E1 245 - Online Prediction and Learning, Aug-Dec 2018 Homework #3

- 1. Strong convexity of entropy (Pinsker's inequality)
 - (a) Prove that the negative entropy function $R(x) = \sum_i x_i \log x_i$ over the 2 dimensional simplex $\Delta_2 := \{(x_1, x_2) : x_i \ge 0, x_1 + x_2 = 1\}$ is 1-strongly convex with respect to the $|| \cdot ||_1$ norm.
 - (b) Prove the same statement when d = 2 is replaced with a general positive integer d ≥ 2. *Hint: One way is to find a reduction to the d = 2 case. Let x and y be two vectors in* Δ_d*. Let* A := {i : x_i ≥ y_i} be the coordinates where x dominates y. Can you find two new vectors x_A and y_A in Δ₂ so that ||x y||₁ = ||x_A y_A||₁ and carry on?
- 2. Exponential Weights as FTRL and OMD
 - (a) Show that Follow The Regularized Leader (FTRL) on the simplex
 Δ_N := {(x₁,...,x_N) : Σ^N_{i=1} x_i = 1, ∀i x_i ≥ 0} with the entropic regularizer¹
 R_η(x) := ¹/_η Σ^N_{i=1} x_i log x_i, and linear loss functions f_t(x) = ⟨z_t,x⟩, is equivalent to running the Exponential Weights algorithm on N experts with loss vectors {z_t}_{t≥1} and parameter η. *Hint: You can derive this directly from first principles and the definition of the FTRL rule. An alternative way is by using (a) the equivalence between FTRL and (unconstrained minimization + Bregman projection) proven in class, and (b) observing that Bregman projection wrt the regularizer R onto Δ_N is equivalent to scaling by the ||·||₁ norm.*
 - (b) Show that Active Online Mirror Descent on the simplex $\Delta_N := \{(x_1, ..., x_N) : \sum_{i=1}^N x_i = 1, \forall i \, x_i \ge 0\} \text{ with the entropic regularizer}$ $R_{\eta}(x) := \frac{1}{\eta} \sum_{i=1}^N x_i \log x_i, \text{ and linear loss functions } f_t(x) = \langle z_t, x \rangle, \text{ is equivalent to running the Exponential Weights algorithm on N experts with loss vectors } {z_t}_{t\ge 1} \text{ and parameter } η.$
- 3. Analysing Exponential Weights as OMD
 - (a) Prove the following result. Suppose (active) OMD is run on the convex decision set \mathscr{K} with a Legendre function R, where R is α -strongly convex with respect to some norm $|| \cdot ||$ on \mathscr{K} , $R(x) R(w_1) \leq B^2 \ \forall x \in \mathscr{K}$, and the gradients of the loss functions are at most G in the dual² norm $|| \cdot ||_*$. Then, with a step size $\eta := \frac{G}{B} \sqrt{\frac{2}{T}}$, the T-round regret of OMD is at most $BG\sqrt{\frac{2T}{\alpha}}$. *Hint: In the regret bound for active OMD in class, upper bound the term* $D_R(w_t, w'_{t+1}) D_R(w_{t+1}, w'_{t+1})$.
 - (b) Using this and the previous exercises, argue an appropriate regret bound for the Exponential weights algorithm run on the simplex Δ_d , and with linear loss functions having coefficients in [0,1].
- 4. Fenchel duality and Bregman divergence

For each of the following functions defined on \mathbb{R}^d , compute its gradient, Fenchel dual, gradient of the Fenchel dual, and the Bregman divergences of itself and its Fenchel dual.

- (a) $F_1(x) = e^{x_1} + \dots + e^{x_d}$.
- (b) $F_2(x) = \log(e^{x_1} + \dots + e^{x_d}).$
- (c) $F_3(x) = \frac{1}{2} ||x||_p^2, p \in [1,\infty].$
- 5. Bregman projection

Show that the projection of $y \in (0,\infty)^d$ onto the probability simplex Δ_d , with respect to the Bregman divergence induced by the generalized negative entropy $(R(x) := \sum_{i=1}^2 x_i \log x_i - x_i)$, is simply its normalization, i.e., $\prod_{\Delta_d}^{D_R}(y) = y/||y||_1$.

 $^{^{1}}$ 0 log 0 is defined to be 0.

²Recall that for a norm $|| \cdot ||$ in \mathbb{R}^d , its dual norm is defined by $||y||_* := \max_{x:||x||=1} x^T y$.