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Collaborative Learning of Stochastic Bandits over a
Social Network

Ravi Kumar Kolla, Krishna Jagannathan and Aditya Gopalan

Abstract—We consider a collaborative online learning
paradigm, wherein a group of agents connected through a social
network are engaged in learning a stochastic multi-armed bandit
problem. Each time an agent takes an action, the corresponding
reward is instantaneously observed by the agent, as well as its
neighbours in the social network. We perform a regret analysis
of various policies in this collaborative learning setting. A key
finding of this paper is that natural extensions of widely-studied
single agent learning policies to the network setting need not
perform well in terms of regret. In particular, we identify a
class of non-altruistic and individually consistent policies, and
argue by deriving regret lower bounds that they are liable to
suffer a large regret in the networked setting. We also show that
the learning performance can be substantially improved if the
agents exploit the structure of the network, and develop a simple
learning algorithm based on dominating sets of the network.
Specifically, we first consider a star network, which is a common
motif in hierarchical social networks, and show analytically that
the hub agent can be used as an information sink to expedite
learning and improve the overall regret. We also derive network-
wide regret bounds for the algorithm applied to general networks.
We conduct numerical experiments on a variety of networks to
corroborate our analytical results.

Index Terms—Online learning, multi armed bandits, regret,
dominating set.

I. INTRODUCTION

We introduce and study a collaborative online learning
paradigm, wherein a group of agents connected through a
social network are engaged in learning a stochastic Multi-
Armed Bandit (MAB) problem. In this setting, a set of agents
are connected by a graph, representing an information-sharing
network among them. At each time, each agent (a node
in the social network) chooses an action (or arm) from a
finite set of actions, and receives a stochastic reward corre-
sponding to the chosen arm, from an unknown probability
distribution. In addition, each agent shares the action index
and the corresponding reward sample instantaneously with
its neighbours in the graph. The agents are interested in
maximising (minimising) their net cumulative reward (regret)
over time. When there is only one learning agent, our setting
is identical to the classical multi-armed bandit problem, which
is a widely-studied framework for sequential learning [1], [2].
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Our framework is motivated by scenarios that involve multi-
ple decision makers acting under uncertainty towards optimis-
ing a common goal. Potential applications of this work include
cooperative distributed search by multiple robots [3], coopera-
tive foraging [4] and multi-robot radio source localization [5],
[6]. We briefly explain the setting of cooperative distributed
search by multiple robots here. Consider a scenario of an under
water chemical leak. Suppose that a group of robots connected
by a network are tasked with locating the leak among finitely
many valve locations. At each time instant, each robot goes
to one of the locations and gets a sample of the chemical
concentration. Due to constraints on communication costs and
complexity, communication among robots is restricted only to
one hop neighbours [3]. Such a setting is well modelled by
using the collaborative bandit learning framework considered
in this paper.

Another application scenario is that of a large-scale dis-
tributed recommendation system, in which a network of
backend servers handles user traffic in a concurrent fashion.
Each user session is routed to one of the servers running
a local recommendation algorithm. Due to the high volume
of recommendation requests to be served, bandwidth and
computational constraints may preclude a central processor
from having access to the observations from all sessions, and
issuing recommendations simultaneously to them in real time.
In this situation, the servers must resort to using low-rate
information from their neighbours to improve their learning,
which makes this a collaborative networked bandit setting.

In our setting, the agents use the underlying network to
aid their learning task, by sharing their action and reward
samples with their immediate neighbours in the graph. It
seems reasonable that this additional statistical information
can potentially help the agents to optimize their rewards faster
than they would if they were completely isolated. Indeed,
several interesting questions arise in this collaborative learning
framework. For example, how does the structure of the under-
lying network affect the rate at which the agents can learn?
Can good learning policies for the single agent setting be
extended naturally to perform well in the collaborative setting?
Can agents exploit their ‘place’ in the network to learn more
efficiently? Can more ‘privileged’ agents (e.g., nodes with high
degree or influence) help other agents learn faster? This work
investigates and answers some of these questions analytically
and experimentally.

A. Our Contributions
We consider the collaborative bandit learning scenario, and

analyse the total regret incurred by the agents (regret of
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the network) over a long but finite horizon n. Our specific
contributions in this paper are as follows.

We first introduce the UCB-Network policy, wherein all the
agents employ an extension of the celebrated UCB1 [2] policy.
Under this policy, we derive an upper bound on the expected
regret of a generic network, and show that the structure
of the network is captured in the upper bound through its
independence number [7]. We then specialize the upper bound
to common network topologies such as the fully connected
and the star graphs, in order to highlight the impact of the
underlying network structure on the derived upper bound.

Second, we derive a universal lower bound on the expected
regret of a generic network, for a large class of ‘reasonable’
policies. This lower bound is based on fundamental statistical
limits on the learning rate, and is independent of the network
structure. Next, to incorporate the network structure, we derive
another lower bound on the expected regret of a generic
network as a function of the independence number of the
graph G2. Here, G2 is the original graph G augmented with
edges between any pair of nodes that have at least one
common neighbour in G. This bound holds for the class
of non-altruistic and individually consistent (NAIC) policies,
which includes appropriate extensions of well-studied single
agent learning policies, such as UCB1 [2] and Thompson
sampling [8] to a network setting. We then observe that the
gap between the derived lower bound for the NAIC class of
policies, and the upper bound of the UCB-Network policy can
be quite large, even for a simple star network1.

Third, we consider the class of star networks, and derive
a refined lower bound on the expected regret of a large star
network for NAIC policies. We observe that this refined lower
bound matches (in an order sense) the upper bound of the
UCB-Network. We thus conclude that widely-studied sequen-
tial learning policies which perform well in the single agent
setting, may perform poorly in terms of the expected regret of
the network when used in a network setting, especially when
the network is highly hierarchical.

Next, motivated by the intuition built from our bounds,
we seek policies which can exploit the underlying network
structure in order to improve the learning rates. In particular,
for an m-node star network, we propose a Follow Your Leader
(FYL) policy, which exploits the centre node’s role as an
‘information hub’. We show that the proposed policy suffers a
regret which is smaller by a factor of m compared to that of
any NAIC policy. In particular, the network-wide regret for the
star-network under the FYL policy matches (in an order sense)
the universal lower bound on regret. This serves to confirm that
using the centre node’s privileged role is the right information
structure to exploit in a star network.

Finally, we extend the above insights to a generic network.
To this end, we make a connection between the smallest
dominating set [7] of the network, and the achievable regret
under the FYL policy. In particular, we show that the expected
regret of the network is upper bounded by the product of the

1Our special interest in star graphs is motivated by the fact that social
networks often posses a hub-and-spoke structure, where the star is a commonly
occurring motif.

domination number [7] and the expected regret of a single
isolated agent.

In sum, our results on the collaborative bandit learning show
that policies that exploit the network structure often suffer
substantially lesser expected regret, compared to single-agent
policies extended to a network setting.

B. Related Work

There is a substantial body of work that deals with the
learning of various types of single agent MAB problems [1],
[2], [9]–[11]. However, there is relatively little work on the
learning of stochastic MAB problems by multiple agents.
Distributed learning of a MAB problem by multiple agents
has been studied in the context of a cognitive radio framework
in [12]–[14]. Unlike these models, a key novelty in our model
is that it incorporates information sharing among the agents
since they are connected by a network. In [15], the authors
assume that each player, in each round, has access to the entire
history corresponding to the actions and the rewards of all
users in the network – this is a special case of our generic
user network model.

In [16], the authors study the problem of the best arm iden-
tification with fixed confidence in a MAB by multiple players
connected through a complete network with communication
costs. In [17], the authors consider the best arm identification
with fixed budget in MAB problems by multiple agents in the
context of wireless channel selection. They have studied the
problem for a complete graph with communication costs. [18]
deals with the regret minimisation of a non-stochastic bandit
problem for multiple players with communication costs. [19]
also deals with the learning of non-stochastic MAB problem
by multiple agents connected through a network. Note that,
these works are different from our work which deals with
regret minimisation of a stochastic MAB problem by multiple
players connected through a generic network.

In [20], the authors deal with the problem of the regret
minimisation of stochastic bandits for peer to peer networks.
The communication model considered in [20] is that, in each
round, a peer can choose any other 2 peers and send messages
to them. [21] deals with the regret minimisation of stochastic
bandits by multiple agents. The communication model is that,
in each round, an agent either chooses an arm to play or
broadcasts the reward obtained in the previous round to all
other agents. It is easy to see that, these communication models
are different from the communication model considered in our
work. [22] and [23] deal with the problem of cooperative
stochastic multi-armed bandits by multiple agents for the
Gaussian reward distributions and proposed policies inspired
by consensus algorithms. On the other hand, we consider
bounded reward distributions in our model.

The primary focus in [24] is centralized learning, wherein an
external agent chooses the actions for the users in the network.
The learning of the stochastic MAB problem by multiple users
has been considered in [25], and the user communication
model considered therein is similar to the model in our work.
In [25], they address the problem from a game-theoretic
perspective for a complete network. Then, they proposed a
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randomised policy named ε-Greedy for a generic network and
analysed its performance by providing an upper bound on the
expected regret of the network. Note that, the ε-Greedy policy
in [25] requires parameters c and d, as inputs, which depend
on the gaps between the expected rewards of the optimal arm
and the sub-optimal arms. However, these gaps are unknown
to the the agent in practice, and learning these parameters is
often as hard as learning the gaps between expected rewards
of arms, which is as good as learning the expected values of
arms. On the other hand, the policies proposed in this work are
deterministic and do not any need any inputs which depend on
the unknown parameters of the bandit problem. In addition,
we address the problem of network regret minimisation from
a collaborative learning perspective.

In a class of MAB problems considered in [26]–[28], a
sole learning agent receives side observations in each round
from other arms, in addition to samples from the chosen
arm. In [29]–[32], the authors deal with the setting of regret
minimisation of a non-stochastic bandit problem by a single
agent with additional observations in each round. Note that,
these works are different from our work because we deal
with the regret minimisation of a stochastic bandit problem
by multiple agents connected through a network with local
information sharing. Another related paper is [33] – here, the
model consists of a single major bandit (agent) and a set of
minor bandits. While the major bandit observes its rewards,
the minor bandits can only observe the actions of the major
bandit. However, the bandits are allowed to exchange messages
with their neighbours, to receive the reward information of
the major bandit. Clearly, the model described above is rather
different from the setting of this work.

Organization. We describe the system model in Section II.
Section III presents the regret analysis of the UCB-Network
policy. Lower bounds on the expected regret of the network
under certain classes of policies are presented in Section IV.
Section V presents the regret analysis of the FYL policy.
Numerical results are presented in Section VI, and Section VII
concludes the paper.

II. SYSTEM MODEL

We first briefly outline the single agent stochastic MAB
problem. Let K = {1, 2, . . . ,K} be the set of arms available to
the agent. Each arm is associated with a distribution, indepen-
dent of others, say P1,P2, . . . ,PK , and let µ1, µ2, . . . , µK be
the corresponding means, unknown to the agent. Let n be the
time horizon or the total number of rounds. In each round t,
the agent chooses an arm, for which he receives a reward,
an i.i.d. sample drawn from the chosen arm’s distribution.
The agent can use the knowledge of the chosen arms and the
corresponding rewards upto round (t− 1) to select an arm in
round t. The goal of the agent is to maximize the cumulative
expected reward up to round n.

Now, we present the model considered in this paper. We
consider a set of users V connected by an undirected fixed
network G = (V,E), with |V | = m. Assume that each user is
learning the same stochastic MAB problem i.e., faces a choice
in each time from among the same set of arms K. In the tth

round, each user v chooses an arm, denoted by av(t) ∈ K,
and receives a reward, denoted by Xv

av(t)(t), an i.i.d. sample
drawn from Pav(t). In the stochastic MAB problem set-up, for
a given user v, the rewards from arm i, denoted by {Xv

i (t) :
t = 1, 2, . . .}, are i.i.d. across rounds. Moreover, the rewards
from distinct arms i and j, Xv

i (t), Xv
j (s), are independent.

If multiple users choose the same arm in a round, then each
of them gets an independent reward sample drawn from the
chosen arm’s distribution. We use the subscripts i, v and t for
arms, nodes and time respectively. The information structure
available to each user is as follows. A user v can observe
the arms and the respective rewards of itself and its one-hop
neighbours in round t, before deciding the action for round
(t+ 1).

We now briefly connect the applications mentioned in the
Introduction with the system model. In the distributed coop-
erative search application, the robots correspond to the agents
which are connected by a network, and the valve positions
correspond to the arms of the MAB problem. In the application
of the distributed recommendation systems, the servers are the
agents which form the network, and products/items are the
arms of the bandit problem.

The policy Φv followed by a user-v prescribes actions at
each time t, Φv(t) : Hv(t)→ K, where Hv(t) is the informa-
tion available with the user till round t. A policy of the network
G, denoted by Φ, comprises of the policies pertaining to all
users in G. The performance of a policy is quantified by a real-
valued random variable, called regret, defined as follows. The
regret incurred by user v for using the policy Φv upto round n

is defined as, RvΦ(n) =
n∑
t=1

(
µ∗ − µav(t)

)
= nµ∗−

n∑
t=1

µav(t),

where av(t) is the action chosen by the policy Φv at time
t, and µ∗ = max

1≤i≤K
µi. We refer to the arm with the highest

expected reward as the optimal arm. The regret of the entire
network G under the policy Φ is denoted by RGΦ(n)2, and
is defined as the sum of the regrets of all users in G. The
expected regret of the network is given by:

E[RGΦ(n)] =
∑
v∈V

K∑
i=1

∆iE[T vi (n)], (1)

where ∆i = µ∗−µi, and T vi (n) is the number of times arm i
has been chosen by Φv upto round n. Our goal is to devise
learning policies in order to minimise the expected regret of
the network.

Let N (v) denote the set consisting of the node v and
its one-hop neighbours. Let mv

i (t) be the number of times
arm i has been chosen by node v and its one-hop neighbours
till round t, and µ̂mvi (t) be the average of the corresponding
reward samples. These are given as: mv

i (t) =
∑
u∈N (v) T

u
i (t),

and µ̂mvi (t) = 1
mvi (t)

∑
u∈N (v)

∑t
k=1X

u
au(k)(k)I{au(k) = i},

where I denotes the indicator function. We use mG
i (t) to

denote the number of times arm i has been chosen by all
nodes in the network, G, till round t. We use the adjacency
matrix A to represent the network G. If (i, j) ∈ E then

2We omit Φ from the regret notation, whenever the policy can be understood
from the context.
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A(i, j) = A(j, i) = 1, otherwise A(i, j) = A(j, i) = 0. We
assume that A(i, i) = 1 ∀i ∈ V .

III. THE UCB-NETWORK POLICY

Motivated by the well-known single agent policy UCB1 [2],
we propose a distributed policy called the UCB-user. This is
a deterministic policy, since, for a given action and reward
history, the action chosen is deterministic. When each user in
the network follows the UCB-user policy, we term the network
policy as UCB-Network which is outlined in Algorithm 1.

Algorithm 1 Upper-Confidence-Bound-Network (UCB-
Network)

Each user in G follows UCB-user policy
UCB-user policy for a user v:
Initialization: For 1 ≤ t ≤ K
- play arm t
Loop: For K ≤ t ≤ n
- av(t+ 1) = argmax

j
µ̂mvj (t) +

√
2 ln t
mvj (t)

The following theorem presents an upper bound on the
expected regret of a generic network, under the UCB-Network
policy.

Theorem 1: Assume that the network G follows the UCB-
Network policy to learn a stochastic MAB with K arms.
Further, assume that the rewards lie in [0, 1]. Then, we have

E
[
RG(n)

]
≤ α(G)

∑
i:µi<µ∗

[
8 lnn

∆i
+ ∆i

]
+ bG.

In the above, α(G) is the independence number3 of G [7],
and bG = (α(G)dmax + 2.8m)

∑K
j=1 ∆j , where dmax is the

maximum degree of the network.
The following Lemma 1 and 2 are used to establish Theorem 1.
Note that, Lemma 1 and 2 hold for any sub-optimal arm i.
In Lemma 1, we show that the probability of playing a sub-
optimal arm i by a node v in a round t is small if the node
has access to at least li =

⌈
8 lnn
∆2
i

⌉
samples of arm i.

Lemma 1: For S, t ∈ N, let ct,S :=
√

2 ln t
S . For each v ∈ V

and sub-optimal arm i, define τvi as follows: τvi := min{t ∈
{1, 2, . . . , n} : mv

i (t) ≥ li}. Then, for each t > τvi , β ∈
(0.25, 1),

P
(
{µ̂mv∗(t) + ct,mv∗(t) ≤ µ̂mvi (t) + ct,mvi (t)}

)
≤ 2

(
ln t

ln (1/β)
+ 1

)
1

t4β
.

We make use of Hoeffding’s maximal inequality [40] for
proving Lemma 1. To invoke the same, we require a novel
probability space construction which is given in Lemma 3 in
Appendix A. A detailed proof of Lemma 1 is also given in
Appendix A.

In the following result, we give an upper bound on the max-
imum number of samples of the sub-optimal arm i required

3Independence number of a graph G is defined as the cardinality of the
maximum independence set of G.

by the entire network such that each node v has access to at
least li and at most li + |N (v)| − 1 samples of it.

Lemma 2: Let {τvi , v ∈ V, i ∈ K} be same as defined in
Lemma 1. For any sub-optimal arm i, the following holds:∑
v∈V T

v
i (τvi ) ≤ α(G) (li + dmax) .

A detailed proof of Lemma 2 is given in Appendix A. We
now prove Theorem 1 by using Lemmas 1 and 2.

Proof of Theorem 1: From (1), we need to upper
bound E[T vi (n)] for all v ∈ V in order to upper bound the
E
[
RG(n)

]
. Let Bvi (t) be the event that node v plays sub-

optimal arm i in round t:

Bvi (t) = {µ̂mvj (t) + ct,mvj (t) ≤ µ̂mvi (t) + ct,mvi (t),∀j 6= i},
⊆ {µ̂mv∗(t) + ct,mv∗(t) ≤ µ̂mvi (t) + ct,mvi (t)}. (2)

Hence,

E

[
m∑
v=1

T vi (n)

]
= E

[
m∑
v=1

n∑
t=1

[I{t≤τvi ,Bvi (t)} + I{t>τvi ,Bvi (t)}]

]
,

= E

[
m∑
v=1

T vi (τvi )

]
︸ ︷︷ ︸

(a)

+E

[
m∑
v=1

n∑
t=1

I{t>τvi ,Bvi (t)}

]
︸ ︷︷ ︸

(b)

. (3)

Now, we upper bound (b) in (3). Let 1 ≤ v ≤ m. Since,
mv
i (t) ≥ li for t > τvi ,

E

[
n∑
t=1

I{t>τvi }IBvi (t)

]
=

n∑
t=1

P (Bvi (t), {t > τvi }) ,

(c)

≤
∞∑
t=1

2

(
ln t

ln (1/β)
+ 1

)
1

t4β
≤
∞∫

1

2

(
ln t

ln (1/β)
+ 1

)
1

t4β
dt

=
2

4β − 1
+

2

(4β − 1)2 ln(1/β)
∀β ∈ (0.25, 1)

≤ 2.8 (by taking infimum over β),

where (c) is due to Lemma 1. Thus, we get

E

[
m∑
v=1

n∑
t=1

I{t>τvi }IBvi (t)

]
≤ 2.8m. (4)

Using Lemma 2, we upper bound (a) in (3) as:

E

[
m∑
v=1

T vi (τvi )

]
≤ α(G) (li + dmax) . (5)

Combining (3), (4) and (5) establishes the desired result.

A. Application to typical networks

Since evaluating the independence number of an arbitrary
graph is an NP-hard problem, we now evaluate the same for
a few specific networks that range from high connectivity to
low connectivity; namely, the m-node Fully Connected (FC),
circular, star and Fully Disconnected (FD) networks. In the
following, we present the upper bounds in Theorem 1 for the
same networks. Let H (n,∆) =

∑
i:µi<µ∗

(
8 lnn
∆i

+ ∆i

)
.

Corollary 1 For an m-node FC network:

E[RG(n)] ≤ H (n,∆) + bG. (6)
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Corollary 2 For an m-node circular network:

E[RG(n)] ≤
⌊m

2

⌋
H (n,∆) + bG. (7)

Corollary 3 For an m-node star network:

E[RG(n)] ≤ (m− 1)H (n,∆) + bG. (8)

Corollary 4 For an m-node FD network:

E[RG(n)] ≤ mH (n,∆) + bG. (9)

A key insight from the above corollaries is that, the expected
regret of a network decreases by a factor of m, 2 and
m/(m − 1) in the cases of m-node FC, circular and star
networks respectively, compared to FD network. Another key
observation is that, since the UCB-Network policy’s regret
upper bounds for star and FD networks are almost same, it
is possible that this policy may suffer large regret on star
networks.

IV. LOWER BOUNDS ON THE EXPECTED REGRET

In this section, we derive lower bounds on the expected
regret of the network under various classes of policies. Our
first lower bound is a universal bound which is independent
of the user network, and holds for large class of ‘reasonable’
learning policies. Second, we derive a network-dependent
lower bound for a class of Non-Altruistic and Individually
Consistent (NAIC) policies – a class that includes network
extensions of well-studied single-agent policies like UCB1 and
Thompson sampling. Finally, we derive a refined lower bound
for large star networks under NAIC policies.

Throughout this section, we assume that the distribution of
each arm is parametrised by a single parameter. We use θ =
(θ1, . . . , θK) ∈ ΘK = Θ to denote the parameters of arms 1
to K respectively. Suppose f(x; θj) be the reward distribution
for arm j with parameter θj . Let µ(θj) be the mean of arm
j, and θ∗ = arg max1≤j≤K µ(θj). Define the parameter sets
for an arm j as Θj = {θ : µ(θj) < maxi 6=j µ(θi)} and
Θ∗
j = {θ : µ(θj) > maxi 6=j µ(θi)}.
Note that Θj contains all parameter vectors in which the

arm j is a sub-optimal arm, and Θ∗
j contains all parameter

vectors in which the arm j is the optimal arm. Let kl(β||λ) be
the KL divergence of the distribution parametrised by λ, from
the distribution parametrised by β. We require the following
standard assumptions on Θ and f(·; ·) [1]:

Assumption 1 [A1]:
(i) f(.; .) is such that 0 < kl(β||λ) < ∞ whenever

µ(λ) > µ(β).
(ii) For all ε > 0 and β, λ such that µ(λ) > µ(β), there exists

δ = δ(ε, β, λ) > 0 for which |kl(β||λ) − kl(β||λ′)| < ε
whenever µ(λ) ≤ µ(λ′) ≤ µ(λ) + δ.

(iii) Θ is such that for all λ ∈ Θ and δ > 0, there exists
λ′ ∈ Θ such that µ(λ) < µ(λ′) < µ(λ) + δ.

Theorem 2: Let G be an m-node connected generic net-
work, and suppose [A1] holds. Consider the set of policies
for users in G to learn a K-arm stochastic MAB problem
with a parameter vector of arms as θ ∈ Θ s.t. Eθ[mG

j (n)] =
o(nc) ∀ c > 0, for any sub-optimal arm j. Then, we have
lim inf
n→∞

Eθ [mGj (n)]

lnn ≥ 1
kl(θj ||θ∗) .

Proof: Follows from Theorem 2 in [1].
Note that the above universal lower bound is based on

fundamental statistical limitations, and is independent of the
network G. Next, we define the class of NAIC policies, and
derive a network-dependent lower bound for this class. In the
rest of this section, we assume that each arm is associated with
a discrete reward distribution like Bernoulli, which assigns a
non-zero probability to each possible value.

Let ω be a sample path, which consists of all pairs of arms
and the corresponding rewards of all nodes from rounds 1
through n: ω = {(av(t), Xv

av(t)(t)) : v ∈ V, 1 ≤ t ≤ n}. Let
ωv be the sample path restricted to node v and its one-hop
neighbours i.e, it consists of all pairs of arms and rewards
of node v and its one-hop neighbours from round 1 through
n. Let ωv̄ be the sample path restricted to all nodes who
are not present in the one-hop neighbourhood of node v.
Mathematically,

ωv = {(au(t), Xu
au(t)(t)) : u ∈ N (v), 1 ≤ t ≤ n}

ωv̄ = {(au(t), Xu
au(t)(t)) : u ∈ N (v)c, 1 ≤ t ≤ n}.

Definition 1. [Individually consistent policy] A policy fol-
lowed by a user v is said to be individually consistent if,
for any sub-optimal arm i, and for any policy of a user
u ∈ N (v) \ {v}, E[T vi (n)|ωv̄] = o(na), ∀ a > 0, ∀ωv̄.

Definition 2. [Non-altruistic policy] A policy followed by
a user v is said to be non-altruistic if there exist a1, a2, not
depending on time horizon n, such that the following holds.
For any n and any sub-optimal arm j, the expected number of
times that the policy plays arm j after having obtained a1 lnn
samples of that arm is no more than a2, irrespective of the
policies followed by the other users in the network.

Intuitively, a non-altruistic policy means that it plays any
sub-optimal arm only a constant number of times after it has
sufficient information to identify the arm as sub-optimal. It can
be shown that the network extensions of UCB1 (UCB-user)
and Thompson sampling [8] are NAIC policies. In particular,
we show that the UCB-user policy is an NAIC policy in
Appendix A of the supplementary material.

Example of a policy which is not individually consistent :
Consider a 2-armed bandit problem with Bernoulli rewards
with means µ1, µ2 s.t. µ1 > µ2. Consider the 3-node line graph
with node 2 as the center. Let the policy followed by node 1
be as follows: a1(t) = a2(t− 1) for t > 1 and a1(1) = 2 (we
call this policy follow node 2). Consider the following ω1̄ =
{(a3(t) = 2, X3

2 (t) = 0) : 1 ≤ t ≤ n}. Then, E[T 1
2 (n)|ω1̄] =

n under the node 2’s policy as follow node 3, which clearly
violates the Individual consistent definition. Hence, the follow
node 2 policy for node 1 is not individually consistent.

Note that the above policy, follow node u, is in fact a non-
trivial and rather well-performing policy that we will revisit
in Section V. We now provide a network-dependent lower
bound for the class of NAIC policies. We need the following
to introduce our next result. Let G2 = (V,E′) be the original
graph G = (V,E) augmented with edges between any pair
of nodes that have at least one common neighbour in G.
Essentially, (u, v) ∈ E′ if and only if either (u, v) ∈ E or
N (u) ∩ N (v) 6= φ. Let α

(
G2
)

be the independence number
of the graph G2. Note that α

(
G2
)
≤ α(G).
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Theorem 3: Let G = (V,E) be a network with m nodes,
and suppose [A1] holds. If each node in V follows an NAIC
class policy to learn a K-arm stochastic MAB problem with
a parameter vector of arms as θ = (θ1, . . . , θK) ∈ Θj , then
the following lower bounds hold:

(i) lim inf
n→∞

Eθ[mv
j (n)|ωv̄]
lnn

≥ 1

kl(θj ||θ∗)
, ∀v ∈ V

lim inf
n→∞

Eθ[mv
j (n)]

lnn
≥ 1

kl(θj ||θ∗)
, ∀v ∈ V

(ii) lim inf
n→∞

Eθ[mG
j (n)]

lnn
≥ α(G2) · 1

kl(θj ||θ∗)
, (10)

where α(G2) is the independence number of the graph G2.

Proof: Refer Appendix B.
Recall that evaluating the independence number of an

arbitrary graph G is an NP-hard problem. Hence, we evaluate
α(G2) for various networks such as FC, circular, star and
FD, and provide the corresponding lower bounds below. Let
∆i = µ(θ∗)− µ(θi) and J (θ,∆) =

∑
i:∆i>0

∆i

kl(θi||θ∗) .
Corollary 5 For an m-node FC network:

lim inf
n→∞

Eθ[RG(n)]

lnn
≥ J (θ,∆) . (11)

Corollary 6 For an m-node circular network:

lim inf
n→∞

Eθ[RG(n)]

lnn
≥
⌊m

3

⌋
J (θ,∆) . (12)

Corollary 7 For an m-node star network:

lim inf
n→∞

Eθ[RG(n)]

lnn
≥ J (θ,∆) . (13)

Corollary 8 For an m-node FD network:

lim inf
n→∞

Eθ[RG(n)]

lnn
≥ mJ (θ,∆) . (14)

From Corollaries 1-8, we infer that the upper bound of the
UCB-Network and the lower bound given by (10) are of the
same order, for FC (lnn), circular (m lnn) and FD (m lnn)
networks. However, for star networks, there is a large gap
between the UCB-Network upper bound and the lower bound
for NAIC policies in (13). Since the UCB-Network is an NAIC
policy, we proceed to ascertain if either of these bounds is too
loose for star networks. Our special interest in star networks
is due to the prevalence of hubs in many social networks, and
as we shall see in the next section, this hierarchical structure
can be exploited to enhance the learning rate.

Next, we consider a specific instance of a large star network,
for which we derive a refined lower bound for the class of
NAIC policies.

Theorem 4: Let Gn = (Vn, En) be a sequence of mn-
node star networks learning a 2-arm stochastic MAB problem
with mean rewards µa, µb such that µa > µb. Suppose
mn ≥ 2 · lnn

kl(µb || µa) , and that each node follows an NAIC

policy. Then, lim inf
n→∞

E[mGn2 (n)]
(mn−1) lnn ≥

1
kl(µb||µa) .

Proof: Refer Appendix C.

Theorem 4 asserts that, for a fixed large time horizon n, we
can construct a star network with only m = O (lnn) nodes,
whose expected regret is at least O((m− 1) lnn). This lower
bound matches with the upper bound for UCB-Network in
Theorem 1. Thus, we conclude that the class of NAIC policies
could suffer a large regret, matching the upper bound in an
order sense. However, for the same star network and time
horizon, the universal lower bound in Theorem 2 turns out to
be O(lnn). This gap suggests the possibility that there might
exist good learning policies (which are not NAIC) for a star
network, with regret matching the universal lower bound. In
the next section, we propose one such policy, which does not
belong to the NAIC class.

We now briefly explain the intuition behind Theorem 4. In
a large star network, the center node learns the sub-optimal
arm very quickly (in a few rounds), since it has access to
a large number of samples in each round. Under an NAIC
policy, once a node has enough samples to learn that an arm
is sub-optimal, by definition, it stops choosing that arm with
high probability. Hence, the center node stops choosing the
sub-optimal arm with high probability, which in turn ensures
that the leaf nodes learn the sub-optimal arm themselves, by
choosing the sub-optimal arm O(lnn) times. This leads to a
regret of O((m− 1) lnn). Our simulation results, in Table I,
also illustrates this behaviour, for the UCB-Network policy
(which is NAIC) on large star networks.

Remark. We can show that Theorems 1, 2, 3 and 4 of this
paper hold for directed graphs too, when the adjacency matrix
of the directed graph considered in the results.

V. THE FOLLOW YOUR LEADER (FYL) POLICY

In this section, we first outline a policy called Follow Your
Leader (FYL) for a generic m-node network. The policy is
based on exploiting high-degree hubs in the network; for this
purpose, we define the dominating set and the dominating set
partition.

Definition 3. [Dominating set of a network] [7] A dominat-
ing set D of a network G = (V,E) is a subset of V such that
every node in V \D is connected to at least one of the nodes
in D. The cardinality of the smallest dominating set of G is
called as the domination number.

Definition 4. [Dominating set partition of a network] Let D
be a dominating set of G. A dominating set partition based
on D is obtained by partitioning V into |D| components such
that each component contains a node in D and a subset of its
one-hop neighbours.

Note that given a dominating set for a network, it is easy
to obtain a corresponding dominating set partition. The FYL
policy for an m-node generic network is outlined in Algo-
rithm 2. Under the FYL policy, all nodes in the dominating
set are called leaders and all other nodes as followers; the
follower nodes follow their leaders while choosing an action
in a round. As we argued in Section IV, the policy deployed
by a follower node in FYL is not individually consistent. The
following theorem presents an upper bound on the expected
regret of an m-node star network which employs the FYL.

Theorem 5 (FYL regret bound, star networks): Suppose
the star network G with a dominating set as the center node,
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Algorithm 2 Follow Your Leader (FYL) Policy

Input: Network G, a dominating set D and a dominating
set partition
Leader - Each node in D :
Follows the UCB-user policy by using the samples of itself
and its one-hop neighbours in the same component
Follower - Each node in V \D :
In round t = 1 :
- Chooses an action randomly from K
In round t > 1
- Chooses the action taken by the leader in its component,
in the previous round (t− 1)

follows the FYL to learn a stochastic MAB problem with K
arms. Assume that the rewards lie in [0, 1]. Then, we have

E[RG(n)] ≤
∑

i:µi<µ∗

8 lnn

∆i
+ (4.8m− 1)

K∑
j=1

∆j .

Proof: Without loss of generality, we assume that node 1
is the center node in the star network. Under FYL policy, for
2 ≤ u ≤ m, au(t) = a1(t − 1) for t > 1. Hence, for any
sub-optimal arm i and any non-central node u ∈ [2, 3 . . . ,m],

Tui (n) = I{au(1)=i} + I{au(2)=i} · · ·+ I{au(n)=i},

= I{au(1)=i} + I{a1(1)=i} · · ·+ I{a1(n−1)=i} ≤ 1 + T 1
i (n− 1).

Then, we obtain the following:
m∑
v=1

T vi (n) = T 1
i (n) + T 2

i (n) · · ·+ Tmi (n),

≤ T 1
i (n) + 1 + T 1

i (n− 1) · · ·+ 1 + T 1
i (n− 1),

≤ (m− 1) +mT 1
i (n), (15)

since T 1
i (n − 1) ≤ T 1

i (n). Now, we find an upper bound
on T 1

i (n) under FYL policy. Let τ1 be the least time step at
which m1

i (τ1) is at least li = d(8 lnn)/∆2
i e. Observe that,

under FYL policy T 1
i (τ1) = dli/me. Since the center node

has chosen arm i for dli/me times, (m− 1) leaf nodes must
have also selected arm i for the same number of times. This
leads to m1

i (τ1) = li. Let B1
i (t) be the event that node 1

chooses arm i in round t. Then,

T 1
i (n) = T 1

i (τ1) +

n∑
t=τ1+1

IB1
i (t) =

⌈ li
m

⌉
+

n∑
t=τ1+1

IB1
i (t).

By using the analysis in Theorem 1, we obtain
E
[∑n

t=τ1+1 IB1
i (t)

]
≤ 2.8. Hence, E[T 1

i (n)] ≤
⌈
li/m

⌉
+2.8.

From (15), we get that
∑m
v=1 E[T vi (n)] ≤ (8 lnn)/∆2

i +
4.8m− 1, where we have substituted li = d(8 lnn)/∆2

i e. By
substituting the above in equation (1), we obtain the desired
result.
A key insight obtained from Theorem 5 is that an m-node
star network under the FYL policy incurs an expected regret
that is lower by a factor (m− 1), as compared to any NAIC
policy. More importantly, we observe that the regret upper
bound under the FYL policy meets the universal lower bound

in Theorem 2. Hence, we conclude that the FYL policy is
order optimal for star networks.

Finally, we present a result that asserts an upper bound on
the expected regret of a generic network under the FYL policy.

Theorem 6 (FYL regret bound, general networks): Let D
be a dominating set of an m-node network G = (V,E).
Suppose G with the dominating set D employs the FYL policy
to learn a stochastic MAB problem with K arms, and the
rewards lie in [0, 1], then we have

E[RG(n)] ≤
∑

i:µi<µ∗

8|D| lnn
∆i

+ |D|(4.8m− 1)

K∑
j=1

∆j .

Proof: Since the leader node (a node in the given domi-
nating set) in a particular component uses samples only from
its neighbours in the same component, we can upper bound
the expected regret of each component using Theorem 5. We
get the desired result by adding the expected regrets of all the
components.

From the above theorem we infer that, the expected regret
of a network scales linearly with the cardinality of a given
dominating set. Hence, in order to obtain the tightest upper
bound, we need to supply a smallest dominating set D∗ to
the FYL policy. Suppose, if we provide D∗ as the input to the
FYL policy, then we obtain an improvement of factor m/|D∗|
in the expected regret of an m-node network compared to the
fully disconnected network.

It is known that, computing a smallest dominating set of
a given graph is an NP-hard problem [34]. However, fast
distributed approximation algorithms for the same are well-
known in the literature. For example, Algorithm 35 in [34]
finds a smallest dominating set with an approximation factor
log(MaxDegree(G)). Also, upper bounds on the domination
number for specific networks such as Erdos-Renyi, power-
law preferential attachment and random geometric graphs are
available in [35]–[37].

VI. NUMERICAL RESULTS

We now present some simulations that serve to corroborate
our analysis. The simulations have been carried out using
MATLAB, and are averaged over 100 sample paths. We fix
the time horizon n to be 105.

A. Performance of UCB-Network on star networks

We consider 5, 10, 25, 50, 100, 200 and 350 node star
networks, each learning a 2-armed stochastic bandit problem
with Bernoulli rewards of means 0.7 and 0.5. We run the
UCB-Network policy on the aforementioned networks, and
summarise the results in Table I. Observe that, the expected
number of times the center node chooses arm 2 (sub-optimal
arm) decreases as the network size increases. This forces each
leaf node to choose arm 2 on its own in order to learn.
Therefore, as the star network size increases, the expected
regret of the network can be approximated as the product of
the network size and the expected regret of an isolated node.
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TABLE I: Expected number of times arm 2 played by a node
in star networks under UCB-Network policy, 2 armed MAB
problem with Bernoulli mean rewards as 0.7 and 0.5

Size of the network Center Node Leaf Node
5 66 448
10 79 442
25 33 486
50 10 502

100 1 514
200 1 516
350 1 513

B. Local behaviour comparison of UCB-Network and FYL

To illustrate the local behaviour of the FYL and UCB-
Network (an NAIC policy) policies, we conduct simulations
in which we compare the performance of individual nodes’
regret under both the policies. We consider a 10 node star
network and a 10-armed bandit problem with Bernoulli arm
distributions whose parameters are as 1, 0.9, 0.8 . . . , 0.1. We
run FYL and UCB-Network policies on the aforementioned
problem. Under our model, in a star network, all leaf nodes
have symmetric information structure and hence we have
taken an arbitrary leaf node as a representative for all leaf
nodes. We have plotted expected regrets of the center and the
representative of leaf nodes under the FYL and UCB-Network
in Figure 1. From Figure 1, we observe that the regrets of leaf
and center nodes are almost same under the FYL policy. On
the other hand, there is a huge gap between the regrets of leaf
and center nodes under the UCB-Network policy. Further, note
that, the gap between the regrets of the center node under the
FYL and UCB-Network is small and at the same time gap
between the regrets of leaf node under these two policies is
huge. This observation leads to the conclusion that the local
behaviour of the FYL is better than the UCB-Network.
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Fig. 1: Illustration of local behaviour of FYL and UCB-
Network policies on 10 node star networks; 10-armed
Bernoulli bandit problem with means are as 1, 0.9 . . . , 0.1.
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C. Comparison of FYL policy and a centralised policy

We now proceed to compare the FYL policy with a cen-
tralised policy on various networks. We first briefly introduce
the centralized policy considered in the simulations. Under
centralized control setting, we assume that there is an external
agent who has access to information of all the nodes and then
he suggests actions to all nodes in each round. For a given
network, we devised the centralized policy as follows. The
external agent chooses a node in the network and suggests
that node to play the UCB policy by taking information from
all nodes into account. He also suggests all other nodes to
follow the node which is using the UCB policy. It is easy to
see that, this policy is same as FYL policy. Since FYL policy
achieves the universal regret lower bound on star networks,
we can treat this policy as a centralized policy. Note that, we
can have this policy on any network under the assumption that
centralized control is possible.

Figures 2-5 show the various networks considered in the
simulations. To maintain consistency in the simulations, we
have fixed the number of nodes in all the networks are as
15. We call these networks as “NW #1”, “NW #2”, “NW
#3”, “NW #4”. Note that, the cardinality of the smallest
dominating set of these networks are 2, 3, 4 and 5 respectively.
We considered a 10-armed Bernoulli bandit problem with
means drawn uniformly random from [0, 1], whose details are
mentioned in the captions of Figure 6. We have run the FYL
and the aforementioned centralised policy on these various
networks. In Figure 6, we have plotted the expected regrets of
FYL policy and the centralized policy on these four networks.
From Figure 6, we observe that the FYL policy’s expected
regret increases as the cardinality of the smallest dominating
set increases.

D. Comparison of FYL and ε-Greedy policy in [25]

Since the model considered in [25] is similar to ours, we
now compare the performance of the proposed FYL policy
with the ε-Greedy policy proposed in [25] on various net-
works. Note that, the ε-Greedy policy requires c and d, as
input parameters, which require the knowledge of difference
between the expected values of the optimal and sub-optimal
arms of the bandit problem.

We first compare the FYL and the ε-Greedy policies on star
networks. We consider 10-armed bandit problem consists of
Bernoulli rewards with mean values are as 1, 0.9, 0.8 . . . , 0.1,

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Fig. 5: N/W #4
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(a) 10 node and the following parameters are for ε-greedy
policies: c1 = 4, d1 = 0.05, c2 = 10, d2 = 0.05, c3 = 20,
d3 = 0.01, z = (1 0 0 . . . 0).
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(b) 25 node and the following parameters are for ε-greedy
policies: c1 = 4, d1 = 0.01, c2 = 10, d2 = 0.05, c3 = 20, d3
= 0.05, z = (1 0 0 . . . 0).

Fig. 7: Comparison of our FYL, UCB-Network policies, and
the ε-Greedy policy [25] for star networks on an 10-armed
Bernoulli bandit problem with means are as 1, 0.9, 0.8, . . . ,
0.1.

and 10 and 25 node star networks. We ran our FYL, UCB-
Network policies and ε-Greedy policy in [25] with various c
and d parameters on the aforementioned problem. We consider
three sets of c and d parameters for the ε-Greedy policy and
named these policies as “Greedy-1”, “Greedy-2”, “Greedy-3”
in the simulations. The parameter z which is mentioned in the
figure captions is a solution to (5) in [25] which is used in
the ε-Greedy policy. From Figure 7, we observe that the FYL
policy outperforms the ε-Greedy policy for all the various c
and d parameters considered.

We now compare FYL and ε-Greedy policies on the net-
works shown in Figure 3 and 4. We consider a 10-armed
Bernoulli bandit problem with means are drawn uniformly
at random from [0, 1]. We have run both policies on these
networks and the results are shown in Figure 8 and 9. Figures

captions contain the details of arm means of the bandit
problem, and the parameters of the ε-Greedy policy. From
Figures 8-9, we observe that the FYL policy outperforms the
ε-Greedy policy in [25] on all the considered networks.
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Fig. 8: FYL vs ε-Greedy on N/W #2; Parameters of the bandit
problem and the policies: µ = [0.99 0.65 0.63 0.60 0.42 0.39
0.35 0.22 0.14 0.02], z = [1 0 0 0 0 1 0 0 0 0 1 0 0 0 0], d1

= 0.1723, c1 = 2, d2 = 0.0689, c2 = 10.
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Fig. 9: FYL vs ε-Greedy on N/W #3;Parameters of the bandit
problem and the policies: µ = [0.96 0.95 0.91 0.90 0.81 0.63
0.54 0.29 0.13 0.09], z = [1 0 0 0 0 0 1 0 0 0 1 0 0 1 0], d1

= 0.0037, c1 = 2, d2 = 0.0015, c2 = 10.

VII. CONCLUDING REMARKS

We studied the collaborative learning of a stochastic MAB
problem by a group of users connected through a network. We
analysed the regret performance of widely-studied single-agent
learning policies, extended to a network setting. Specifically,
we showed that the class of NAIC policies (such as UCB-
Network) could suffer a large expected regret in the network
setting. We then proposed and analysed the FYL policy, and
demonstrated that exploiting the structure of the network leads
to a substantially lower expected regret. In particular, the
FYL policy’s upper bound on the expected regret matches the
universal lower bound, for star networks, proving that the FYL
policy is order optimal. This also suggests that using the center
node as an information hub is the right information structure
to exploit.

In terms of future research directions, we plan to study this
model for other flavours of MAB problems such as linear
stochastic [38] and contextual bandits [39]. Even in the basic
stochastic bandit model considered here, several fundamental
questions remain unanswered. For a given network structure,
what is the least regret achievable by any local information-
constrained learning strategy? Is it possible in a general
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network to outperform ‘good single-agent’ policies (i.e., those
that work well individually, like UCB) run independently
throughout the network? If so, what kind of information
sharing/exchange might an optimal strategy perform? It is
conceivable that there could be sophisticated distributed bandit
strategies that could signal within the network using their
action/reward sequences, which in turns begs for an approach
relying on information-theoretic tools. Another interesting line
of future work is to consider the strategic behaviour among
the agents and study when each agent tries to individually
optimize a notion of utility. In this regard, an important open
question would be – what is the utility function for each
player such that the appropriate equilibrium or locally optimal
response is to somehow coordinate their efforts in this manner?
This would help in understanding incentive mechanisms for
the nodes to cooperate, and is a subject of independent, follow-
up research.
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APPENDIX A

We require the following concentration inequality and
Lemma 3 to prove Lemmas 1 and 2.
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Hoeffding’s Maximal Inequality [40]: Let X1, X2, . . . be cen-
tered i.i.d. r.v.s lying in [0, 1]. Then, for any x > 0 and t ≥ 1,

we have P
(
∃s ∈ {1, . . . , t}s.t.

s∑
i=1

Xi > x

)
≤ exp

(
− 2x2

t

)
.

In order to introduce Lemma 3, we need the following.
Consider a new probability space with the probability measure
P̃, for the following rewards corresponding to all arms. First,
for a fixed node v ∈ V , for each action i ∈ K, we consider
a sequence of i.i.d. random variables {Yi(k)}∞k=1 with arm i’s
distribution. If a node v or its neighbours choose an arm i, then
they receive the rewards from the sequence {Yi(k)}∞k=1. Next,
for each u ∈ V \ N (v), for each action i ∈ K, we consider a
sequence of i.i.d. random variables {Xu

i (k)}∞k=1 with arm i’s
distribution. If a node u ∈ V \N (v) chooses an arm i, then it
receives a reward from the sequence {Xu

i (k)}∞k=1. Recall that,
in the setting described in Section II, if a user v chooses arm i,
then it receives a reward from the sequence {Xv

i (k)}∞k=1. In
this probability space, we considered the probability measure
to be P.

In the following lemma, we prove that the probabilities of
a sample path of the network in both probability spaces are
equal. Hence, this allows us to equivalently work in the new
probability space, as and when required.

Lemma 3: Consider an m-node undirected network. Let
A(t) and Z(t) be the random variables which indicate the
actions chosen by all nodes and the corresponding rewards,
in round t. Let E(k) = (A(k), Z(k), . . . , A(1), Z(1)). Then,
∀t ≥ 1, P[E(t) = (ā1:t, z̄1:t)] = P̃[E(t) = (ā1:t, z̄1:t)], where
ā1:t = (ā1, . . . , āt) , z̄1:t = (z̄1, . . . , z̄t) with āk ∈ Km and
z̄k ∈ [0, 1]m for any k ≥ 1.
A detailed proof of Lemma 3 is given in Appendix A of the
Supplementary material.

Proof of Lemma 1.
Proof: For convenience, we denote Avi (t) = {µ̂mv∗(t) +

ct,mv∗(t) ≤ µ̂mvi (t) + ct,mvi (t)}. Note that,

P (Avi (t) ∩ {t > τvi }) = P (Avi (t) ∩ {mv
i (t) ≥ li}) . (16)

Observe that, the event Avi (t) occurs only if at least one of
the following events occur.

{µ̂mv∗(t) ≤ µ
∗ − ct,mv∗(t)}, (17)

{µ̂mvi (t) ≥ µi + ct,mvi (t)}, (18)

{µ∗ < µi + 2ct,mvi (t)}. (19)

Note that, the event given in (19) does not occur when the
event {mv

i (t) ≥ li} occurs. Hence,

P (Avi (t) ∩ {mv
i (t) ≥ li}) ≤

P({µ̂mv∗(t) ≤ µ
∗ − ct,mv∗(t)} ∪ {µ̂mvi (t) ≥ µi + ct,mvi (t)}

∩ {mv
i (t) ≥ li}),

≤ P
(
{µ̂mv∗(t) ≤ µ

∗ − ct,mv∗(t)}
)

+ P
(
{µ̂mvi (t) ≥ µi + ct,mvi (t)}

)
. (20)

For each node v ∈ V and each arm i, the initialization
phase of the UCB-user policy implies that |N (v)| ≤
mv
i (t) ≤ |N (v)|t. Therefore, P

(
µ̂mv∗(t) ≤ µ

∗ − ct,mv∗(t)
)
≤

P (∃s∗ ∈ {|N (v)|, . . . , |N (v)|t} : µ̂s∗ ≤ µ∗ − ct,s∗) , Now,
we use the peeling argument [40] on a geometric grid over

[a, at] which is given here. For any β ∈ (0.25, 1), a ≥ 1, if
s ∈ {a, . . . , at} then there exists j ∈ {0, . . . , ln t

ln(1/β)} such
that aβj+1t < s ≤ aβjt. Hence,

P
(
µ̂mv∗(t) ≤ µ

∗ − ct,mv∗(t)
)

≤

ln t
ln(1/β)∑
j=0

P
(
∃s∗ : |N (v)|βj+1t < s∗ ≤ |N (v)|βjt,

s∗µ̂s∗ ≤ s∗µ∗ −
√

2s∗ ln t
)
, (21)

≤

ln t
ln(1/β)∑
j=0

P
(
∃s∗ : |N (v)|βj+1t < s∗ ≤ |N (v)|βjt,

s∗µ̂s∗ ≤ s∗µ∗ −
√

2|N (v)|βj+1t ln t
)
. (22)

Now, we proceed to bound the RHS in the above equation by
using Hoeffding’s maximal inequality. Note that, the random
variables present in the RHS of (22) are drawn from various
i.i.d. sequences. Since the Hoeffding’s maximal inequality
requires i.i.d. random variables drawn from a single sequence,
we invoke the same in the new probability space with the
measure P̃ due to Lemma 3. Thus,

P
(
µ̂mv∗(t) ≤ µ

∗ − ct,mv∗(t)
)
≤

ln t
ln(1/β)∑
j=0

exp (−4β ln t) ,

≤
(

ln t

ln (1/β)
+ 1

)
1

t4β
. (23)

Similarly, we can show that

P
(
µ̂mvi (t) ≥ µi + ct,mvi (t)

)
≤
(

ln t

ln (1/β)
+ 1

)
1

t4β
. (24)

Substituting (23) and (24) in (20) gives the desired result.
In order to present the proof of Lemma 2, we need the

following notation. Let γk denote the smallest time index
when at least k nodes have access to at least li samples of
sub-optimal arm i i.e., γk = min{t ∈ {1, . . . , n} : |{v ∈
V : mv

i (t) ≥ li}| ≥ k}. Let ηk be the index of the node
to acquire li samples of sub-optimal arm i at γk, such that
ηk 6= ηk′ for all 1 ≤ k′ < k. For instance η5 = 3, it
means that node-3 is the 5th node to acquire li samples
of arm-i. Let zk = (zk(1), zk(2), . . . , zk(m)) = Ti(γk) :=(
T 1
i (γk), . . . , Tmi (γk)

)
, which contains the sub-optimal arm i

counts of all nodes at time γk.
Consider the following optimisation problem that is also

required in the proof of Lemma 2.

max ‖zm‖1
s.t ∃ a sequence {zk}mk=1 and
∃ {ηk}mk=1 a permutation of {1, 2, . . . ,m}
zj(ηk) = zk(ηk) ∀j ≥ k, ∀k
li ≤ 〈zk, A(ηk, :)〉 < li + |N (ηk)|, 1 ≤ k ≤ m
zk ∈ {0, 1, 2, · · · , li}m, 1 ≤ k ≤ m.

(25)

Interpretation of (25): Under the UCB-Network policy, sup-
pose a node has acquired at least li samples of a sub-optimal
arm i. As shown in Lemma 1, such a node will not play the
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sub-optimal arm i subsequently with high probability. Next,
note that, zk is a vector of arm i counts (self plays) of all
nodes at time γk. The objective function in (25) represents
the sum of arm i counts of all nodes at the smallest time
index, when all nodes have access to at least li samples of
arm i. The solution to (25) represents the maximum number
of samples of arm i required by the entire network such that

(a) Each node has access to at least li samples of arm i (the
last constraint in (25)), and

(b) Each node stops choosing arm i after it has access to li
samples of it (the penultimate constraint in (25)).

With the above notation, we are ready to prove Lemma 2.
Proof of Lemma 2.

Proof: We establish this lemma in two steps. In the
first step, we construct an optimisation problem then argue
that

∑m
v=1 T

v
i (τvi ) is upper bounded by the solution to the

optimisation problem. In the second step, we show that the
solution to this optimisation problem is upper bounded by
α(G) (li + dmax) .

We first evaluate the value of the random variable∑m
v=1 T

v
i (τvi ) for all realizations. Then, we determine the

maximum value of the random variable over all realizations.
The following sub routine gives the value of the above
mentioned random variable for a realization. Consider an m
length column vector of zeros, say y. Basically, it contains the
arm i counts (self plays) of all nodes.
Sub routine:
Step 1: Select an integer I from B = {1, 2, . . . ,m}.
Step 2: Increase y(I) by 1, i.e., y(I) = y(I) + 1.
Step 3: Find the indices (say C) corresponding to elements
in Ay which are at least li and at most (li + ‖A(I, :)‖1 − 1) .
Here, A is the adjacency matrix of the graph G.
Step 4: Update B = B \ C and A by removing rows
corresponding to C in A
Step 5: Go to step 1, if B is non-empty else stop by
returning y.

Since we seek for an upper bound on
∑m
v=1 T

v
i (τvi ), we

can cease the growth of any node v (coordinate) after it has
access to at least li and at most (li + |N (v)| − 1) samples of
arm i including its one-hop neighbours. The aforementioned
is ensured by step 4. Observe that ‖y‖1, where y is the
vector returned by the above sub routine, yields an upper
bound on the value of the random variable

∑m
v=1 T

v
i (τvi ) for

a realization. Therefore, it suffices to maximize ‖y‖1 over all
realizations.

The optimisation problem in (25) captures the above. The
5th in (25) ensures that the node ηk has li samples of sub-
optimal arm i at time instance γk. Recall that, γk is a random
variable which tracks the least time at which at least k nodes
have more than li samples of arm i. The 4th line in (25)
ensures that sub-optimal arm i count of node ηk does not
increase(or stop playing arm i) after time instance γk. Hence, a
feasible point in the optimisation problem in (25) is a sequence
{zk}mk=1 which satisfies the aforementioned two constraints.
Therefore, for a given realization, zm in the optimisation
problem in (25) corresponds to a y returned by the procedure
mentioned above. Then, ‖zm‖1 corresponds to the value of

the random variable
∑m
v=1 T

v
i (τvi ) for a realization. This es-

tablishes that,
∑m
v=1 T

v
i (τvi ) is upper bounded by the solution

to (25).
We now show that the solution to (25) is upper bounded by

α(G) (li + dmax) . We now try to upper bound the objective
function value of (25) for each of its feasible points. Let
{zk}mk=1 and {ηk}mk=1 be a feasible point pair of (25). We
now construct a maximal independence set of the graph
G based on {ηk}mk=1. Let m1 = m and define md =
max{j : ηj 6∈ ∪d−1

k=1N (ηmk)} for d > 1. Define the above
md’s until ∪d−1

k=1N (ηmk) becomes {1, 2, · · · ,m}. Assume
that the above process results m1,m2, · · ·mp with p ≤ m
and mp < mp−1 < · · · < m2 < m1 = m. Define
C := {ηm1 , ηm2 , · · · , ηmp}. It is easy to see that C is a
maximal independence set.

Define Qd = {ηj : ηj ∈ N (ηmd) and ηj 6∈ ∪d−1
k=1N (ηmk)}

for 1 ≤ d ≤ p. Essentially, Qd contains the node ηmd and
its neighbours which are not connected to any of the nodes
ηm1

, ηm2
, · · · , ηmd−1

. Furthermore, Qd’s are disjoint and
∪pd=1Qd = {1, 2, · · · ,m}. Hence, we write

∑m
d=1 zm(d) =∑p

d=1

∑
ηj∈Qd zm(ηj).

Claim: For any ηj ∈ Qd, we have zmd(ηj) = zm(ηj).
We now argue that no node in Qd has satisfied the 5th line

in (25) strictly after node ηmd . Suppose a node ηa ∈ Qd
has satisfied 5th line in (25) strictly after node ηmd . It
implies that md < a ≤ m. Since ηa 6∈ ∪d−1

k=1N (ηmk) and
a > md, it gives that ηa ∈ C. However, ηa 6∈ C, because
ηa ∈ N (ηmd) and ηmd ∈ C. It is a contradiction. Therefore,
no node in Qd has satisfied the 5th line in (25) strictly after
node ηmd . It implies that zmd(ηj) = zm(ηj), ∀ηj ∈ Qd
due to the 4th line in (25). It completes the proof of the
claim. From the above claim, we write that

∑
ηj∈Qd zm(ηj) =∑

ηj∈Qd zmd(ηj) ≤
∑
ηj∈N(ηmd) zmd(ηj) ≤ li+|N (ηmd) |−

1 where the last inequality is due to the 5th line
in (25). Therefore,

∑m
d=1 zm(d) =

∑p
d=1

∑
ηj∈Qd zm(ηj) ≤∑p

d=1 (li + |N (ηmd) | − 1) ≤ pli +
∑p
d=1 dmax ≤

α(G) (li + dmax) , where the last inequality holds due to the
fact that p is the size of a maximal independence set. Since
the above inequality is true for any feasible point pair of (25),
it is true that solution of (25) is also upper bounded by
α(G) (li + dmax) .

APPENDIX B
Proof of Theorem 3.

We now prove (i) in Theorem 3, in the following lemma. With
the aid of this lemma, we then prove the second part of the
theorem.

Lemma 4: Consider a node v in a network G. Assume that
node v follows an NAIC policy, and suppose [A1] holds.
Further, assume that each arm is associated with a discrete
distribution such that it assigns a non-zero positive probability
to each possible value. Then, for any θ ∈ Θj , and for any ωv̄ ,
the following holds:

lim inf
n→∞

Eθ[mv
j (n)|ωv̄]
lnn

≥ 1

kl(θj ||θ∗)
,

lim inf
n→∞

Eθ[mv
j (n)]

lnn
≥ 1

kl(θj ||θ∗)
.
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Proof of Lemma 4: Without loss of generality, assume
that θ1 = θ∗ and j = 2⇒ θ ∈ Θ2. Consider a new parameter
vector γ = (θ1, λ, θ3, . . . , θK) such that µ(λ) > µ(θ∗). Note
that, arm 1 is optimal under parameter vector θ, while arm 2
is optimal under parameter vector γ. Let X2,1, . . . , X2,n be n
i.i.d. samples generated from the arm 2’s distribution. Define

k̂ls =
s∑
t=1

ln
(
f(X2,t;θ2)
f(X2,t;λ)

)
. For any v ∈ V and any sub-optimal

arm j, and 0 < a < δ, we define

Cvn = {mv
2(n) <

(1− δ) lnn

kl(θ2||λ)
and k̂lmv2(n) ≤ (1− a) lnn},

where k̂lmv2(n) =
∑

u∈N (v)

Tu2 (n)∑
t=1

ln
(
f(Xu2,t;θ2)

f(Xu2,t;λ)

)
, since

{Xu
2,t}u∈N (v) are i.i.d. For convenience, let gn = (1−δ) lnn

kl(θ2||λ)

and hn = (1 − a) lnn. For a given ωv̄ , observe
that Cvn is a disjoint union of events of the form
{mv

1(n) = n1,m
v
2(n) = n2, . . . ,m

v
K(n) = nK , k̂ln2

≤ hn}
with n1 + n2 · · · + nK = n|N (V )| and n2 ≤ gn. Further,
{mv

2(n) = n2} is also a disjoint union of the events of the
form {∩u∈N (v)T

u
2 (n) = qu} with

∑
u∈N (v)

qu = n2. Since

γ = (θ1, λ, θ3, . . . , θK) and θ = (θ1, θ2, θ3, . . . , θK), we
write

Pγ{mv
1(n) = n1, . . . ,m

v
K(n) = nK , k̂ln2

≤ hn|ωv̄} =

Eθ

[
I{mv1(n)=n1,...,mvK(n)=nK ,k̂ln2

≤hn}

∏
u∈N (v)

Tu2 (n)=qu∏
t=1

f(Xu
2,t;λ)

f(Xu
2,t; θ2)

]
. (26)

However,
∏

u∈N (v)

qu∏
t=1

f(Xu2,t;λ)

f(Xu2,t;θ2) = exp(−k̂ln2). Therefore,

Pγ{mv
1(n) = n1, . . . ,m

v
K(n) = nK , k̂ln2 ≤ hn|ωv̄} =

Eθ
[
I{mv1(n)=n1,...,mvK(n)=nK ,k̂ln2

≤hn} exp(−k̂ln2
)
]
. Note

that, exp(−k̂ln2) ≥ n−(1−a), since k̂ln2 ≤ hn in the region
of integration. Therefore,

Pγ{mv
1(n) = n1, . . . ,m

v
K(n) = nK , k̂ln2

≤ hn|ωv̄}
≥ na−1Pθ{mv

1(n) = n1, . . . ,m
v
K(n) = nK , k̂ln2

≤ hn|ωv̄}.

Hence, Pγ(Cvn|ωv̄) ≥ n−(1−a)Pθ(Cvn|ωv̄). Now, we up-
per bound Pγ(Cvn|ωv̄) in order to upper bound Pθ(Cvn|ωv̄),
as follows: Pγ(Cvn|ωv̄) ≤ Pγ (mv

2(n) < gn|ωv̄) . Since
{mv

2(n) < gn} ⊆ {T v2 (n) < gn}, we have Pγ(Cvn|ωv̄) ≤
Pγ (T v2 (n) < gn|ωv̄) = Pγ (n− T v2 (n) > n− gn|ωv̄) . Note
that, n|N (v)| −mv

2(n) is a non-negative random variable and
kl(θ2||λ) > 0. Therefore, applying Markov’s inequality to the
right-hand side in the above equation, we obtain

Pγ(Cvn|ωv̄) ≤
Eγ [n− T v2 (n)|ωv̄]

n− gn
=

K∑
i=1,i6=2

Eγ [T vi (n)|ωv̄]

n− gn
.

Due to Individual Consistent property of the policy, we write
Pγ(Cvn|ωv̄) = (K−1)o(na)

n−O(lnn) , for 0 < a < δ, since arm 2 is the

unique optimal arm under γ. Hence,

Pθ(Cvn|ωv̄) ≤ n(1−a)Pγ(Cvn|ωv̄) = o(1). (27)

Observe that,

Pθ (Cvn|ωv̄) ≥ Pθ
(
mv

2(n) < gn,

1

gn
max
i≤gn

k̂li ≤
kl(θ2||λ)(1− a)

(1− δ)

∣∣∣ωv̄), (28)

Pθ
(

1

gn
max
i≤gn

k̂li ≤
kl(θ2||λ)(1− a)

(1− δ)

)
→ 1, (29)

due to 1−a
1−δ > 1 and the maximal version of the Strong Law

of Large Numbers which is given below.
Maximal version of SLLN [11]: Let {Xt} be a sequence of

independent real-valued r.vs with positive mean µ > 0. Then,

lim
n→∞

1

n

n∑
t=1

Xt = µ a.s.⇒ lim
n→∞

1

n
max

s=1,...,n

s∑
t=1

Xt = µ a.s.

From (27), (28) and (29), we obtain

Pθ (mv
2(n) < gn|ωv̄) = o(1),∀ωv̄ ⇒ Pθ (mv

2(n) < gn) = o(1).

Part (iii) of assumption, [A1], guarantees the existence of
a λ ∈ Θ such that µ(θ1) < µ(λ) < µ(θ1) + δ holds.
Combining µ(θ1) > µ(θ2) with the part (i) of [A1], we obtain
0 < kl(θ2||θ1) < ∞. From part (ii) of [A1], we deduce that
|kl(θ2||θ1)− kl(θ2||λ)| < ε, since µ(θ1) ≤ µ(λ) ≤ µ(θ1) + δ
for some δ. Let ε be δkl(θ2||θ1). Hence, we get the following:

|kl(θ2||λ)− kl(θ2||θ1)| < δkl(θ2||θ1), for 0 < δ < 1.

Hence, Pθ
(
mv

2(n) < 1−δ
1+δ ·

lnn
kl(θ2||θ1)

∣∣∣ωv̄) = o(1) ⇒

Pθ
(
mv

2(n) < 1−δ
1+δ ·

lnn
kl(θ2||θ1)

)
= o(1). Furthermore,

Eθ[mv
2(n)|ωv̄] =

∑
i

i · Pθ (mv
2(n) = i|ωv̄) ,

≥
(

1− δ
1 + δ

)
lnn

kl(θ2||θ1)
Pθ
(
mv

2(n) >
(1− δ) lnn

(1 + δ)kl(θ2||θ1)

∣∣∣ωv̄) ,
=

(
1− δ
1 + δ

)
lnn

kl(θ2||θ1)
(1− o(1)).

By taking δ → 0, we obtain Eθ[mv
2(n)|ωv̄] ≥ lnn

kl(θ2||θ1) (1 −
o(1)). Hence, we have proved that for any v ∈ V , ωv̄ and
any sub-optimal arm j, lim inf

n→∞

Eθ [mvj (n)|ωv̄]

lnn ≥ 1
kl(θj ||θ1) and

lim inf
n→∞

Eθ [mvj (n)]

lnn ≥ 1
kl(θj ||θ1) , which completes the proof of

this lemma, and establishes (i) in Theorem 3.
With the help of this, we now prove the second part of
Theorem 3.

Proof: Lemma 4 implies that for each v ∈ V , ∃nv ∈ N
such that

Eθ[mv
j (n)]

lnn
≥ 1

kl(θj ||θ1)
, ∀n ≥ nv. (30)

Let n′ = max(nv : v ∈ V ). Using (30) for each v ∈ V , and
for n ≥ n′, we determine a lower bound for Eθ[mG

j (n)]. Due
to Non Altruistic property of the policy, it is easy to see that
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the solution to the following optimisation problem is a valid
lower bound for Eθ[mG

j (n)] for n ≥ n′.

minimize ‖zm‖1
s.t ∃ a sequence {zk}mk=1 and
∃ {ηk}mk=1which is a permutation of {1, 2, . . . ,m}
zi(ηk) = zk(ηk) ∀i ≥ k,∀k

〈zk, A(ηk, :)〉 ≥ qj =
⌈ lnn

kl(θj ||θ1)

⌉
∀k

zk ∈ {0, 1, 2, · · · , qj}m, ∀k.

(31)

Note that, the notation in (31) is same as used in (25). In order
to lower bound the solution to (31), we now lower bound the
objective function value in (31) at each feasible point of it.

Let {zk}mk=1 and {ηk}mk=1 be a feasible point pair of (31).
Let S = {s1, s2, · · · , sα(G2)} be a maximum independence set
of the graph G2. Here, G2 = (V,E′) is the graph G = (V,E)
augmented with all edges between any pair of nodes if they
have at least one common neighbour. Essentially, (u, v) ∈ E′
if and only if either (u, v) ∈ E or N (u) ∩ N (v) 6= φ.
It implies that, for any two distinct nodes si, sj ∈ S,
we have N (si) ∩ N (sj) = φ. Then,

∑m
k=1 zm(k) ≥∑α(G2)

i=1

∑
d∈N (si)

zm(d)
(∗)
≥
∑α(G2)
i=1 qj = α

(
G2
)
qj , where

(∗) is due to the fact that, in the vector zm, every node has
access to at least qj samples of sub-optimal arm-j. Since the
inequality above is true for any feasible point, it is true that
solution to (31) is also lower bounded by α

(
G2
)
qj . Hence,

we get that E[mG
j (n)] ≥ α(G2) · lnn

kl(θj ||θ1) ,∀n ≥ n
′. It implies

that lim inf
n→∞

E[mGj (n)]

lnn ≥ α(G2) · 1
kl(θj ||θ1) , which establishes

the desired result.

APPENDIX C

Proof of Theorem 4.
Proof: Without loss of generality we consider that node 1

is the center node and node 2 through mn are leaf nodes.
Since a policy does not possess any information in the first
round, it chooses arm 1 with probability p1 and arm 2 with
probability p2, such that 0 ≤ p1, p2 ≤ 1 and p1 + p2 = 1.
Now, we find the expected number of nodes that chose
the arm with parameter µb in the first round as follows.
E[mGn

b (1)] =
∑
v∈V

(
p2

2 + p1

2

)
= mn

2 ≥
lnn

kl(µb||µa) , since MAB

is (µa, µb) with probability 1
2 , and is (µb, µa) with probability

1
2 . Henceforth, for convenience, we replace a with 1 and
b with 2. Let mG,v

i (t) be a random variable indicating the
total number of times arm i has been chosen by node v
and its one hop neighbours till round t, in the network G.
Note that, mGn

2 (1) is equals to mGn,1
2 (1), since the network

in consideration is a star network with node 1 as the center
node. Therefore, E[mGn,1

2 (1)] ≥ lnn
kl(µ2||µ1) , ∀n ∈ N. From

Theorem 3, it follows that

lim inf
n→∞

E[mGn,v
2 (n)]

lnn
≥ 1

kl(µ2||µ1)
, ∀ v ∈ Vn. (32)

The above inequalities imply that, for any v ∈ Vn, ∃nv ∈ N
such that E[mGn,v2 (n)]

lnn ≥ 1
kl(µ2||µ1)∀n ≥ nv . Let n′ =

max(nv : v ∈ Vn). For all n ∈ N, since the center node
has obtained lnn

kl(µ2||µ1) samples of arm 2 in the very first
round, and the policy is non-altruistic, it chooses arm 2 at
most O(1) number of times further. For all n ≥ n′, in order
to satisfy all the inequalities in (32), each leaf node has to
choose the arm 2 at least

(
lnn′

kl(µ2||µ1) −O(1)
)

times. Hence,

E[mGn
2 (n)] ≥ (mn − 1)

(
lnn

kl(µ2||µ1) −O(1)− 1
)
∀n ≥ n′. It

implies that lim inf
n→∞

E[mGn2 (n)]
(mn−1) lnn ≥

1
kl(µ2||µ1) , which completes

the proof.
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