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Abstract—Motivated by medium access control for resource-
challenged wireless sensor networks whose main purpose is data
collection, we consider the problem of queue scheduling with
reduced queue state information. In particular, we consider a
model with N sensor nodes, with pair-wise dependence, such
that nodes i and i + 1, 1 ≤ i ≤ N − 1 cannot transmit
together. For N = 3, 4, and 5, we develop new throughput-
optimal scheduling policies requiring only the empty-nonempty
state of each queue, and also revisit previously proposed policies
to rigorously establish their throughput- and delay-optimality.
For N = 3, there exists a sum-queue length optimal scheduling
policy that requires only the empty-nonempty state of each queue.
We show, however, that for N ≥ 4, there is no scheduling policy
that uses only the empty-nonempty states of the queues and is
sum-queue length optimal uniformly over all arrival rate vectors.
We then extend our results to a more general class of interference
constraints, namely, a star of cliques. Our throughput-optimality
results rely on two new arguments: a Lyapunov drift lemma
specially adapted to policies that are queue length-agnostic, and
a priority queueing analysis for showing strong stability.

Our study throws up some counterintuitive conclusions: 1)
knowledge of queue length information is not necessary to
achieve optimal throughput/delay performance for a large class
of interference networks, 2) it is possible to perform throughput-
optimal scheduling by merely knowing whether queues in the
network are empty or not, and 3) it is also possible to be
throughput-optimal by not always scheduling the maximum
possible number of nonempty queues. We also show the results
of numerical experiments on the performance of queue length
agnostic scheduling vs. queue length aware scheduling, on several
interference networks.

Index Terms—Wireless Sensor Networks, Medium Access
Control (MAC) protocols, Optimal Polling, Delay Minimization,
Hybrid MACs, Self-Organizing Networks, Internet of Things
(IoT).

I. INTRODUCTION

The Internet of Things (IoT) paradigm is expected to make
possible applications where vast numbers of devices coexist
on a communication network. A typical example is a large-
scale wireless sensor network comprising low-cost sensors
that forward measurements from their respective locations.
Nodes in these networks are typically energy-limited, and must
communicate over a common, interference-constrained wire-
less medium. Extracting high performance from such resource
challenged wireless access networks entails the design of low
coordination media access control (MAC) schemes, that can

apportion resources dynamically while keeping information
exchange overheads (and thus energy) down to a minimum.

A natural approach for dynamic resource allocation is to use
backlog or queue length information to schedule transmissions.
One of the seminal contributions to scheduling in constrained
queueing systems is the work of Tassiulas and Ephremides
[1]. This paper introduces the model of a wireless network
as a network of queues with pair-wise scheduling constraints
(corresponding to wireless interferences, half-duplex opera-
tion, etc.), and several flows over the network, each with
its ingress queue and egress queue. The pair-wise constraints
are represented by an interference graph with the queues as
the nodes and the pair-wise scheduling constraints being the
edges. With stochastic arrivals to each flow to be routed from
their ingress to egress points, the authors derive MaxWeight,
a centralized scheduling algorithm which requires the queue
lengths of all nodes. MaxWeight is known to be throughput-
optimal, i.e., it stochastically stabilizes all queues under any
stabilizable arrival rate.

Attempts to decentralize MaxWeight have included approx-
imations based on message passing between nodes [2], [3], or
using queue lengths to modulate backoff parameters in CSMA
and ALOHA [4], [5]. Both of these methods, while being
throughput-optimal, suffer from poor delay performance.

Another method to reduce the amount of information
required for scheduling was proposed by Tassiulas and
Ephremides [6], where, for two classes of constrained queue-
ing systems, algorithms relying only on the empty-nonempty
state of queues were proposed and analysed for delay per-
formance. Our interest lies in the second half of [6], where
a scheduling algorithm was proposed for a system of N
parallel queues in which adjacent queues cannot be served
simultaneously. The paper gave the optimal policy for N = 3.
This was extended to N = 4 by Ji et al [7] where the heavy-
traffic delay-optimality of the proposed policy was proved.
One of the contributions of our work in this paper is to
reexamine the delay and throughput optimality proofs for these
policies. It is not yet clear if it is even possible to extend these
algorithms to general wireless networks while preserving their
performance guarantees.

A third class of strategies has focused on completely uncoor-
dinated medium access, in contrast to methods using network



state information. Here the focus is on improving the saturation
throughput of Abramson’s ALOHA protocol beyond (1/e),
without any queue length knowledge. The main idea is to
allow collisions to take place, but use physical layer techniques
like successive interference cancellation to decode the garbled
messages over multiple time slots [8], [9]. These techniques
like, Abramson’s ALOHA, are not throughput optimal (in
that they can hope to achieve only the saturation throughput),
but allow uncoordinated access. In contrast, we are interested
in contention-free, low coordination MAC schemes for high
throughput.

A. Our Contributions and Organization
In this work, we seek to develop throughput-optimal and

low-delay1 medium access control protocols that rely only on
reduced state information, namely the empty-nonempty states
of queues. Our specific contributions are as follows.
• We study in detail the space of reduced-state schedul-

ing policies for path (linear) interference networks of
sizes 3, 4 and 5 nodes (Sections V and VI). Our
analysis, along with giving new throughput-optimal
reduced-state scheduling policies, rigorously establishes
the throughput- and delay-optimality of the policies
proposed earlier in [6] and [7]. It also shows, rather
surprisingly, that throughput-optimality is not confined
only to Maximum Egress Rate (MER) policies – policies
that schedule the maximum possible number of nonempty
queues at each instant – and that delay-optimal reduced-
state scheduling is impossible in path graphs of size 4 or
higher (Sec. VI-C).

• A clique in an interference graph models a collection
of wireless links each of whose transmissions interferes
with those of every other link in the clique. We extend the
theory and insights from scheduling in path interference
graph networks to a more general class of interference
graphs that consist of an arbitrary number of arbitrary-
sized cliques connected to a central clique (Fig. 3). We
call this the “star-of-cliques” model and such networks
naturally arise in IoT applications [10]. We present new
throughput-optimal reduced-state scheduling algorithms
for these networks (Sec. VII).

• We then present numerical results (Sec. VIII) showing the
performance of our proposed policies, and comparisons
with standard, high-overhead state-based policies such as
the MaxWeight-α family [11].

• We then provide some remarks on decentralized im-
plementation of our reduced-state scheduling policies
(Sec. IX), in which nodes in the vicinity of a transmitting
node overhear its transmissions and schedule their own
transmissions in a contention-free manner. Finally, we
conclude the paper and present directions for future work.

II. SYSTEM MODEL

In sections III to VI the system we study is modelled
by N parallel queues. Each queue models a radio link in a

1By low delay, we mean a low sum queue length across the system.

Figure 1: The basic queueing system with N = 4 queues (left) and its inter-
ference graph (right). Adjacent queues cannot be served simultaneously.

wireless network and represents a transmitter-receiver pair.
The scheduling constraints are the same as the second model
in [6], i.e., Queue i and Queue i + 1 cannot be served
simultaneously for 1 ≤ i ≤ N − 1. The interference graph
[12] associated with the system is a path graph.

A collocated star network consists of a cluster of sensor
nodes and a sink node to which all the sensors must send
their data. By “collocated,” we mean that only one sensor can
successfully send its data to the sink at any time. In sections
VI-VII, we will consider a network comprising several collo-
cated star networks such that the interference between them
can be represented by a star; see Fig 2. For such networks,
we will utilize the theory developed in sections III to VI
to develop decentralized, throughput optimal, and low delay
medium access control for such networks.

Time is assumed to be slotted and the leading edges of
the slots are indexed 0, 1, 2, · · · . Arrivals are embedded at
slot boundaries, t = 0, 1, 2, · · · , with the number of packets
arriving to Queue i at time t being denoted by the random
variable Ai(t). Ai(t) is assumed iid2 across time and inde-
pendent across queues and is modelled as a Bernoulli random
variable with mean λi. However, we will partially remove
this restriction to include batch arrivals in Sec. VII. We use
Q(t) = [Q1(t), . . . , QN (t)]T to denote the vector of all queue
lengths at time t. The queue length process is embedded at the
beginnings of time slots, so Qi(t), t ≥ 0, is measured at t+,
i.e., just after the arrival. Packet transmissions are assumed
to take exactly one time slot and succeed with probability3

1. The random variable indicating the departure of a packet
from Queue i at time t, Di(t), is such that Di(t) = 1 if
and only if Queue i is scheduled in slot t and Qi(t) > 0,
else Di(t) = 0; here, the departure is assumed to end just
before the leading edge of slot (t + 1), i.e., at (t + 1)−.
The offered service process to Queue i, {Si(t), t ≥ 0}, is
defined as follows: Si(t) = 1 whenever Queue i is given
access to the channel, so that Di(t) = Si(t)I{Qi(t)>0}, ∀t ≥
0, 1 ≤ i ≤ N . The interference constraints enforce the rule
Si(t) + Si+1(t) ≤ 1, ∀t ≥ 0, 1 ≤ i ≤ N − 1. The vector
S(t) := [S1(t), . . . , SN (t)] is called an activation vector. With

2“iid” stands for independent and identically distributed.
3The effects of fading will be studied in future work.



Figure 2: A wireless sensor network with multiple sinks. We do not impose
any restrictions on the number of peripheral cliques or the number of nodes
per clique. Fig. 3 shows the associated interference graph.

this embedding, for every i,

Qi(t+ 1) = Qi(t)−Di(t) +Ai(t+ 1)

= (Qi(t)− Si(t))+ +Ai(t+ 1), ∀t ≥ 0.

Denote by i(t) := [I{Q1(t)>0}, . . . , I{QN (t)>0}]
T the system’s

occupancy vector at time t, i.e., the empty-nonempty state
of each of the N queues. Let V ⊂ {0, 1}N be the set of
all activation vectors. A scheduling policy π in general is
defined as a time-indexed sequence of functions {µ0, µ1, . . . }
that decides which queues are allowed to transmit in each slot
as a function of the available history Ht, which comprises the
past states and actions known to the controller, and the current
known state. Specifically, µt : Ht → V is an N × 1 vector,
and Si(t) = µt(i). By stability of the process {Q(t), t ≥ 0}we
will mean that

lim sup
T→∞

1

T

t−1∑
t=0

N∑
i=1

EπQi(t) <∞. (1)

This condition is also known in the literature as strong stability
[13]. A policy π that ensures (1) is said to be stabilizing, and
an arrival rate vector for which a stabilizing policy exists is
called stabilizable. From [1], we know that for this network,
the set of stabilizable rates is the interior of the set

ΛN :=
{
λ ∈ RN+ | λi + λi+1 ≤ 1, ∀1 ≤ i ≤ N − 1

}
. (2)

A policy that is stabilizing for every arrival rate vector in Λo

is called throughput-optimal (T.O.).

III. MAXIMUM EGRESS RATE (MER) SCHEDULING

Definition. If, in every slot t, a policy schedules as many
nonempty queues for transmission as the interference con-
straints allow, then the policy is said to be a Maximum Egress
Rate (MER) policy.

For example, if N = 7, and Q(t) = [1, 2, 0, 0, 4, 3, 3], a
policy that schedules queues 1, 5 and 7 or 2, 5 and 7 is MER
while a policy that schedules queues 1, 7 only, is not MER.

Lemma 4.1 in [6] defines a class of policies that is more
restrictive than MER as follows:

1) In every slot, the policy should serve the largest number
of nonempty queues subject to the interference con-
straints, i.e., it should be MER, and

2) the policy should prioritize “inner”, more constrained,
queues over “outer” queues while breaking ties. For
example, in Fig. 1, queues 2 and 3 must be prioritized
over queues 1 and 4.

We will see later, that the second condition helps reduce delay
by prioritizing “inner” queues, i.e., those other than Queue 1
or Queue N . We will see that in several interference graphs,
scheduling based on the occupancy vector i(t) is sufficient not
only for stability but also for delay-optimality.

Notation: Classes of scheduling policies
• Π(N): the class of all policies.
• Γ

(N)
M : the class of all MER policies.

• Π
(N)
M : the class of all policies that take only the occu-

pancy vector i(t) as input and activate the largest number
of non empty queues in every slot, .i.e., MER policies that
require only the empty or nonempty status of the queues
in the network.

• Π̃(N): the class of all MER policies within Π
(N)
M that

additionally break ties in favour of inner queues (see
condition 2 above).

Note that Π(N) ) Γ
(N)
M ) Π

(N)
M ) Π̃(N). Going back to

our 7-queue example, when i(t) = [1, 1, 0, 0, 1, 1, 1], policies
that choose s(t) = [1, 0, 0, 0, 1, 0, 1] can be in Π

(7)
M but not in

Π̃(7), while those that choose s(t) = [0, 1, 0, 0, 1, 0, 1] can be
in Π̃(7).

IV. QUEUE LENGTH-AGNOSTIC SCHEDULING

While almost all well-known policies use full queue
length-information (Q(t)) to take scheduling decisions, e.g.,
MaxWeight [1], a key objective of this paper is to show that
for a class of interference graphs, throughput-optimal policies
can be designed that use much less information. By “queue
length-agnostic policies,” we mean those that only require
the knowledge of the occupancy vector4, i.e., i(t). Clearly,
this contains much less information than the vector Q(t) that
MaxWeight requires, and i(t) can be transmitted across the
network with just 1 bit per queue per slot. The functions
{µt, t ≥ 0} comprising the policy are now maps of the form
µt : {0, 1}N → V ( {0, 1}N , the set of all activation vectors.

Although it is well-known that fully-connected interfer-
ence graphs admit throughput-optimal, queue length-agnostic
scheduling algorithms (e.g., schedule any nonempty queue),
it is not immediately clear how to stabilize other interference
graphs with reduced state policies. In fact, Sec. III of [14]
provides an excellent example of an MER policy (also called
a maximum-matching policy) that is not throughput-optimal.
Moreover, the delay. Throughput the paper, we use total system
backlog,

∑N
i=1Qi(t), as a proxy for delay. properties of such a

4We slightly abuse terminology: dependence on i(t) is not strictly agnostic
of backlogs but is a very weak form of dependence.



scheduler are naturally suspect, since even MaxWeight is only
known to be asymptotically delay optimal in such networks
[15].

We now provide a sufficient condition that will later help
construct strongly stable policies that use only {i(t), t ≥ 0, },
by proving a Lyapunov drift result that will be invoked often
in the sequel.

Lemma 1. Consider the class of systems described in
Section II, and define property P as

Di(t)+Di+1(t) = 0 ⇐⇒ Qi(t)+Qi+1(t) = 0, (3)

for all t ≥ 0, and for 1 ≤ i ≤ N − 1. Any policy
that satisfies property P in every slot t, is throughput-
optimal.

Remark IV.1. Note that condition (3) depends only on the re-
duced state i(t). In words, (3) reads: “for a pair of neighboring
queues, there is no departure from either of these queues iff
both the queues are empty.” For example, with N = 4 and
i(t) = (1, 1, 1, 1), S(t) = (1, 0, 1, 0) satisfies condition (3),
but S(t) = (1, 0, 0, 1) does not.

The proof of Lemma 1 is based on a novel Lyapunov func-
tion, treating pairs of adjacent queues as collocated networks.
Instead of showing negative drift per queue state, as is common
in the analysis of several MaxWeight-style algorithms, we
develop an averaging argument to show overall negative drift
of the Lyapunov function, and appeal to Neely’s telescoping
sum technique [13] to prove strong stability. The proof is
deferred to the technical report [16] due to space constraints.

V. PATH-GRAPH INTERFERENCE MODEL WITH N = 3:
OPTIMAL QUEUE LENGTH-AGNOSTIC SCHEDULING

In this section, we first completely characterize Π
(3)
M and

the subclass Π̃(3), and explore stability and delay optimality
for this system. This study will provide some insights into the
nature of MER policies in general and, more importantly, in
this process, the policies we propose here will act as building
blocks for policies for larger-N systems. Before we embark
on this analysis, we would like to make a few observations
about Π(3).

Note that with 3 queues, in any given slot t, a policy
can choose either S(t) = [1, 0, 1] which serves queues 1
and 3, or [0, 1, 0] which serves Queue 2. So, a queue length
agnostic policy maps every state vector i(t) to one of these
two activation vectors, giving us 256 queue length agnostic
policies in all. We prove, however, that upon imposing the
MER condition, this number reduces to 4, i.e., |Π(3)

M | = 4 [16,
Sec. V].

Analysis of Π
(3)
M : We now show that this class contains

throughput optimal, delay optimal, and also unstable MER
policies. First, some additional notation is in order. Depending
on the mapping from i(t) to the activation vector, we denote
the 4 MER policies π(3)

1 , π
(3)
2 , π̃(3), π

(3)
4 . The complete de-

scriptions of all these policies are given in Table. I. To begin

Table I: Comparison of S(t) under π(3)
1 , π(3)

2 , π̃(3) and π(3)
4

[i1(t), i2(t), i3(t)] π
(3)
1 π

(3)
2 π̃(3) π

(3)
4

000 101 101 101 101
001 101 101 101 101
010 010 010 010 010
011 010 101 010 101
100 101 101 101 101
101 101 101 101 101
110 101 010 010 101
111 101 101 101 101

with, we show that π(3)
1 and π(3)

2 are T.O. Both these policies
will later be used as building blocks to construct T.O. policies
for larger systems and are therefore very important to our
study.

A. Analysis of π(3)
1 and π(3)

2

Theorem 2. π
(3)
1 and π

(3)
2 are both throughput-

optimal.

In words, the policy π(3)
1 simply reads “prioritize Queue 1

over Queue 2, and Queue 2 over Queue 3, while scheduling
all possible non-interfering queues.” The proof of Theorem 2
uses the fact that under π(3)

1 , queues 1 and 2 form a priority
queueing system and are stable. We then show that Queue 3
is served “sufficiently often” to ensure stability. π(3)

2 simply
swaps the priorities of Queues 1 and 3 and its proof proceeds
mutatis mutandis. The complete proof is available in [16] due
to space constraints here.

B. Analysis of π̃(3)

This policy can be restated as follows. At time t:

1) If Q1(t) > 0 and Q3(t) > 0, choose S(t) = [1, 0, 1].
2) Else, if Q2(t) > 0, choose [0, 1, 0].
3) Else choose [1, 0, 1].

In [6], it has been asserted without formal proof that π̃(3) is
sum-queue optimal. We begin analysing the policy by proving
that it is T.O.

Theorem 3. π̃(3) is throughput-optimal.

The proof of this result involves showing that π̃(3) satisfies
property P in Lem. 1 and is therefore T.O. The proof is
available in [16].

We next turn to the delay performance of the policy π̃3.
Tassiulas and Ephremides [6, Theorem 4.2] define a projection
operator L : Π(N) → Γ

(N)
M that takes any policy π ∈ Π(N)

and produces an MER policy, L(π). They then show that
each policy π is dominated by its “MER-improvement” policy
L(π) in the sense of lower sum-queue lengths. Specifically, if
Qπ(t) denotes the backlog induced by some policy π, then
Theorem 4.2 in [6] shows that when the systems upon which



π and L(π) act are started out in the same initial state and the
arrivals have the same statistics, then

N∑
i=1

Q
L(π)
i (t)

st
≤

N∑
i=1

Qπi (t), ∀t ≥ 0, (4)

where st denotes stochastic ordering.
It has also been asserted in [6, Remark 2, pp. 353] without

formal proof that the policy π̃(3) is sum-queue- or delay-
optimal. We prove the following result about the delay-
optimality of this policy.

Theorem 4. For any policy π ∈ Π(3), let the system
backlog vector at time t be denoted by Qπ(t) and the
backlog with π̃(3) be denoted by Qπ̃(3)

(t). Also let
Qπ(0) = Qπ̃(3)

(0). Then,
3∑
i=1

Qπ̃
(3)

i (t)
st
≤

3∑
i=1

Qπi (t), ∀t ≥ 0, (5)

where “st” denotes stochastic ordering.

The proof technique is essentially the same as that of
Theorem 4.2 in [6], except that we make the observation that
a key step in that proof has more general applicability. It
involves constructing a sequence of policies each of which
shows better delay than its predecessor and than a general
policy π. The limit of this sequence of policies is then shown
to uniquely be π̃(3). The proof is deferred to the technical
report [16] owing to space constraints.

C. Analysis of π(3)
4

This policy prioritizes the outer queues and can be restated
as follows.
At time t

1) If either Q1(t) > 0 or Q3(t) > 0, choose (1, 0, 1).
2) Else choose (0, 1, 0).

It turns out, analogous to the observation by McKeown et al
[14] that this MER policy is, in fact, not throughput-optimal.

Proposition 5 (An MER but not throughput-optimal policy).
π
(3)
4 is not throughput-optimal.

The proof of this result involves constructing an arrival rate
vector for which the offered service rate to one of the queues
is strictly smaller than the arrival rate. It is available in the
technical report [16].This completes the characterization of
Π

(3)
M .

D. Policies outside Π
(3)
M

We now propose and analyse a policy that we denote π(3)
5 ,

and show the rather surprising result that it is T.-O. despite
not being MER. This policy will become important later, as
a fundamental building block while constructing policies for
larger systems.
At time t

1) If Q2(t) > 0 choose S(t) = [0, 1, 0],

2) Else choose s(t) = [1, 0, 1].
Since i(t) = [1, 1, 1] 7→ [0, 1, 0], this policy is not MER.
However, we have

Proposition 6 (A non-MER but throughput-optimal policy).
π
(3)
5 is throughput-optimal.

Proof: The key tool behind the proof of this result is the
throughput-optimality Lem. 1. It is easily checked that π(3)

5

satisfies property P in every slot and thus, by Lemma 1, is
throughput-optimal.

In the sections to follow, we will first use the policies
proposed here to come up with stabilizing and delay optimal
policies for larger systems, and then show how to extend the
theory and scheduling algorithms to other interference graphs.

VI. EXTENSIONS TO PATH GRAPH INTERFERENCE
MODELS WITH N > 3

We will now use the policies developed in Sec. V as building
blocks to construct throughput and delay optimal policies for
larger systems, specifically for N = 4 and 5. Though some
of the policies we analyze have been proposed earlier, we
identify several new T.-O. policies here. We will also study the
delay properties of the policies developed for both systems,
and eventually show an impossibility result about obtaining
uniform delay or sum-queue optimality.

A. Systems with N = 4 queues

Continuing along the same lines as Sec. V, with 4 queues,
we have three activation vectors to choose from in any given
slot, viz., [1, 0, 1, 0], [1, 0, 0, 1] and [0, 1, 0, 1], which gives
us 32

4

> 43 × 106 policies that take only the occupancy
vector i(t) as input. This reduces to 96 policies once the MER
condition is imposed and the explanation for the reduction is
similar to the case with 3 queues. But since this number is also
inordinately large, we will restrict our study to Π̃(4), which
contains 4 policies, which we denote by {π̃(4)

i , 1 ≤ i ≤ 4}. In
what follows, we provide a complete characterization of Π̃(4).

1) Analysis of π̃(4)
1 and π̃(4)

2 : The policy π̃(4)
1 can be stated

as follows. At each time t:
1) If i(t) = [1, 1, 1, 0], S(t) = [1, 0, 1, 0].
2) Else, if Q2(t) > 0, S(t) = [0, 1, 0, 1].
3) Else, if Q3(t) > 0, S(t) = [1, 0, 1, 0].
4) Else, S(t) = [1, 0, 0, 1].

The first step of π̃(4)
2 involves choosing S(t) = [0, 1, 0, 1] when

i(t) = [0, 1, 1, 1]. In the next steps π̃(4)
2 reverses the priorities

of queues 2 and 3.

Remark VI.1. We note that while both these policies have
been proposed by Ji et al [7], only an informal argument
regarding their stability properties has been provided therein,
followed by a study of their performance under heavy traffic.
Their informal argument asserts that the fraction of time for
which Queue 2 is nonempty equals its arrival rate λ2, and this
claim is crucial to their stability argument.

By Little’s Theorem applied to the HOL position, this
assertion holds only if the mean waiting time in the HOL



position of Queue 2 is exactly 1 slot. The actual fraction of
time for which Queue 2 is nonempty converges to λ2 · EB2,
where EB2 is the mean service time of packets in Queue 2.
Since Queue 2 is not always served whenever it is nonempty,
EB2 > 1 (strict inequality), so the fraction of time left to
offer service to Queue 1 is strictly smaller than 1 − λ2.

Moreover, as can be seen from the definition of π̃(4)
1 , S(t)

is not necessarily [1, 0, 1, 0] whenever queues 1 and 3 are
nonempty (take i(t) = [1, 1, 1, 1] for instance). It is, therefore,
unclear whether Queue 1 is offered service often enough to
stabilize it. We here provide a formal proof of the throughput-
optimality of π̃(4)

1 and π̃(4)
2 .

Proposition 7. π̃(4)
1 and π̃(4)

2 are throughput-optimal.

To prove the throughput-optimality of π̃(4)
1 , we first combine

π
(3)
1 and π

(3)
5 to form a policy π

(4)
1 which is not MER and

show that it is T.O. We then use the operator L to project
π
(4)
1 onto Π

(4)
M to get π̃(4)

1 and complete the proof using a
sample path-wise stochastic dominance argument (of the sort
in Eqn. (4)). A similar proof holds for π̃(4)

2 as well. We denote
the non-MER counterpart of π(4)

1 designed for π̃(4)
2 by π

(4)
2 .

The complete proof is available in the technical report [16].

Remark VI.2. While π(3)
1 is a policy that prioritizes “outer”

queues (Queue 1), π(3)
5 prioritizes “inner” queues, i.e., Queue

2. Since, in the four queue system, Queue 2 becomes the
outer and inner queue for these two policies respectively,
both subsystems are simultanelously stabilized. This theme
of stitching together policies designed for smaller systems to
construct policies for larger systems will recur through the rest
of this article.

2) Analysis of π̃(4)
3 and π̃

(4)
4 : π̃

(4)
3 differs from π̃

(4)
1 only

when i(t) = [1, 1, 1, 1] and π̃(4)
3 serves queues 1 and 3 while

π̃
(4)
1 serves 2 and 4. Similarly with π̃(4)

2 and π̃(4)
4 .

Proposition 8. π̃(4)
3 and π̃(4)

4 are throughput-optimal.

The idea behind the proof of this result involves showing
that the total system backlogs under π̃(4)

1 and π̃
(4)
3 are the

same at all times when started in the same initial conditions.
Similarly with π̃(4)

2 and π̃(4)
4 . Since π̃(4)

1 and π̃(4)
2 are T.O., the

other 2 policies are, as well. The proof is available in [16].

B. Systems with N = 5 queues: Analysis of π̃(5)

With 5 queues, Queue 3 is the “most constrained” queue
(informally, the one that is offered service in fewer activation
vectors than other queues) and hence, the proposed policy will
prioritize it. The policy π̃(5) ∈ Π̃(5) is stated as follows.
At time t,

1) If i(t) = [0, 1, 1, 1, 0], S(t) = [0, 1, 0, 1, 0].
2) If i(t) = [1, 1, 1, 1, 0] or [0, 1, 1, 1, 1], S(t) =

[0, 1, 0, 1, 0].
3) Else, if Q3(t) > 0, S(t) = [1, 0, 1, 0, 1].
4) Else, if Q2(t) > 0 and Q4(t) > 0, S(t) = [0, 1, 0, 1, 0].
5) Else, if Q2(t) > 0 or Q4(t) > 0,

a) S(t) = [0, 1, 0, 0, 1] if Q2(t) > 0 and

b) S(t) = [1, 0, 0, 1, 0] if Q4(t) > 0.

6) Else, S(t) = [1, 0, 1, 0, 1].

Proposition 9. π̃(5)
M is throughput-optimal.

Proof: Our analysis of this policy begins with a non delay
optimal but MER version of π̃(5), which we call π(5)

M . We
establish the throughput-optimality of π(5)

M using a non MER
policy, π(5), projecting π(5) onto Π

(5)
M to get π(5)

M and using the
fact that L cannot worsen sum queue lengths (Eqn (4)). Finally,
we show that π̃(5) is T.O. by observing that it satisfies the 2nd

MER condition in Sec. III, and proving that this ensures that
the sum queue length of π̃(5) is never (stochastically) larger
than that of π(5)

M . See [16] for details.

C. Analysis of Delay in Π(4) and Π(5)

We now show that Π(4) does not contain any queue length
agnostic policy that is uniformly delay optimal over the entire
set Λo4. This is unlike the case with N = 3, where π̃

(3)
4

produced the lowest possible delay regardless of the arrival
rate. We first prove in Prop. 19 in [16] that Π̃(4) does not
contain any uniformly delay optimal policy. Next, in Prop. 11
in [16] we show that policies in Π̃(4) show better delay
performance than those in Π

(4)
M . We already know (Eqn.(4))

that the delay of any policy in Π(N) can be improved by
projecting it onto Π

(N)
M . Now, Prop. 11 in [16], along with

Eqn.(4), shows that delay optimal policies, when they exist,
must necessarily lie in Π̃(N). This observation, along with the
nonexistence of delay optimal policies in Π̃(4) prove that

Theorem 10. For all N ≥ 4, there does not exist any
policy in Π

(N)
M that is uniformly delay optimal over all

of ΛoN .

Proof: See Thm. 12 in [16].
So in essence, Thm. 10 shows that while throughput opti-

mality in these interference graphs only requires knowledge
of queue occupancy (i.e., i(t)), delay optimality could require
more information from the history Ht. We conclude this
section with a quick observation about Π

(5)
M .

Proposition 11. For every policy π ∈ Π
(5)
M \ Π̃(5), there exists

a policy π′ ∈ Π̃(5) such that

5∑
i=1

Qπ
′

i (t)
st
≤

5∑
i=1

Qπi (t), ∀t ≥ 0. (6)

Proof: This proof uses the fact that while π
(5)
M is only

MER, π̃(5) also satisfies the 2nd MER condition. See [16] for
details.

The systems studied until now were represented by Path
graphs, i.e., their interference graphs were straight lines. We
now extend the theory developed, to more general classes of
graphs that better represent sensor networks.



Figure 3: Interference graph corresponding to the network in Fig. 2. A dotted
line connecting cliques Ci and Cj means that transmissions in the two cliques
cannot take place simultaneously.

VII. BEYOND PATH INTERFERENCE GRAPHS

In this section, we extend the results obtained thus far to
a non-trivial class of networks whose interference graphs are
not necessarily Path graphs.

A. The Star-of-Cliques Interference Model

Consider an interference graph consisting of a central fully
connected subgraph surrounded by N − 1 fully connected
subgraphs (see Fig. 3). In the remainder of this section, we will
call each of these fully connected subgraphs “cliques.” The
graph under consideration hence consists of N cliques denoted
C1, . . . , CN and clique Ci consists of Ni vertices. Cliques can
have arbitrarily many queues. Transmissions in C1 interfere
with those in all other cliques while the transmissions in
Ci, i ≥ 2 interfere with those in C1 only. Such a situation could
arise in an in-building wireless sensor network comprising
clusters of collocated sensors, each with its own sink, all
operating on the same channel, and located such that all the
peripherally located clusters interfere with a centrally located
one, but not with each other.

Our aim is to propose queue length-agnostic throughput-
optimal policies for such graphs. In the literature, such net-
work topologies are a special case of what are known as
“Snowflake” topologies [10, Chapters 5 and 6]. In studying
these networks we are, in fact, providing natural extensions to
our earlier work [17] in which we studied mean delay optimal
scheduling in collocated networks using only the occupancy
status of the queues.

From the preceding discussion, it is now clear how Fig. 3 is
the interference graph associated with the network in Fig. 2.
As before, a queue is associated with each vertex and Queue
j in Clique i is fed by an exogenous Bernoulli packet arrival
process of rate λi,j , i.e., P (Ai,j(t) = 1) = λi,j , ∀t ≥ 1. At
time t+, Qi,j(t) is the backlog of Queue j in Ci. The queue
length, arrival and departure processes are embedded as in
Sec. II. Let N ≡

∑N
i=1Ni denote the total number of queues

in the system.

Remark VII.1. Notice that the same description also models
the path graph with N = 3 with iid batch arrivals. SettingN =
3 in the above description, we see that theNi arrivals processes

to Clique i can be treated as a single iid batch arrival process
to a single queue in each clique. Hence, the policies that we
present in the sequel can be used to schedule transmissions
in systems with batch arrivals, generalizing the system model
presented in Sec. II.

B. Scheduling Policies

We will now show that some of the scheduling policies
developed for path graphs extend in a natural manner to
policies for star-of-cliques graphs.

Consider the following queue-length agnostic scheduling
policy φ̃, an extension of the 3-node path graph policy π̃(3).

At each time t:
1) If

∏N
m=2

(∑
l∈Cm il(t)

)
> 0 serve any nonempty queue

in every clique {Cm, m ≥ 2} having nonempty queues.
2) Else, if

∑
l∈C1 il(t) > 0, serve any nonempty queue in

C1.
3) Else, serve one nonempty queue (if it exists) in each of
{Cm, m ≥ 2} .

Proposition 12. φ̃ is throughput-optimal.

The main idea behind the proof of this proposition is to prove
a more general version of Property P that can be applied
to cliques of arbitrary sizes rather than just queues and use
Lem. 1 to prove strong stability. See [16] for details.

Extending another policy, π(3)
5 (see Sec. V-D), gives us a

second queue length-agnostic policy φ5 for this system5. We
define the policy as follows.
At time t,

1) If
∑
l∈C1 il(t)(t) > 0, serve any nonempty queue in C1.

2) Else, serve one nonempty queue (if it exists) in each of
{Cm, m ≥ 2} .

Proposition 13. φ5 is throughput-optimal.

Once again, the proof of this result rests on proving the new
version of Property P for this policy, followed by Lyapunov
analysis. The reader is referred to the technical report [16] for
the complete details.

We end this section with some remarks about delay perfor-
mance and implementation. Prop. 20 in the technical report
[16] proves that φ̃ cannot be worse in delay (sum-queue length)
than φ5. In Sec. IX, we will provide some preliminary ideas
about how φ5 and φ̃ can be implemented in a decentralized
fashion with very little (if any) information exchange between
queues.

VIII. NUMERICAL RESULTS

In this section we numerically compare the performance of
the various policies and protocols we have proposed. Recall
that Thm. 10 in Sec. VI asserts that Π̃(N) cannot contain
policies which are uniformly delay optimal in systems for
N ≥ 4. Table II, shows the results of simulating π̃

(4)
1 and

π̃
(4)
2 and comparison with our benchmark policies MaxWeight

(column 3) and L(MWα) (column 4). L(MWα) is an MER

5Note that the subscript 5 is for consistency; there are no φ1, · · · , φ4.



Table II: Path graph interference model N = 4. Comparison of sum queue
length under the proposed π̃(4)

1 , π̃(4)
2 policies, MW and L(MWα), α =

0.01.

λ π̃
(4)
1 π̃

(4)
2 MW L(MWα)

[0.2, 0.79, 0.2,0] 23.060 32.711 32.912 29.478
[0,0.049, 0.95, 0.049] 89.741 60.234 87.516 70.579
[0.49, 0.49, 0.49, 0.49] 45.963 45.924 57.302 43.508

Table III: Path graph interference model N = 5. Comparison of sum queue
length under the proposed π̃(5) policies, MW and L(MWα), α = 0.01

λ π̃(5) MW L(MWα)

[0.15,0.049,0.95,0.049,0.15] 61.537 88.243 75.642
[0.049,0.95,0.049,0.95,0.049] 128.842 176.688 129.358

policy, obtained by using the operator L (see Sec. V-C) to
project a modification of MaxWeight (MW ) called MWα

onto Γ
(4)
M . The MWα policy, studied in [18] and [11], is

essentially MW with all queue lengths raised to their α-th
powers, with α > 0. This policy has been observed to show
smaller sum queue lengths (than MW ) with smaller α [19].
We do not simulate π̃(4)

3 and π̃
(4)
4 since they have the same

sum queue length performance as π̃(4)
1 and π̃(4)

2 , respectively
(see proof of Prop. 8).

As the first two rows of table show, different policies
perform better for different arrival rates. Finally, Row 3 of
the table shows an arrival rate vector for which neither of the
queue length-agnostic policies does well and L(MWα) shows
the smallest sum queue length. In a similar manner Table III
shows that our proposed policy π̃(5) performs much better than
both MW and L(MWα) under a range of arrival rates.

We move on to simulations of the policies proposed for non
path networks. The chosen network, shown in Fig. 4, consists
of 4 cliques and a total of 6 queues. Table IV shows the result
of simulating φ̃, φ5 and MW on this network. Observe that
whether the central clique, i.e., C1 is the most heavily loaded
(row 1 in the table) or the least loaded (row 2), φ̃ performs
the best among the policies tested. This is interesting, since
one expects that situations may arise wherein only two of
the three peripheral cliques and C1 are nonempty. In such a
case, φ̃ would serve C1, giving up the chance to serve both
the peripheral nonempty cliques simultaneously and remove
2 packets from the system in a single slot, which is what

Table IV: Comparison of sum queue length under the proposed φ̃, φ5 policies,
and MW acting on the network in Fig. 4.

λ φ̃ φ5 MW

[0.1, 0.1, 0.1,0.65,0.3, 0.3] 10.539 13.846 14.506
[0.3, 0.3, 0.3,0.09,0.9, 0.9] 45.535 53.766 57.861

Figure 4: The network used to study the performance of φ5 and φ̃.

MW might have attempted, if the queues therein were large
enough. If, for example, in some slot t, C2 is empty, while
Q1,1(t) = 1, Q3,1(t) = 5 and Q4,1(t) = 2, φ̃ still serves only
Q1,1 (1 packet transmitted) while MaxWeight serves both Q3,1

and Q4,1 (2 packets transmitted). Why φ̃ still performs better
requires more investigation and will be a focus of our future
work.

IX. SOME REMARKS ON DISTRIBUTED IMPLEMENTATION

We now provide some preliminary ideas on how the policies
developed in Sec. VII-B can be used to design MAC protocols
suited to sensor networks possessing the structure in Fig. 2.
Our ultimate aim is to develop decentralized scheduling pro-
tocols, that require little explicit exchange of state information
or control signals. The policies developed in this paper until
now, seem particularly suited to distributed implementation
since they rely only on occupancy information (reduced state
information) rather than queue lengths. To facilitate distributed
implementation, we first describe the following transmission
sensing mechanism.

Transmission sensing: We assume that there exist activity-
sensing intervals at the beginning of every slot called minislots
[20]. These are used to sense whether or not a queue scheduled
to transmit is empty-nonempty, by averaging power over the
minislot (in a manner similar to the clear channel assessment
or CCA mechanism [21]).

To begin with, consider a clique, say C1, in isolation.
Suppose the nodes in C1 could determine the backlog of a node
in the clique each time it transmitted a packet6 and keep track
of the number of slots since node i was allowed to transmit.
Then, at the beginning of slot t, the information common to
all nodes in Ci would consist of the number of slots Vi(t)
since node i last transmitted7 and its backlog Qi(t−Vi(t)) at
that instant. With this partial information structure, it has been
proved in [17] that exhaustively serving a nonempty queue
minimizes delay.

This is encouraging, since, with exhaustive service, Qi(t−
Vi(t)) is always 0, which obviates the need to transmit queue
lengths. When the queue under service, called the incumbent
in the sequel, becomes empty the next queue to be scheduled

6The backlog information could be quantized and contained in the packet
header, for example.

7If the node were empty at this instant, it wouldn’t have actually transmitted
anything. The others can infer its “emptiness” by sensing no power in a
minislot.



for transmission can be determined by another result from
[17]. It is shown therein that for this information structure
(i.e., all queues in the clique keeping track of V(t)) that
scheduling node arg maxj∈C1 Vj(t) is throughput-optimal, and
under certain conditions, also mean delay optimal.

Now, returning to the star of cliques model, one could
imagine an extension of policy φ5, in which clique Ci uses
minislots to determine if the incumbent queue is empty. From
the interference model, we already know that nodes in C1 and
Cj , j ≥ 2 (the peripheral cliques) can hear all transmissions in
the two cliques but for all 2 ≤ j, l ≤ N, nodes in Cj cannot
hear the transmissions in Cl and vice versa. Following φ5, the
first minislot could be dedicated to determining whether the
incumbent of C1 is empty or not. If it is not, this node is
allowed to transmit, following the exhaustive service result in
the discussion above. If no power is sensed in this minislot,
a new queue arg maxj∈C1 Vj(t) is chosen (and served until
empty). If, however, this queue is also empty (sensed by
lack of power in a second minislot), each peripheral clique
Cj , j ≥ 2 allows its incumbent to transmit, and if that queue
is empty (sensed by lack of power in a third minislot),
arg maxj∈Ci Vj(t) is allowed to transmit. If this queue is
empty, the slot is wasted.

Using minislots to sense transmissions (or lack of transmis-
sions) will, thus, allow us to implement the policies we have
derived for the star-of-cliques network without the occupancy
vector having to be shared across the network. The stability
and delay properties of this protocol need to be studied in
detail and will form part of our future work. Observe, however,
that the number of minislots does not scale with the number
of queues in the system, which is encouraging.

X. CONCLUSION AND FUTURE WORK

In this paper, in the setting of the classical work of Tas-
siulas and Ephremides [1] we have studied the possibility of
throughput optimal and low delay scheduling, with just the
knowledge of the empty or non-empty state of each queue in
the network. The necessity for such policies naturally arises
in low-power IoT networks where disseminating queue length
information across the network consumes too much energy. We
have demonstrated in the setting of path interference graphs,
with iid arrivals to queues such reduced state schedulers do
exist. We have shown that even with limited state information
these policies attain stability and low sum queue length (and
hence, delay). We have also shown that there cannot exist
a uniformly delay optimal policy that uses only occupancy
vectors for scheduling for N ≥ 4.

Motivated by these policies, we then proposed and analysed
scheduling policies for wireless sensor networks possessing
the star-of-cliques structure that show good stability and delay
properties while requiring only occupancy information. This
is a natural extension of our earlier work [17] in which we
studied mean delay optimal scheduling in collocated networks
using only the occupancy status of the queues. Our present
study has thrown up several questions like the performance
of these policies under heavy traffic and stabilizing path
graphs for general N, which will form part of our future

work. We also hope that our study opens the doors for more
detailed investigation of the proposed reduced-state algorithms
and protocols, towards the utilization of this theory for the
development of decentralized medium access protocols.
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