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Abstract—We study infection spreading on large static net-
works when the spread is assisted by a small number of addi-
tional virtually mobile agents. For networks which are “spatially
constrained”, we show that the spread of infection can be
significantly sped up even by a few virtually mobile agents
acting randomly. More specifically, for general networks with
bounded virulence (e.g., a single or finite number of random
virtually mobile agents), we derive upper bounds on the order
of the time taken (as a function of network size) for infection
to spread. Conversely, for certain common classes of networks
such as linear graphs, grids and random geometric graphs, we
also derive lower bounds on the order of the spreading time
over all (potentially network-state aware and adversarial) virtual
mobility strategies. We show that up to a logarithmic factor, these
lower bounds for adversarial virtual mobility match the upper
bounds on spreading via an agent with random virtual mobility.
This demonstrates that random, state-oblivious virtual mobility
is in fact order-wise optimal for dissemination in such spatially
constrained networks.

I. INTRODUCTION

Various natural and engineered phenomena around us in-
volve the spread of information or infection through different
kinds of networks. Rumours and news stories propagate among
people linked by various means of communication, diseases
diffuse as epidemics through populations by various modes,
plants disperse pollen/seeds and thus genetic traits geographi-
cally, riots spread across pockets of communities, advertisers
aim to disseminate information about goods through net-
works of consumers, and computer viruses, email worms and
software patches piggy-back across computer networks. Un-
derstanding how infection/information/innovation can travel
across networks has been a subject of extensive study in
disciplines ranging from epidemiology [1], [2], sociology
[3], [4] and computer science [5], [6], [7] to physics [8],
information theory/networking [9], [10], [11], [12], [13] and
applied mathematics [14], [15], [16], yielding valuable insights
into qualitative and quantitative aspects of network spread
behaviour.

In this work, we model and study network-wide spread
with two distinct components – a basic static spread compo-
nent in which infection spreads naturally and locally through
neighbouring nodes in the network, and an additional virtually
mobile spread component in which the infection is carried to
nodes far from its origin by suitable “virtually mobile agents”,
helping it spread globally. Specifically, we develop a rigorous
framework with which we quantify the effect that a small
number of external (i.e. not constrained by the underlying
graph), omniscient (i.e. network-state aware) and adversarial

(i.e. free to infect any portion(s) of the network) virtually
mobile agents can have on the time it takes for infection to
spread throughout the network.

We stress that the terms “static spread” and “virtually mo-
bile spread” (or virtual mobility) are used merely as surrogates
for any situation involving the spread of infection/information
via (spatially and/or timescale-wise) heterogeneous modes. In
the context of wireless communication, for instance, consider
the increasingly studied propagation [17], [18], [19], [20] of
viruses and worms that exploit the connectivity afforded by
both (a) modern short-range personal communication tech-
nologies like Bluetooth, and (b) long-range media such as
SMS/MMS and the Internet. To paraphrase Kleinberg [21],
outbreaks due to such worms are well-modelled by local
spreading on a fixed network of nodes in space (i.e. short-range
Bluetooth wireless transmissions between neighbouring quasi-
static users) aided by relatively unrestricted paths through
the network (i.e. long-range, faster-timescale emails and mes-
sages through SMS/MMS/Internet). Thus, “static spread” and
“virtually mobile spread” here mean short-range Bluetooth
transmissions between users and long-range network-wide
emails/messages respectively.

Other, more classically-studied, examples of local spread
assisted by forms of virtual mobility include those of natural
disease epidemics [1] and bioterror attacks [22], where in-
fection can spread (a) locally through spatial pathways (i.e.
interpersonal contact) and (b) globally through faster, large-
scale geographic means (e.g. human movement through airline
routes) [23].

In all these and allied situations, it can be seen that, in ad-
dition to the local or static spreading behaviour of an infection
over an underlying network, a form of external “virtual mobil-
ity” unconstrained by the structure of the underlying network
causes long-range proliferation of the infection. Also, in most
cases, the virtual mobility is such that any uninfected node
in the network is susceptible to infection by it. Thus, virtual
mobility (resp. a virtually mobile agent) is entirely distinct
from, and more general than actual or physical mobility (resp.
a physical mobile agent) whose infection spreading abilities
are inherently constrained by its geographic nature. We wish
to investigate, in this work, the effect that the virtual mobility
has on the time taken for the entire network to get infected.

Given the applicability of our virtually mobile spread model,
a fundamental characterization of the impact of all possible
adversarial “patterns” of virtual mobility on the spreading
time across the whole network is useful for two chief rea-



sons. Firstly, whenever malicious forms of infection such
as epidemics or bioterror attacks originate and threaten to
spread via both local and virtually mobile means, it becomes
important to understand the worst-case virtually mobile spread
behaviour (this is the component that can potentially accelerate
the spread) in order to deploy appropriate countermeasures.
Secondly, in cases where propagation is in fact desirable
and the virtual mobility can actually be controlled (e.g. viral
advertising [7], network protocol design [6] and diffusion
of innovations [3]), an adversarial study of virtual-mobility-
assisted spreading can constructively help in designing fast
spreading strategies.

A. Main Contributions

We consider large graphs G = (V,E) in which infection
starts spreading in continuous time at a designated node
according to the standard Susceptible-Infected (SI) dynamics
[9] (also termed the contact process [14], [15]) with i.i.d.
exponentially distributed propagation times through the edges.
To model the spread of infection via additional long-range
virtual mobility or virtually mobile agents as discussed earlier,
we allow every node in the graph to get infected at a potentially
different (including zero) exponential rate at each instant, with
the restriction that the sum of all these mobile infection rates is
bounded and does not scale with the network size. This model
is quite general in terms of the strategies that the virtually
mobile agent(s) can employ – it permits the virtually mobile
agent(s) to focus all their infection efforts on a single node,
or on a sub-collection of nodes based on geography/topology
and/or infection state, or indeed try to infect all nodes in the
network but at very small infection rates (the only constraint
we have is that the sum of the infection rates is bounded).
Thus, our model fully incorporates adversarial and omniscient
aspects of virtually mobile/long-range spreading. Throughout
the paper, the main metric we study is the (random) time taken
for an infection to spread to all the nodes of a network.

In this setting, our results are somewhat surprising – in spite
of the adversarial “power” the virtually mobile agents have
for choosing the infection sites, we show that for commonly
studied topologies such as grids and spatial random graphs, it
turns out that a simple random strategy where the virulence
from the virtual mobility is concentrated on a single node at a
time (i.e., infect only one randomly chosen node at a time) is
order-optimal. More formally, our main contributions in this
paper are as follows:

(a) We develop general upper bounds on the order of the
infection time for large graphs – both in expectation
and with high probability – when the virtual mobility
infection pattern is simply random, i.e. when every node
is susceptible to virtually mobile infection at the same
constant rate irrespective of other factors such as the
present infection-state of the graph. The bounds are
based on the extent to which the graph can be partitioned
into pieces with appropriate diameter/conductance.

(b) For certain common classes of structured and random
graphs like rings/line graphs, d-dimensional grid graphs

and random geometric graphs in the connected regime,
we use the theory of first-passage percolation [15] to
derive lower bounds on the order of infection times –
again, both in expectation and with high probability –
over all (possibly state-aware) virtual mobility patterns.
These lower bounds are shown to match the upper
bounds on infection time for random virtual mobility
up to a logarithmic factor, showing that random virtual
mobility suffices to spread infection/information at the
fastest possible (order-wise) rates through such graphs
that are sparse, geographically constrained and locally
similar.

B. Related Work

Prior work concerning network spread, though diverse in
scope and treatment, does not address the impact of adversar-
ial, virtual mobility-assisted spreading in networks. Moreover,
to the best of our knowledge, it lacks a consistent analytical
framework in which the effects of different forms of virtual
mobility on spreading time can be compared. There has been
much work in studying the static spread of infection/innovation
using various notions of influence and susceptibility, both
numerically using field data/extensive simulations [8], [3],
[4], [5] and analytically [9], [14], [15], [16]. For the case
of spreading with virtual mobility, many numerical studies
have investigated the spread of infectious diseases with specific
mobility patterns, e.g. via airline networks [23], heterogeneous
geographic means [1], [2], and recently, electronic pathways
[21], [17], [18], [19], [20]. Several notable works in com-
munication engineering include studies in which all network
nodes are simultaneously physically mobile – for designing
gossip algorithms [13], [6] and improving the capacity of
wireless networks [12] – and analyses of rumour spreading
on fully-connected graphs [10], [11]. Other design-oriented
studies include investigations of optimal seeding in networks
for maximum spread from a computational perspective [7], and
efficient routing over spatial networks with fixed long-range
links [24]. We refer the reader to [25] for more references.

II. MODEL FOR SPREADING WITH VIRTUAL MOBILITY

Consider a sequence of graphs Gn = (Vn, En) indexed by
n, with the n-th graph having n nodes. For instance, Gn could
be the ring graph with n nodes, or a (2-dimensional)

√
n×

√
n

grid. For convenience, we will often drop the subscript n for
all quantities pertaining to the graph Gn when the context is
clear.

We model the spread of an infection on the graph Gn (or
G) using a continuous-time spreading process (S(t))t≥0. At
each time t, S(t) = (S1(t), . . . , Sn(t)) ∈ {0, 1}V denotes the
“infection state” of the nodes in V : Si(t) = 0 (resp. Si(t) = 1)
indicates that node i is “healthy” (resp. “infected”) at time t.
Let us denote by N (S(t)) the number of infected nodes at
time t, i.e. N (S(t))

4
= |{i ∈ V : Si(t) = 1}|. The evolution

of S(t) is assumed to be driven by the following modes of
infection spread (for ease of notation, we label the nodes in
V from 1 to n):



• Static spread: Initially, at t = 0, all nodes are healthy,
except for a single node (node 1) which is infected. Once
any node is infected, it attempts to infect each of its
neighbouring healthy nodes at an exponential rate of β,
i.e. the time taken for the infection to spread from that
node to a neighbour is an independent Exponential(β)
random variable. We call this form of infection spread as
basic or static spread.

• Mobile spread: We assume that a “virtually mobile agent”
external to the network G is capable of infecting (healthy)
nodes at all times. More precisely, at each time t, each
of the healthy nodes is susceptible to infection at an
exponential rate which can depend on the state of the
network S(t). Moreover, as a reasonable limit on the
power of the virtual mobility to spread infection (i.e.
the infection virulence), we stipulate that the sum of the
(exponential) rates of infection of the healthy nodes via
this virtually mobile agent does not exceed a constant
µ, say µ = 1. We call this form of infection spread as
virtually mobile spread.

Remark 1: These definitions of basic and virtually mobile
spread mathematically model the two modes of static/local
spread and long-range virtual mobility-based spread, as dis-
cussed in the introduction, respectively.

Remark 2: In this work, we set both β and the virulence
µ to be fixed constants independent of network size n, time
t or network state; however, in general, these quantities could
potentially vary with n, t or network state to capture various
disparities and dependencies.

Our model of virtually mobile spread naturally allows for a
variety of spreading policies for virtual mobility. A spreading
policy π specifies the exponential rates of mobile infection
due to virtual mobility (or a virtually mobile agent) for all
nodes at all times, which may in general depend on the current
network state. Thus, π can be thought of as a map from the
set of all network states {0, 1}V to the set of rates for nodes:
{(r1, . . . , rn) : ri ≥ 0,

∑
i ri ≤ µ}. Thus, under a spreading

policy π, node i is susceptible to infection at a total exponen-
tial rate of β × |{j ∈ V : Sj(t) = 1, (i, j) ∈ E}|+ π(S(t))i.
As examples, consider the following spreading policies:

• The purely static or no-virtually-mobile spreading policy
π0 which always maps into the all-zeros vector (i.e. as if
there is no virtual/long-range mobility in spreading), and

• The random spreading policy πr which always maps into
the all-ones vector scaled by 1/n (i.e. as if a virtually
mobile agent picks a node in the network uniformly at
random to infect).

Remark 3: As a natural extension, our framework of “vir-
tually mobile” spreading policies can capture static (local)
spreading on the popular randomly-rewired networks intro-
duced by Watts-Strogatz [26] and Kleinberg [24] as long-range
connectivity models for routing on social networks. Broadly,
such graphs are constructed by taking (structured) ring or grid
graphs and randomly adding long-range links between nodes.
If we define a spreading policy on the original ring or grid

graph that lets infection spread through exactly these long-
range links (the virulence µ now depends on the network
state), then this form of virtual mobility on the ring/grid graph
is the same as static spreading on the randomly rewired version
of the graph.

Let Π denote the set of all possible spreading policies. For
each policy π ∈ Π, define the random variable Tπ

4
= inf{t ≥

0 : S(t) = 1n} to be the finish time (or spreading time) for
the policy π, i.e. the time at which all nodes in V get infected.
Our primary focus throughout the paper is to characterize the
order of the finish time with random virtual mobility (i.e. Tπr ),
and to compare it with the best possible finish time over all
spreading policies (infπ∈Π E[Tπ]) on certain classes of graphs.

III. UPPER BOUNDS ON FINISH TIME FOR SPREADING
WITH RANDOM VIRTUAL MOBILITY

We present two main results here – upper bounds on the
finish time of the random spread policy for a general graph G
both in expectation and with high probability.

A. Diameter-based Bound

The result states that if G can be broken into a (large)
number of uniformly-sized pieces, then the time taken by
random spreading to finish is of the order of the number of
pieces or the piece size, whichever dominates. This result will
be our chief tool in the subsequent sections for estimating
finish times for various types of graphs.

Theorem 1 (Time taken by random spread: Diameter version).
Suppose that for each n, the graph Gn admits a partition
Gn =

⋃g(n)
i=1 Gn,i by g(n) connected subgraphs Gn,i, each

with size Θ(s(n)) and diameter O(d(n)). Then,
(a) (Mean finish time) E[Tπr ] = O(h(n) log n), where

h(n) ≡ max(g(n), d(n)).
(b) (Finish time concentration) If g(n) = Ω(nδ) for some

δ > 0, then for any γ > 0 there exists α = α(γ) > 0
such that P[Tπr ≥ αh(n) log n] = O(n−γ).

In other words, we can imagine spreading assisted by
random virtual mobility on large graphs to be dominated by
both (a) the time taken for spread to start in each piece or
area of the graph and (b) the worst possible time taken within
each piece for infection to spread statically.

Proof: The proof is using stochastic dominance and graph
partitioning into suitable shortest-path spanning trees.

Let (S(t))t≥0 (on the state space {0, 1}V ) denote the
spreading process driven by the random spread strategy πr.
Note that in S(·), the net exponential rate (say ri) of each
subgraph Gn,i ≡ Gi being infected by virtual mobile spread
is ri = Θ(s(n)/n) > 0. We define an associated ‘slowed-
down’ virtual-mobile-assisted spreading process (S̃(t))t≥0 as
follows:
• Phase 1: The virtual mobile proceeds as usual, attempting

to infect each node with an exponential rate of µ/n, until
at least one node in each subgraph Gi has been infected.
Let T1 be the first time at which all the Gi have been



infected thus. There is no virtual mobile spread after time
T1.

• Phase 2: At time T1, for each subgraph Gi, only the
first node in Gi, say Ni, infected in Phase 1 is assumed
to be infected, and all other nodes in Gi are considered
healthy, even if some of them were infected on Phase
1 after Ni. The process S̃(·) proceeds from time T1 by
the usual static spread dynamics within each Gi, i.e. with
the caveat that infection does not spread across edges
linking different subgraphs. Denote by T2 the additional
time taken (since T1) for all nodes to get infected.

A standard coupling argument establishes that N (S(t))
stochastically dominates N (S̃(t)) at all times t. Thus, the
finish time for S̃(·) stochastically dominates that of S(·), i.e.

Tπr ≤st T1 + T2. (1)

We next estimate the means of T1 and T2 and their tail
probabilities to finish the proof. The analysis for T1 follows a
coupon-collecting argument: memorylessness of the exponen-
tial distribution implies that T1 is distributed as the maximum
of g(n) i.i.d. exponential random variables with parameter
Θ(s(n)/n) = Θ(1/g(n)). Hence, using a well-known result
about the expectation of the maximum of i.i.d. exponentials,
we obtain

E[T1] = O

(
Hg(n)

1/g(n)

)
= O(g(n) log g(n)), (2)

where Hk
4
=
∑k

i=1 i−1 = O(log k) is the kth harmonic
number. Also, by a union bound over the tails of g(n) i.i.d.
exponential random variables, for any κ > 0 we can estimate
the tail of T1:

P[T1 ≥ κg(n) log g(n)] ≤ g(n)e−(Θ(1/g(n))κg(n) log g(n))

= g(n)−Θ(κ)+1. (3)

To estimate the statistics of T2, we further consider the
following ‘slower” mode of (static) spreading in phase 2:
for each subgraph Gi (with diameter O(d(n))), let Wi be a
shortest-path spanning tree of Gi rooted at the node Ni which
is infected in phase 1. Such a tree has diameter O(d(n))) and
can in principle be obtained by performing a Breadth-First
Search (BFS) on Gi starting at Ni. If we now insist that the
phase-2 static infection process in Gi spreads only via the
edges of Wi, then again, a standard coupling can be used to
show that the time T̂2 when all nodes in G get infected thus
stochastically dominates T2.

We will need the following simple lemma for the remainder
of the proof:

Lemma 1. For real numbers aij , 1 ≤ i ≤ m, 1 ≤ j ≤ n,
maxm

i=1

∑n
j=1 aij ≤

∑n
j=1 maxm

i=1 aij .

For each tree Wi, let its leaves be labelled Ni1, . . . , Nil(i).
Each leaf Nij has a unique path pij starting from Ni to
itself, of length O(d(n)). Let T̂jk be the time taken for the
infection to spread across the kth edge on this path pij , i.e. the
(exponentially distributed) interval between the time when the

(k−1)th node on the path is infected up to the time when the
kth node is infected. Then, the time T̂2,i taken for all nodes
in Wi (or Gi) to get infected can be upper-bounded by using
Lemma 1:

T̂2,i =
l(i)

max
j=1

|pij |∑
k=1

T̂jk ≤
O(d(n))∑

k=1

(
l(i)

max
j=1

T̂jk

)
,

and a further application of the lemma bounds the phase-2
finish time T̂2 = maxg(n)

i=1 T̂2,i as

T̂2 ≤
g(n)
max
i=1

O(d(n))∑
k=1

(
l(i)

max
j=1

T̂jk

)
≤

O(d(n))∑
k=1

(
g(n)
max
i=1

l(i)
max
j=1

T̂jk

)
.

The term in brackets is simply the maximum of the infection
spread times across all stage-k edges of all the trees Wi within
G. Hence, it is stochastically bounded above by the maximum
of n i.i.d Exponential(β) random variables (say Z1, . . . , Zn),
using which we can write

E[T2] ≤ E[T̂2] ≤
O(d(n))∑

k=1

O(Hn/β) = O(d(n) log n). (4)

Again, using the union bound to estimate the tail probability
of T2, we have, for any κ > 0,

P[T2 ≥ κd(n) log n] ≤ P[T̂2 ≥ κd(n) log n]

≤ O(d(n))P[Z1 ≥ κ log n] ≤ n · ne−βκ log n = n−βκ+2.
(5)

We now have all the pieces required for the proof. Com-
bining (1), (2) and (4), along with the fact that g(n) = O(n),
proves the first part of the theorem. For the second part, the
hypothesis that g(n) = Ω(nδ), together with (3), gives

P[T1 ≥ κh(n) log n] ≤ P[T1 ≥ κg(n) log g(n)] ≤ n−δΘ(κ)+δ,

which, together with (1) and (5), gives

P[Tπr
≥ 2κh(n) log n] ≤ P[T1 + T2 ≥ 2κh(n) log n]

≤ n−δΘ(κ)+δ + n−βκ+2 ≤ 2n−min{δ(Θ(κ)−1),βκ−2}.

Choosing κ such that min{δ(Θ(κ) − 1), µκ − 2} ≥ γ now
yields the promised bound in the second part of the theorem.

Remark: The factor of log n stated in the theorem actually
appears only due to T1; a more refined analysis of the phase-
2 time T2 shows that T2 is order-wise d(n) (in expectation
and w.h.p.), the analysis is omitted for lack of space but can
be found in [25]. An important implication thus is that if a
spreading policy infects the subgraphs Gi sequentially (instead
of randomly as with πr), then the finish time is O(h(n)) in
expectation and w.h.p.

B. Conductance-based Bound

As with the diameter, we can also bound the finish time
with random virtual mobility in terms of a different structural
property intimately related to spreading ability in graphs –
the conductance (also called the isoperimetric constant). The



conductance Ψ(G) of a graph G = (V,E) is defined as
Ψ(G)

4
= inf

S⊂V :1≤S≤ |V |
2

E(S,V \S)
|S| , where for A,B ⊆ V ,

E(A,B) denotes the number of edges that have exactly one
endpoint each in A and B. The conductance of a graph
is a widely studied measure of how fast a random walk
on the graph converges to stationarity [27]; the higher the
conductance, the lesser ‘bottlenecks’ it offers for spreading.

Analogous to Theorem 1, the next result formalizes the idea
that spreading on a graph is dominated by the larger of (a) the
number of pieces it can be broken into, and (b) the reciprocal
of the piece conductance. We refer the reader to [25] for proof.

Theorem 2 (Time taken by random spread: Conductance
version). Suppose that for each n, the graph Gn admits a
partition Gn =

⋃g(n)
i=1 Gn,i by g(n) connected subgraphs Gn,i,

each with size Θ(s(n)) and conductance Θ(Ψ(n)). Then,
(a) (Mean finish time) E[Tπr

] = O(k(n) log g(n)), where
k(n) ≡ max

(
g(n), log s(n)

Ψ(n)

)
.

(b) (Finish time concentration) There exists κ > 0 indepen-
dent of n such that

P[Tπr ≥ κk(n) log g(n)] = O
(
(log g(n))−2

)
.

IV. LOWER BOUNDS ON FINISH TIME OVER ALL
ADVERSARIAL VIRTUAL MOBILITY STRATEGIES

In the previous section, we have estimated the time that
random virtual mobility takes to infect all nodes in a net-
work. A natural question at this point is: How does the
time taken by random virtual mobility compare with the
best (i.e. lowest) possible spreading time among all other
spreading strategies? In this section, we show that for certain
commonly studied spatially limited networks such as line/ring
networks, d-dimensional grids and random geometric graphs,
random spreading yields the best order-wise time (up to a
logarithmic factor) to spread infection, even among virtual
mobile strategies that could use the state of the network to
decide their virtual mobility patterns. In particular, for each
of these classes of graphs, we establish lower bounds on the
finish time of any spreading strategy that match the upper
bounds established in the previous section, thus demonstrating
the finish-time optimality of random spreading.

A. Ring/Linear Graphs

For each n, let Gn = (Vn, En) be the ring graph with n

contiguous vertices Vn
4
= {v1, . . . , vn}, En

4
= {(vi, vj) : j −

i ≡ 1 (mod n)} . In the context of Theorem 1, let us partition
Gn into

√
n successive

√
n-sized segments, i.e. Gn,i is the

subgraph induced by v(i−1)
√

n+1, . . . , vi
√

n, where i ranges
from 1, . . . ,

√
n. The diameter of each segment is

√
n, and a

straightforward application of the theorem gives

Corollary 1 (Time for random spread on ring graphs). For
the random spread policy πr on the ring/line graph Gn,

(a) E[Tπr
] = O(

√
n log n),

(b) For any γ > 0 ∃α = α(γ) > 0 such that P[Tπr ≥
α
√

n log n] = O(n−γ).
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Fig. 1. The line graph: Coupling infection spreading with virtual mobility
to a dominating ‘cluster-growth’ process

i.e., the finish time on an n-ring, with random virtual mobil-
ity, is O(

√
n log n) in expectation and with high probability.

Our next main result is to demonstrate that the finish time
on a grid or line graph with any (possibly infection-state
aware) virtual mobility spread strategy must be Ω(

√
n), both in

expectation and with high probability. This establishes that for
ring graphs (or 1-dimensional grids), random virtual mobility
is as good as any other form of controlled virtual mobility in
an order-wise (up to a logarithm) sense.

Theorem 3 (Lower Bound on Finish Time for Ring Graphs).
For the ring graph Gn with n nodes, there exists c > 0
independent of n such that for any spreading policy π,

P
[
Tπ < c

√
n
]

= O
(
e−Θ(1)

√
n
)

.

Moreover, infπ∈Π E[Tπ] = Ω(
√

n).

Proof: Along with the spreading process (Sπ(t))t≥0

induced by the policy π, consider a random process (S̃(t))t≥0

described as follows:

(a) At all times t, S̃(t) consists of an integer number (C̃t)
of sets of points called clusters, where (C̃t)t≥0 is a
Poisson process with intensity µ = 1, and C̃0 = 1 (the
1 denotes an ‘initial’ cluster in which static infection
starts spreading).

(b) Once a new cluster is formed at some time s, it grows,
i.e. adds points, following a Poisson process of intensity
2β.

Via a standard coupling argument, it can be shown that
for all spreading strategies π ∈ Π, at all times t ≥ 0, the
total number of points in S̃(t) (denoted by Ñt) stochastically
dominates that in Sπ(t). Essentially, this is due to two reasons:
first, that the rate of ‘seeding’ of new clusters by π is at most
as fast as that in S̃(·); secondly, each cluster in S̃(·) grows
independently and without interference from other existing
clusters, as opposed to clusters that could ‘merge’ in the
process Sπ(·). Figure 1 graphically depicts the structure of
the dominating process S̃(·). Let T̃

4
= inf{t ≥ 0 : Ñt = n} be

the time when the number of points in S̃(·) first hits n. Owing
to the stochastic dominance N (Sπ(t)) ≤st Ñt, we have that

T̃ ≤st Tπ ∀π ∈ Π. (6)



Knowing the way S̃(·) evolves, we can calculate E[Ñt]:

E[Ñt] = E[E[Ñt|C̃t]] =
∞∑

k=0

e−ttk

k!
E[Ñt|C̃t = k].

Since C̃t is a Poisson process, conditioned on {C̃t = k}, the
k cluster-creation instants are distributed uniformly on [0, t].
Let the times of these arrivals be T̃1, . . . , T̃k; then [T̃i, t] is the
time for which the ith cluster has been growing. Since every
cluster grows at a rate of 2β, conditioned on {C̃t = k}, the
expected size of the ith cluster is 2β(t − T̃i), 1 ≤ i ≤ k.
Also, the expected size of the ‘0-th’ cluster at time t is 2βt.
Using E[T̃i|C̃t = k] = t/2, we obtain E[Ñt|C̃t = k] = 2βt +∑k

i=1 E[2β(t− T̃i)|C̃t = k] = β(k + 2)t, thus

E[Ñt] =
∞∑

k=0

e−ttk

k!
β(k + 2)t = βt2 + 2βt.

⇒P (T̃ > t) = P (Ñt < n) = 1− P (Ñt ≥ n)

≥ 1− E[Ñt]
n

≥ 1− β(t + 1)2

n
,

by an application of Markov’s inequality. This means that

E[T̃ ] =
∫ ∞

0

P(T̃ > x)dx ≥
∫ √n

β−1

0

P(T̃ > x)dx

≥
∫ √n

β−1

0

(
1− β(x + 1)2

n

)
dx = Θ(

√
n).

Together with (6), this forces infπ∈Π E[Tπ] = Ω(
√

n), and the
first part of the theorem is proved. For the second part, if we
denote the size of the ith created cluster at time s ≥ Ti by
X̃i(s), then for any time t we can write(

2et⋂
i=0

{X̃i(t + Ti) < 4eβt}

)⋂
{C̃t < 2et}

⊆

C̃(t)⋂
i=0

{X̃i(t + Ti) < 4eβt}

⋂{C̃t < 2et}

⊆

C̃(t)⋂
i=0

{X̃i(t) < 4eβt}

⋂{C̃t < 2et} ⊆ {Ñt < 8βe2t2}.

Applying a standard Chernoff bound (P[Y ≥ 2eλ] ≤ (2e)−λ

for Y ∼ Poisson(λ)) to C̃t ∼ Poisson(t) and X̃i(t + Ti) ∼
Poisson(2βt) above, we can write

P[Ñt ≥ 8βe2t2] ≤ P[C̃t ≥ 2et] +
2et∑
i=1

P[X̃i(t + Ti) ≥ 4eβt]

≤ (2e)−t + 2et · (2e)−2βt = O(e−t(1∧2β)).

The proof is concluded using the stochastic dominance (6):

P
[
Tπ <

√
n

8βe2

]
≤ P

[
T̃ <

√
n

8βe2

]
= P

[
Ñq

n
8βe2

> n

]
= O

(
e−Θ(1)

√
n
)

.

nn ×
grid

33 nn ×
sub-grid

Fig. 2. A planar grid: Tiling into sub-grids

B. d-Dimensional Grid Graphs

This section shows that the simple, state-oblivious random
virtual mobility spreading strategy achieves the optimal order-
wise finish time even on d-dimensional grid networks where
d ≥ 2. For such a dimension d, the d-dimensional grid
graph Gn = (Vn, En) on n nodes is given by Vn

4
=

{1, 2, . . . , n1/d}d, and En
4
= {(x, y) ∈ Vn × Vn : ||x− y||1 =

1} (throughout, for any l we assume n1/l to be integer to avoid
cumbersome notation).

Consider a partition of Gn into n1/(d+1) identical and con-
tiguous ‘sub-grids’ Gni, i = 1, . . . , n1/(d+1). By this, we mean
that each Gni is induced by a copy of {1, 2, . . . , n1/(d+1)}d

(and thus has nd/(d+1) nodes). For instance, in the case of
a planar

√
n ×

√
n grid, imagine tiling it horizontally and

vertically with 3
√

n identical 3
√

n × 3
√

n sub-grids (Figure 2).
With such a partition, an application of Theorem 1 shows:

Corollary 2 (Time for random spread on d-grids). For the
random spread policy πr on an n-node d-dimensional grid
Gn,

(a) E[Tπr ] = O
(
n1/(d+1) log n

)
,

(b) For any γ > 0 there exists α = α(γ) > 0 such that
P[Tπr

≥ αn1/(d+1) log n] = O(n−γ).

i.e., the finish time with random virtual mobility on a d-
dimensional n-node grid is O

(
n1/(d+1) log n

)
in expectation

and with high probability.
In what follows, we show that any virtual mobile spreading

policy on a grid must take time Ω(n1/(d+1)) to finish infecting
all nodes with high probability, and consequently also in
expectation. Barring a logarithmic factor, this shows that
random virtual mobility is as good as any other (possibly state-
aware) spreading policy on the class of grids.

Theorem 4 (Lower bound on Finish Time for d-grids). Let
Gn be the symmetric d-dimensional grid graph with n nodes.
Then, there exists c = c(d) > 0 not depending on n such that
for any spreading policy π,

P
[
Tπ ≤ cn1/(d+1)

]
= O

(
e−Θ(1)·n1/(2d+2)

)
.

Moreover, infπ∈Π E[Tπ] = Ω
(
n1/(d+1)

)
.

Proof: For the spreading policy π, we introduce a (dom-
inating) spreading process (S̃(t))t≥0 in which
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Fig. 3. The grid graph: Coupling infection spreading with virtual mobility
to a dominating ‘cluster-growth’ process

• At all times t, S̃(t) consists of an integer number (C̃t)
of sets of points called clusters, where (C̃t)t≥0 is a
Poisson process with intensity µ = 1, and C̃0 = 1 (the 1
denotes an ‘initial’ cluster in which static infection starts
spreading).

• Each cluster grows as an independent copy of a static
infection process on an exclusive infinite d-dimensional
grid Zd starting at (0, 0, . . . , 0).

We note that this process is similar to the one considered in the
proof of Theorem 3, but with the difference that the growth
of each cluster follows the natural infection dynamics in a
grid-structured graph. Again, a standard coupling argument
shows that at all times t ≥ 0, the total number of points in
S̃(t) (denoted by Ñt) stochastically dominates that in Sπ(t);
indeed, this is is due to “virtually mobile” cluster seeding at the
highest possible exponential rate and the absence of colliding
infections (Figure 3). As before, letting T̃

4
= inf{t ≥ 0 : Ñt =

n} be the time when the number of points in S̃(·) first hits n,
we record the stochastic dominance

N (Sπ(t)) ≤st Ñt ∀π ∈ Π ⇒ T̃ ≤st Tπ ∀π ∈ Π. (7)

We will need the following key lemma, due the theory of first-
passage percolation [15], which essentially lets us control the
extent to which infection on an infinite grid has spread at time
t:

Lemma 2. Let (Z̃(t))t≥0 ∈ {0, 1}Zd

represent a static/basic
infection spread process on the infinite d-dimensional lattice
Zd starting at node (0, 0, . . . , 0) at time 0. Then, there exist
positive constants l, c1, c2 such that for t ≥ 1,

P[N (Z̃(t)) > tdld] ≤ c1t
2de−c2

√
t.

As in the proof of Theorem 3, denoting by X̃i(s) the size
of the ith created cluster of S̃(·) at time s ≥ Ti, we can write,
for t ≥ 0,(

2et⋂
i=0

{X̃i(t + Ti) < tdld}

)⋂
{C̃t < 2et} ⊆ {Ñt < 2eldtd+1}.

Each of the random variables X̃i(t + Ti) is distributed as
the number of infected nodes in a static infection process
on an infinite grid at time t. Thus, using Lemma 2 and the

aforementioned Chernoff bound for C̃t ∼ Poisson(t), we can
write

P
[
Ñt ≥ (2eld)td+1

]
≤ P

[
C̃t ≥ 2et

]
+

2et∑
i=1

P
[
X̃i(t + Ti) ≥ tdld

]
≤ (2e)−t + 2et · c1t

2de−c2
√

t = O(e−c2
√

t).

With the stochastic dominance (7), this forces

P
[
Tπ ≤

( n

2eld

)1/(d+1)
]
≤ P

[
T̃ ≤

( n

2eld

)1/(d+1)
]

= P
[
Ñ( n

2eld
)1/(d+1) ≥ n

]
= O

(
e−c3·n1/(2d+2)

)
, (8)

establishing the first part of the theorem. To see how this
implies the second part, note that by the probability estimate
(8) and the Borel-Cantelli lemma,

P
[
T̃ ≤

( n

2eld

)1/(d+1)

for finitely many n

]
= 1,

⇒ lim inf
n→∞

T̃

n1/(d+1)
≥ c4

4
=

1
(2eld)1/(d+1)

> 0 a.s.

By Fatou’s lemma,

lim inf
n→∞

E

[
T̃ π

n1/(d+1)

]
≥ E

[
lim inf
n→∞

T̃

n1/(d+1)

]
≥ c4 > 0.

This shows that E[Tπ] ≥ E[T̃ ] = Ω
(
n1/(d+1)

)
for any π ∈ Π,

concluding the proof of the theorem.

Proof of Lemma 2: Let

B̃(t)
4
= {v ∈ Zd : Z̃v(t) = 1} ⊂ Zd (⊂ Rd)

be the set of infected nodes at time t in Z̃. We will use the
following version of a result, from percolation on lattices
with exponentially distributed edge passage times, about the
‘typical shape’ of B̃(t) [15]:

(Theorem 2 in [15]) There exists a fixed (i.e. not depending
on t) cube B0 =

[
− l

2 , l
2

]d ⊂ Rd, and constants c1, c2 > 0,
such that for t ≥ 1,

P
[
B̃(t) ⊂ tB0

]
≥ 1− c1t

2de−c2
√

t. (9)

It follows from (9) that for t ≥ 1,

P[N (Z̃(t)) > tdld] = P[|B̃(t)| > tdld]

≤ P[B̃(t) * tB0] ≤ c1t
2de−c2

√
t.
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Fig. 4. The random geometric graph: Clumping into chunks of small ‘tiles’

C. Random Geometric Graphs

We turn to a popular random graph model for representing
various physical networks – the Random Geometric Graph
(RGG). For simplicity we consider the planar version of the
RGG, in which n points (i.e. nodes) are picked i.i.d. uniformly
in the unit square [0, 1]× [0, 1]. Two nodes x, y are connected
by an edge if and only if ||x − y|| ≤ rn, where rn is often
called the coverage radius. The RGG Gn = Gn(rn) consists
of the n nodes and edges as above.

It is well-known that when the coverage radius rn is above
a critical threshold of

√
log n

π , the RGG is connected with high
probability [28]. In this section, we state and prove two results
that show that random spreading on RGGs in this critical
connectivity regime is as good as any other form of omniscient
virtual mobility. First, we show with high probability that
random spreading finishes in time O( 3

√
n log n), and follow

it up with a converse result that says that no other policy can
better this order (up to the logarithmic factor) with significant
probability. This directly parallels the earlier results about
finish times on 2-dimensional grids, where random virtual-
mobility-based spread exhibits the same optimal order of
growth.

Theorem 5 (Upper bound on spreading time with random
virtual mobility on RGGs). For the planar random geometric

graph Gn(rn), if rn ≥
√

5 log n
n , then there exists α > 0 such

that limn→∞ P [Tπr ≥ α 3
√

n log n] = 0.

Proof: Divide the unit square [0, 1]× [0, 1] into (row and
column-wise) square tiles of side length rn/

√
5 each; there are

thus 5/r2
n such tiles, say k1, . . . , k5/r2

n
. If n points are thrown

uniformly randomly into [0, 1]× [0, 1], then, with E denoting
the event that some tile is empty, it can be shown that

P [E ] ≤ 5
r2
n

P [tile 1 empty] =
5
r2
n

(
1− r2

n

5

)n

≤ 1
log n

. (10)

By construction, note that the maximum distance between
points in two horizontally or vertically adjacent tiles is exactly
rn. Hence, two nodes in horizontally or vertically adjacent
tiles are always connected by an edge. Also, a node in a
tile is not connected to any node in a tile at least three tiles
away in either dimension. If we now divide [0, 1]× [0, 1] into
(bigger) square chunks of side length 1/ 6

√
n each, there are

3
√

n such square chunks, each containing a
√

5
rn

6√n
×

√
5

rn
6√n

grid
of square tiles (Figure 4). In the case where no tile is empty,
it follows from the arguments in the preceding paragraph that
the diameter of the subgraph induced within each chunk is
O
(

1/ 6√n
rn

)
= O

(
1

rn
6√n

)
= O

(
3√n√
log n

)
since rn ≥

√
5 log n

n .
Also, since we are interested in upper-bounding Tπr

, we
disallow the spread of infection between (possibly connected)
nodes in all pairs of diagonally adjacent tiles by appealing to
stochastic dominance as before. An application of Theorem
1 now shows that E [Tπr |E ] = O( 3

√
n log n), and for some

α, γ > 0, P [Tπr ≥ α 3
√

n log n | E ] = O(n−γ). Using (10),
we conclude that

P[Tπr ≥ α 3
√

n log n] = O (1/ log n) n→∞−→ 0.

Towards a lower bound on the spreading time on a RGG
over all spreading policies, consider an infinite planar grid with
additional one-hop diagonal edges, i.e. G = (V,E) where
V = Z2, E = {(x, y) ∈ Z2 : ||x−y||∞ ≤ 1}. Let an infection
process (S(t))t≥0 start from 0 ∈ Z2 at time 0 according
to the standard static spread dynamics, i.e. with each edge
propagating infection at an exponential rate µ, and let I(t)
denote the set of infected nodes at time t. The following key
lemma helps control the size of I(t), i.e. the extent of infection
at time t:

Lemma 3 (Extent of infection at time t on grid with diagonal
edges). There exists c1 > 0 such that for any c2 > 0
and t large enough, P [∃x ∈ I(t) : ||x||∞ ≥ (c1µ + c2)t] =
O ((c1µ + c2)t · e−c2t).

The reader is referred to [25] for the proof. Using Lemma
3 in a manner analogous to that used in proving Theorem 4
for the d-dimensional grid, we finally have

Theorem 6 (Lower Bound on Finish Time for RGGs).
For the planar random geometric graph Gn with rn =
O(
√

log n/n) and any spreading policy π, ∃ β > 0 such
that limn→∞ P

[
Tπ ≥ β

3√n

log4/3 n

]
= 1.

We omit the detailed proof here due to space limitations.
The interested reader can refer to [25] for details.

Proof idea: Divide the unit square [0, 1] × [0, 1] row
and column-wise into rn × rn tiles; there are thus 1/r2

n such
tiles, say k1, . . . , k1/r2

n
. By standard balls-and-bins arguments,

with the n nodes thrown randomly into these n/ log n tiles,
each tile receives a maximum of O(log n) nodes with high
probability. Under this event, take each tile to be the vertex of
a square grid where adjacent diagonals are connected. Also,
set the rate of infection spread on every edge of this grid to
be Exp(µ log2 n). This effectively upper-bounds the best rate
of spread among neighbouring tiles, and using Lemma 3 to
control the maximum rate of spread we can lower bound Tπ

for any π.

V. CONCLUSION

We have modelled the spread of infection on networks with
static and virtual-mobility-assisted spreading components. For



general graphs, we have bounded above the time taken to
spread infection with random long-range virtual mobility
across the whole graph. In the cases of common “spatially
constrained” graphs like lines, grids and random geometric
graphs, we have also established lower bounds on the time
taken to spread infection across all adversarial forms of long-
range spreading. These bounds match the upper bounds for
random virtual mobility up to a logarithmic factor, showing
that random long-range spreading is order-wise optimal for
such graphs.

Future work involves – (i) extending the analysis to other
classes of graphs; we conjecture that all degree-wise sparse,
spatially-induced graphs exhibit optimal infection spreading
time with merely random virtual mobility, whereas expanders
and other low-diameter graphs do not require any long-range
virtual mobility to improve the spreading time; (ii) investigat-
ing the design of reasonably simple non-random virtual mobile
spreading policies that are spreading time-optimal without the
logarithmic factor – we hope this will help provide insights
into optimal seeding for quick dissemination across networks.
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