1 + 4A2
2ρ2

A2
1+σ2

. (21)

Defining b = 2A2
2ρ2

A2
1+σ2 and c = A2

2(1−ρ2)
σ2 , and by substituting

cos θ = t, we get

∫ π

0

dθ

a(θ)
√

a(θ)σ2

A2
2(1−ρ2)

+ 1
=

√
c

b
√

b

∫ 1

−1

dt

(1 − t + 1
b )
√

(1 − t2)(1 − t + 1+c
b )

. (22)

Using ([4], Eqn. BY(233.02), pp. 258), we can write

∫ 1

−1

dt

(1 − t + 1
b )
√

(1 − t2)(1 − t + 1+c
b )

=

2

(2 + 1
b )
√

2 + 1+c
b

Π

(
π

2
,

2
2 + 1

b

,

√
2

2 + 1+c
b

)
, (23)

where Π(θ, u, v) is the elliptic integral of the third kind given
by

Π(θ, u, v) =
∫ θ

0

dα

(1 − u sin2 α)
√

1 − v2 sin2 α
, (24)

which can be directly computed using the ‘EllipticPi’ function
in Mathematica.

Using (23), (22), (21), (19), (15), (14), (12), (11), (10), and
(9), the expression for the BER at the second stage output,
P

(2)
1 , can be obtained as

P
(2)
1 =

1

2

(
1 − A1√

σ2 + A2
1

)

− 1

4

(
1 − A1√

σ2 + A2
1

)(
1 − A2

√
1 − ρ2√

σ2 + A2
2(1 − ρ2)

)

+
1

4

(
1 − A2

√
1 − ρ2√

σ2 + A2
2(1 − ρ2)

)

− A1

4π
√

σ2 + A2
1

π√
1 +

4ρ2A2
2

A2
1+σ2

+
A1

4π
√

σ2 + A2
1

2
√

c

b
√

b(2 + 1
b
)
√

2 + 1+c
b

· Π
(

π

2
,

2

2 + 1
b

,

√
2

2 + 1+c
b

)
, (25)

which is one of the rare closed-form expressions one can get
for the BER of a nonlinear multiuser detector. It is noted
that, because of the symmetry in the PIC receiver structure,
the BER for user 2 is the same as (25) with A1 and A2 inter-
changed.

IV. NUMERICAL RESULTS

Fig. 1 shows the BER performance of the PIC with decorre-
lator as the first stage for user 1 as a function of the average
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Fig. 1. BER performance of PIC with decorrelator as the first stage on
Rayleigh fading channels. ρ = 0.4, NFR=10 dB. Performance of decorrelat-
ing detector as well as conventional MF detector are also shown.
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Fig. 2. BER performance of PIC with decorrelator as the first stage as a
function of NFR on Rayleigh fading channels. ρ = 0.4, Avg. SNR = 10 dB.
Performance of decorrelating detector as well as conventional MF detector
are also shown.

SNR, γ = A2
1E[|h1|2]/2σ2 = A2

1/σ
2, evaluated from (25),

for ρ = 0.4 and near-far ratio, NFR = 10 dB (we define the
near-far ratio as NFR = 20 log(A2/A1)). The performance of
the conventional MF (CMF) detector as well as the decorrelat-
ing detector are also shown for comparison. The BER plots for
the decorrelating and MF detectors are from the correspond-
ing BER expressions in [1]. As expected, the PIC performs
better than the linear decorrelating detector and the MF detec-
tor. Fig. 2 shows the user 1 BER performance as a function of
NFR, for ρ = 0.4 and average SNR, γ = 10 dB. We observe
that both the PIC (with decorrelator as the first stage) as well
as the decorrelating detector are near-far resistant, with the
PIC performing better than the decorrelating detector as ex-
pected. The conventional MF detector however is not near-far
resistant (i.e., performance degrades as the NFR is increased).

V. CONCLUSION

We derived an exact BER expression, in closed-form, for par-
allel interference cancellation (PIC) with decorrelator based
initial data estimates on Rayleigh fading channels. The BER
expression was obtained in terms of the elliptic integral of the
third kind. It is noted that this BER expression is one of the
rare closed-form expressions one can obtain for the BER of a
nonlinear multiuser detector.
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