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Abstract—We study epidemic spreading processes in large
networks, when the spread is assisted by a small number of
external agents: infection sources with bounded spreading power,
but whose movement is unrestricted vis-à-vis the underlying
network topology. For networks which are ‘spatially constrained’,
we show that the spread of infection can be significantly speeded
up even by a few such external agents infecting randomly.
Moreover, for general networks, we derive upper-bounds on
the order of the spreading time achieved by certain simple
(random/greedy) external-spreading policies. Conversely, for cer-
tain common classes of networks such as line graphs, grids
and random geometric graphs, we also derive lower bounds on
the order of the spreading time over all (potentially network-
state aware and adversarial) external-spreading policies; these
adversarial lower bounds match (up to logarithmic factors) the
spreading time achieved by an external agent with a random
spreading policy. This demonstrates that random, state-oblivious
infection-spreading by an external agent is in fact order-wise
optimal for spreading in such spatially constrained networks.

Index Terms—Epidemic spreading, infection/information dis-
semination, long-range spreading, percolation, mobility.

I. INTRODUCTION

Various natural and engineered phenomena involve the
spreading in networks. Rumors/news propagate among people
linked by various means of communication; diseases diffuse
as epidemics through populations by various modes; plants
disperse pollen/seeds, and thus genetic traits, geographically;
riots spread across communities; advertisers aim to dissemi-
nate information about products through consumer networks;
computer viruses and worms, and also software patches,
piggyback across computer networks. Understanding how
infection/information/innovation can travel across networks
through such processes has been a subject of extensive study
in disciplines ranging from epidemiology [2], [3], sociology
[4], [5] and computer science [6], [7] to physics [8], in-
formation theory/networking [9], [10], [11], [12], [13] and
applied mathematics [14], [15], [16]. Though many different
models have been considered for such processes, they all
involve propagation via epidemic dynamics, i.e., through peer-
to-peer interactions between the network nodes. In this paper,
we consider one-way dissemination or spreading via such
epidemic dynamics – we refer to this as epidemic spreading.
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Our focus however is on understanding the effect of external
agents on such epidemic spreading processes.

In many real-world settings, spreading in networks is
brought about via the interaction of two processes-(i) a local
epidemic spreading process in the network, and (ii) a global
infection process due to agents that are external to the network.
For instance, in wireless communication, viruses and worms
have been observed to exploit links due to both short-range
technologies like Bluetooth and long-range media such as
SMS/MMS and the Internet [17], [18]. To paraphrase Klein-
berg [19], outbreaks due to such worms are well-modeled by
local spreading on a fixed network of nodes in space (i.e. short-
range Bluetooth transmissions between users) aided by paths
through the network (i.e. long-range emails and messages
through SMS/MMS/Internet). Other examples of multi-scale
spreading include those of human epidemics [2] and bio-
terror attacks [20], where infection spreads locally through
interpersonal interactions, but is aided by long-range human
travel, e.g., via airline routes [21]. In all these cases, a form
of agency external to the underlying graph is responsible
for long-range proliferation of an otherwise locally diffusive
contagion; we want to study the effect of this external agency.

To this end, we propose and study a model for spreading
in networks that decomposes into two distinct components –
a basic intrinsic spread component in which infection spreads
locally via epidemic-dynamics on the underlying graph topol-
ogy, and an additional external spread component in which
‘external agents’ (potentially unconstrained by the underlying
graph) can carry infection far from its origin, helping it spread
globally. More specifically, we develop a rigorous framework
with which we quantify the effect that a number of omniscient
(i.e. network-state aware) and adversarial (i.e. attempting to
maximize the rate of infection) external infection agents can
have on the spreading time. We stress that the generic terms
‘intrinsic spread’ and ‘external spread’ serve to model a variety
of situations involving heterogeneous modes of spreading – we
discuss this in more detail in Section II.

Characterizing the impact of external agency on epidemic
spread has a twofold utility:

(a) (Adversarial perspective) When malicious epidemics
(some of which we described before) threaten to spread
via both intrinsic and external means, it becomes im-
portant to understand the worst-case spreading behavior
brought about by external agents, in order to deploy
appropriate countermeasures.

(b) (Optimization perspective) In cases where dissemination
is desirable and the external component can be con-
trolled – e.g., in viral advertising [7], network protocol
design [22], diffusion of innovations [4], etc. – a study of
external-agent assisted spreading can help design faster
spreading strategies.
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A. Main Contributions

We consider a graph G = (V,E) in which a spreading
process starts at a designated node and commences spread-
ing through two interacting dynamics: an intrinsic epidemic
spread, and an additional external infection. We assume all
processes evolve in continuous time, and inter-event times
are drawn from independent exponential distributions, with
appropriate rates1. The metric of interest is the spreading time
– the time taken by the process to spread to all nodes.

We assume the intrinsic spread follows the Susceptible-
Infected (SI) dynamics [24], [23] (alternately referred to in
literature as first-passage percolation [25]); network nodes
start of as being ‘susceptible’ (S), and transition to being
‘infected’ (I) at a rate proportional to the number of infected
neighbors. Once infected, a node remains so forever – this
distinguishes one-way spreading processes considered in this
work from related epidemic processes such as the SIS/contact-
process [9] or the SIR/Reed-Frost epidemics [7], [16], where
infected nodes can recover. A formal description is provided
in Section II.

To model the external infection process, we allow every
node in the graph to get infected at a potentially different
(including zero) rate at each instant; thus at time t, the state
of the network consists of a set of nodes which are infected
(therefore determining the intrinsic spreading process) and
a |V |-dimensional vector L̄(t) of external infection-rates for
each node. The spreading power, or virulence, of the external
agents is measured by L(t) , ||L̄(t)||1, i.e., the sum rate of
external infection. Subject to restrictions on the virulence L(t),
we allow L̄(t) to be chosen as a function of the network state
and history (omniscience) and further, chosen adversarially,
i.e., designed to minimize the spreading time. In Section II
we discuss how this model generalizes various models for
spreading via external sources.

Our main message is somewhat surprising – in the above
setting, spite of the ‘adversarial power’ external agents have
for spreading infection, we show that for common spatially-
constrained graphs (i.e., having high diameter/low conduc-
tance), a simple random strategy is order-optimal (i.e., up to
logarithmic factors). More formally, our contributions in this
paper are as follows:

(a) We give upper bounds on the spreading time (expecta-
tion and concentration results) for general graphs when
the external infection pattern is random, i.e., when every
node is susceptible to the same external-infection rate,
irrespective of the infection-state and graph topology.
The bounds are based on the graph topology (in par-
ticular, diameter/conductance of appropriate subgraphs)
and a lower bound Lmin(n) on the virulence (which we
allow to scale with the network size). We also analyze
an alternate greedy infection policy based on the same
graph partitioning scheme, for which we obtain better
bounds for the spreading time.

(b) For common classes of structured graphs (ring/line

1This is in accordance with assumptions in literature [23]; however, the
results easily extend to a discrete time system, with events in each time slot
occurring according to independent Bernoulli random variables.

graphs, d-dimensional grids) and random graphs (ge-
ometric random graphs) which have high diameter/low
conductance (spatially-constrained), we use first-passage
percolation theory [15] to derive lower bounds on the
order of spreading times (again, both in expectation
and w.h.p) over all (possibly omniscient and adversar-
ial) external-infection policies. These lower bounds are
in terms of the graph topology and an upper bound
Lmax(n) on the virulence, and match the upper bounds
for random spreading up to logarithmic factors, showing
that random external-infection policies are order-wise
optimal for such spatially-constrained graphs. Further-
more, they match exactly for the greedy policies, indi-
cating that these bounds are tight.

(c) Apart from these results, the general bounds (and related
techniques) we derive are of independent interest. They
provide a fairly complete picture of the dependence
of spreading time on external virulence and graph
topology in a wide regime; in particular, it is tight
for graphs with polynomially-bounded diameter (i.e.,
diameter D(n) = Ω(nα) for some α > 0) and sub-linear
external virulence (i.e.,||L(t)||1 = o(n)). To demonstrate
this, we discuss how other external-infection models
(graphs with additional static or dynamic edges, mobile
agents) can be analyzed in our framework, and what our
bounds translate to in such cases.

B. Related Work
There is much prior work concerning network spread,

including models for long-range spreading. They however
do not completely capture adversarial external-agent assisted
spreading in a unified framework, as we do in this work.

There has been much work in studying epidemic processes,
both numerically using data/simulations [8], [4], [5], [6] and
analytically [9], [14], [26], [16]. In the setting of epidemic
processes aided by external agents, many numerical studies
have investigated the spread of infectious diseases with specific
mobility patterns, e.g. via airline networks [21], heterogeneous
geographic means [2], and electronic pathways [19], [17].
There are also more design-oriented studies, for control of
deterministic epidemic models [27], designing algorithms for
optimal seeding in networks to maximize spread of SIR
epidemics [7], for ensuring long-lasting SIS epidemics by
distributing virulence across edges [28], and for efficient
routing over spatial networks with fixed long-range links [29].
These are complemented by works studying ways to minimize
the impact of epidemics [30].

One-way information dissemination is an important primi-
tive in communication engineering. Notable studies consider
settings where all network nodes are simultaneously mobile
– for designing gossip algorithms [13], [22] or improving the
capacity of wireless networks [12] – and analysis of rumor
spreading on fully-connected graphs [10], [11]. The closest
works to ours include Kesten and others’ investigations into
first-passage percolation [25], [15] (our intrinsic epidemic-
spread follows the same dynamics), and Alon’s study of
deterministic spreading with external-agents in d-dimensional
hypercubes [31].
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II. MODEL FOR EPIDEMICS WITH EXTERNAL AGENTS

Consider a sequence of graphs Gn = (Vn, En) indexed by
n, with the n-th graph having n nodes; for ease of notation, we
label the nodes in V from 1 to n. For instance, Gn could be the
ring graph with n nodes, or a (2-dimensional)

√
n×
√
n grid.

For convenience, we will drop the subscript n for all quantities
pertaining to the graph Gn when the context is clear.

We model the epidemic spread on underlying graph Gn (or
G) using a continuous-time spreading process (S(t))t≥0. At
each time t, S(t) = (S1(t), . . . , Sn(t)) ∈ {0, 1}V denotes
the ‘infection state’ of the nodes in V : Si(t) = 0 indicates
that node i ∈ V is healthy (or ‘susceptible’) at time t, while
Si(t) = 0 denotes that it is ‘infected’. S(t) denotes the set
of infected nodes at time t, i.e. S(t)

4
= {i ∈ V : Si(t) = 1},

and we use N (S(t)) to denote its size. In order to capture the
effect of external agents, the evolution of S(t) is assumed to
be driven by the following modes of infection spread:
• Intrinsic infection: This follows the standard SI dynam-

ics or first-passage percolation process [25]. Initially, at
t = 0, all nodes are healthy, except for a single infected
node (that can be arbitrarily chosen). Once a node is
infected, it always remains infected, and infects each of
its neighboring susceptible nodes at independent random
times which are exponentially distributed with mean 1.

• External infection: At time t, in addition to being infected
by its neighbors in G, each node i is susceptible to an ex-
ternal infection with an exponential infection-rate Li(t).
The external infection-rate vector L̄(t) ≡ (Li(t))i∈V can
vary with time t and can depend on the state of the
network S(t)

We note here that the dependence of the external infection rate
L̄(t) on the network state allows us to model the propagation
of infection through a wide range of external infection pro-
cesses transcending the structure of the underlying network
(G). For instance,

(a) L̄(t) = 0 represents infection occurring only through
edges of the underlying graph (the standard SI dynamics
or first-passage percolation process).

(b) Small-world networks: Both Kleinberg [32] and also
Watts-Strogatz [33] show that adding a few fixed long-
range edges onto structured networks can dramatically
reduce routing time and diameter. Our model captures
the dynamics of infection spreading with L such ad-
ditional edges, say, by letting Li(t) be the number of
long-range edges incident on node i that have an infected
node at the other end at time t.

(c) Long-range edges over the underlying graph, instead of
being drawn in a static manner, can be dynamically
added and deleted as time progresses. For instance,
infected nodes can “throw out” fresh sets of long-range
edges at certain times – this corresponds to choosing
fresh sets of long-range infection targets depending on
network state or other parameters.

(d) Moving beyond long-range structures, the external infec-
tion vector can also be used to model ‘virtual mobility’;
the external infection could be caused by one or several
mobile agents, whose position is unconstrained by the

graph, and which thus spread infection to various parts
of the network with corresponding rates L̄(t).

(e) At an even more abstract level, the external agent
can be viewed as an external information source with
bandwidth L(t), which it can share across nodes of
the graph. Such a model can be used to design opti-
mal spreading processes for viral advertising, spread of
software updates, etc.

To complete our system description, we term the quantity
L(t) = ||L̄(t)||1 as the external virulence at time t. In this
work, we restrict ourselves to scenarios where the virulence
L(t) is uniformly (i.e., for all t) upper and lower bounded by
functions Lmax(n), Lmin(n) respectively (that can potentially
scale with the network size n). Finally, we define the spreading
time of the epidemic as T

4
= inf{t ≥ 0 : S(t) = 1n}.

Our concerns are both to (a) analyze the spreading time
under certain natural external infection strategies, and (b) show
universal lower-bounds on the spreading time for common
structured networks, over a wide class of external infection
strategies.

General Notation: We use Z and R for the set of integers
and reals respectively. We use the standard asymptotic notation
(O, Θ, Ω, ω and o) to characterize the growth rate of func-
tions2. For random variables X and Y , the notation X ≤st Y
and Y ≥st X means that Y stochastically dominates X , i.e.
P[Y ≥ z] ≥ P[X ≥ z] for all z. Where necessary, we follow
the convention that 1/∞ 4

= 0.

III. MAIN RESULTS AND DISCUSSION

We now state our results, and discuss how they translate to
different models of externally-aided epidemic spreading. Our
results are of two kinds: upper bounds for spreading time for
general graphs under specific policies (in particular, random
and greedy spreading policies), and lower bounds under any
policy for specific graphs (in particular, rings/line graphs, d-
dimensional grids and the geometric random graph); these
are representative of graphs which are spatially-constrained,
and where our bounds are tight. The bounds are in terms
of properties of the graph, and the bounds Lmin(n) and
Lmax(n) on the virulence L(t). We conclude the section
with a discussion of the applicability of our bounds and
techniques; in particular, we show how our bounds can be
used to obtain results on spreading time for various models of
external infection such as long-range links and mobile agents,
and discuss their limitations.

A. Upper Bounds for Specific Policies

Our first main result is an upper-bound on the spreading
time (both in expectation and with high probability) of the
homogeneous external-infection policy, for a general graph
G. Such a policy is equivalent to one in which the (single)
external agent chooses a node uniformly at random and starts

2Briefly: f(n) = Ω(g(n)) (alternately g(n) = O(f(n))) implies there
exists some k > 0 such that ∀n > N (for some large enough N ), we have
f(n) ≥ kg(n), while f(n) = ω(g(n)) (alternately f(n) = o(g(n))) implies
that for all n large enough, we have f(n) ≥ kg(n) for all k > 0
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infecting it; hence we hereafter refer to it as the random
spreading policy. The following result states that given a
uniform partition of G, the time taken by random spreading to
finish is of the order of the number of pieces or the maximum
piece diameter, whichever dominates.

Theorem 1 (Upper bound: Random Spreading, Diameter
version). Suppose ||L̄(t)||1 ≥ Lmin(n) ≥ 0 for all t ≥ 0, and
suppose Li(t) = L(t)/n for all i ∈ V (random spreading).
Suppose also that for each n, the graph Gn admits a partition
Gn =

⋃g(n)
i=1 Gn,i by g(n) connected subgraphs Gn,i, each

with size Θ(s(n)) and diameter O(d(n)). Then:
(a) (Mean spreading time) E[T ] = O(h(n) log n), where

h(n) ≡ max
(

g(n)
Lmin(n) , d(n)

)
.

(b) (Spreading time concentration) If g(n) = Ω(nδ) for
some δ > 0, then for any γ > 0 there exists κ = κ(γ) >
0 such that P[T ≥ κh(n) log n] = O(n−γ).

To understand how this result is applied, consider a line
graph on n nodes – this can be partitioned into

√
n segments of

length (diameter)
√
n each, and hence by the above result, the

random spreading policy takes O(
√
n log n) time to infect all

nodes. We formally state and derive such results subsequently.
Next we obtain a spreading time bound for a greedy spread-

ing policy, which we call the Greedy Subgraph Infection (or
GSI) policy. The policy is based on the (optimal) partitioning
of the graph that we constructed in the above theorems, and is
as follows: given the subgraphs Gi, i ∈ {1, 2, . . . , g(n)}, they
are infected through sequential greedy (as opposed to homoge-
neous) external infection, i.e., ||L(t)||1 = Lmin(n), and L(t) is
supported on a single node j(t) within any maximally healthy
subgraph at time t (i.e., one which minimizes |Gi∩S(t)|). The
spreading time of the GSI policy is O(h(n)) in expectation
and w.h.p., which we state as follows:

Theorem 2 (Upper bound for GSI Policy). Suppose for each
n, the graph Gn admits partition

⋃g(n)
i=1 Gn,i of connected

subgraphs Gn,i, each with diameter O(d(n)). Further, d(n) =
log n + ω(1). Then for spreading via the Greedy Subgraph
Infection policy, we have E[T ] = O(h(n)), where h(n) ≡
max

(
g(n)

Lmin(n) , d(n)
)

.

Again, applying this to the line graph with n nodes, we
now get a spreading time of O(

√
n), which improves on the

previous bound by a factor of log n.
Our final upper bound is an alternate bound for the spread-

ing time with random external-agents in terms of a different
structural property intimately related to spreading ability in
graphs – the conductance (also called the isoperimetric con-
stant). The conductance Ψ(G) of a graph G = (V,E) is
defined as

Ψ(G)
4
= inf
S⊂V :1≤S≤ |V |

2

E(S, V \ S)

|S|
,

where for A,B ⊆ V , E(A,B) denotes the number of
edges that have exactly one endpoint each in A and B. The
conductance of a graph is a widely studied measure of how
fast a random walk on the graph converges to stationarity [34],
[26]. Analogous to Theorem 1, the next result formalizes the

idea that spreading on a graph is dominated by the larger of
(a) the number of pieces it can be broken into, and (b) the
reciprocal of the piece conductance.

Theorem 3 (Upper bound: Random Spreading, Conductance
version). Suppose ||L̄(t)||1 ≥ Lmin(n) ≥ 0 for all t ≥ 0, and
suppose Li(t) = L(t)/n for all i ∈ V (random spreading).
Suppose also that for each n, the graph Gn admits a partition
Gn =

⋃g(n)
i=1 Gn,i by g(n) connected subgraphs Gn,i, each

with size Θ(s(n)) and conductance Ω(Ψ(n)). Then:
(a) (Mean spreading time) E[T ] = O(k(n) log g(n)), where

k(n) ≡ max
(

g(n)
Lmin(n) ,

log s(n)
Ψ(n)

)
.

(b) (Spreading time concentration) There exists κ > 0
independent of n such that:

P[T ≥ κk(n) log g(n)] = O
(

(log g(n))
−2
)
.

B. Results: Lower Bounds for Specific Topologies

Having estimated the spreading time of random and greedy
external-infection policies, a natural question that arises at
this point is: How do these policies compare with the best
(possibly omniscient and adversarial) policy, i.e., with the
lowest possible spreading time among all other infection
strategies? To this end, we show that for certain commonly
studied spatially-limited networks (i.e., with diameter Ω(nα)
for some α > 0), such as line/ring networks, d-dimensional
grids and random geometric graphs, random spreading yields
the best order-wise spreading time up to a logarithmic factor
(and the GSI policy yields the best order-wise spreading time)
to spread infection. In particular, for each of these classes of
graphs, we establish lower bounds on the spreading time of any
spreading strategy, that match the upper bounds established in
the previous section.
Rings/Linear Graphs: Let Gn = (Vn, En) be the ring
graph with n contiguous vertices Vn

4
= {v1, . . . , vn}, En

4
=

{(vi, vj) : j − i ≡ 1 (mod n)}. By partitioning Gn into
√
n3

successive
√
n-sized segments, where the diameter of each

segment is
√
n, an application of Theorem 1 gives:

Corollary 1 (Spreading time for random external-infection on
ring graphs). For the random spread policy πr on the ring/line
graph Gn, we have:

(a) E[Tπr ] = O
(√

n
Lmin(n) log n

)
,

(b) For any γ > 0 ∃α = α(γ) > 0 such that:

P
[
Tπr ≥ α

√
n

Lmin(n)
log n

]
= O(n−γ).

i.e., the spreading time on an n-ring, with random external-
infection, is O(

√
n log n) in expectation and with high prob-

ability.
We now present a corresponding lower bound, that shows

that the spreading time on a grid or line graph with any (pos-
sibly omniscient) external-infection strategy must be Ω(

√
n),

both in expectation and with high probability.

3For ease of notation, we assume that fractional powers of n take integer
value; if not, the bounds can be modified by appropriately taking ceiling/floor.
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Theorem 4 (Lower bound for ring graphs). For the ring graph
Gn with n nodes, and given that ||L̄(t)||1 ≤ 1 ∀t ≥ 0, there
exists c > 0 independent of n such that for any spreading
policy π:

P
[
Tπ < c

√
n
]

= O
(
e−Θ(1)

√
n
)
.

Moreover, we have:

inf
π∈Π

E[Tπ] = Ω
(√
n
)
.

d-dimensional Grids: Building on the previous result, we next
show that the random spread strategy achieves the order-wise
optimal spreading time even on d-dimensional grid networks
where d ≥ 2. Given d, the d-dimensional grid graph Gn =

(Vn, En) on n nodes is given by Vn
4
= {1, 2, . . . , n1/d}d, and

En
4
= {(x, y) ∈ Vn × Vn : ||x− y||1 = 1}.

Consider a partition of Gn into (n/Lmin)1/(d+1) identical
and contiguous ‘sub-grids’ Gn,i, i = 1, . . . , n1/(d+1) (for
details, refer to Section V-B). With such a partition, an
application of Theorem 1 shows that:

Corollary 2 (Spreading time for random external-infection on
d-dimensional grids). For the random spread policy πr on an
n-node d-dimensional grid Gn, we have

(a) E[Tπr ] = O
((

n
Lmin(n)

)1/(d+1)

log n
)

,
(b) For any γ > 0 there exists α = α(γ) > 0 with:

P
[
Tπr ≥ α

(
n

Lmin(n)

)1/(d+1)

log n
]

= O(n−γ).

i.e., the spreading time with random external-infection on a

d-dimensional n-node grid is O
((

n
Lmin(n)

)1/(d+1)

log n

)
in

expectation and with high probability.
In contrast, we show that any external-infection policy on a

grid takes time Ω

((
n

Lmax(n)

)1/(d+1)
)

to finish infecting all

nodes with high probability, and consequently also in expec-
tation, thereby showing the above bound is order-optimal.

Theorem 5 (Lower bound for d-dimensional grids). Let Gn be
a symmetric n-node d-dimensional grid graph. Suppose that
||L̄(t)||1 ≤ Lmax(n) = ω(n) for all t ≥ 0. Then, there exist
c1, c2 > 0, not depending on n, such that:

P

[
T ≤ c1

(
n

Lmax(n)

) 1
d+1

]
= O

(
e−c2(

n
Lmax(n) )

1
2d+2

)
.

Further, if Lmax(n) = O(n1−ε) for some ε ∈ (0, 1], then:

E[T ] = Ω

((
n

Lmax(n)

) 1
d+1

)
.

Geometric Random Graphs: Finally, we shift focus from
structured graphs to a popular family of random graphs, widely
used for modeling physical networks. The Geometric Random
Graph (RGG) is a random graph model wherein n points (i.e.
nodes) are placed i.i.d. uniformly in [0, 1]× [0, 1]. Two nodes
x, y are connected by an edge iff ||x − y|| ≤ rn, where rn
is often called the coverage radius. The RGG Gn = Gn(rn)

consists of the n nodes and edges as above.
It is known that when the coverage radius rn is above a

critical threshold of
√

log n/π, the RGG is connected with
high probability [35]. In our last set of results, we show that
similar to before, random spreading on RGGs in this critical
connectivity regime is optimal upto logarithmic factors. First,
we show with high probability that random spreading finishes
in time O( 3

√
n log n):

Theorem 6 (Spreading-time for random external-infection on
the RGG). For the planar random geometric graph Gn(rn),

if rn ≥
√

5 logn
n , then there exists α > 0 such that:

lim
n→∞

P[Tπr ≥ α
3
√
n/Lmin(n) log n] = 0.

Finally, we follow this up with a converse result that shows
that no other policy can better this time (order-wise, up
to the logarithmic factors) with significant probability. This
directly parallels the earlier results about spreading times on
2-dimensional grids, where random mobile spread exhibits the
same optimal order of growth.

Theorem 7 (Lower bound for the RGG). For the planar
geometric random graph Gn with rn = O(

√
log n/n) with

a single random initially-infected node, and any spreading
policy π with Lmax(n) = O(n1−ε) for some ε ∈ (0, 1], ∃
β > 0 such that

lim
n→∞

P

[
Tπ ≥ β

3
√
n/Lmax(n)

log4/3 n

]
= 1.

C. Discussion and Extensions

The framework of epidemic spreading with external agents
encompasses many known models for epidemic spreading with
long-range interactions (as we discussed previously in Section
II): this is done by appropriately specifying L̄(t) ∈ R|V |+

as a function of time t, network topology and network-state
S(t). For example, the presence of a single additional ‘static
long-range’ link (i, j) ∈ V 2 is equivalent to setting Li(t) =
β1Sj(t)=1, Lj(t) = β1Si(t)=1 and Lk(t) = 0 ∀k /∈ {i, j}
(where β is the rate of spreading on the edge). We now discuss
the implications of our results and techniques on such models
of external infection sources.
Static Links: To demonstrate our results in the context of
a graph overladen with additional static edges, consider a
d-dimensional grid with L(n) additional static links. Then
we have the following lower-bound for the spreading time T
(obtained by setting Lmax(n) = L(n) in Theorem 5).

Corollary 3. Let Gn be a symmetric n-node d-dimensional
grid graph, with L(n) additional static links. If L(n) =

O(n1−ε) for some ε ∈ (0, 1], then E[T ] = Ω

((
n

L(n)

) 1
d+1

)
.

Note that by combining this with Theorem 2, we can also
get the same lower bound on the diameter D(n) of the resul-
tant graph. To see this, observe that by considering the entire
graph as a single partition, Theorem 2 gives that the spreading
time is O (D(n)), and thus D(n) = Ω

(
(n/L(n))

1
d+1

)
by

Corollary 3. One consequence of this is in the context of
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‘small-world graphs’ [32], [33] wherein the diameter of a d-
dimensional grid on n nodes is reduced to Θ(log n) by adding
Ω(n log n) random long-range edges. The usefulness of the
above result is to show that it is not possible to obtain such
sub-polynomial diameters by adding O(n1−ε) edges.

We note also that this bound is tight. We can see this from
the following simple example: partition the graph into L(n)
identical segments, and add an edge between a chosen vertex
i and a single vertex in each segment. Now for an epidemic
starting at node i, it is easy to see that the resultant process
is equivalent to the 2-phase spreading process in the proof
of Theorem 2 (i.e., parallel seeding of clusters followed by
local spreading in clusters). Hence, the spreading time for this
process is O

(
(n/L(n))

1
d+1

)
.

Dynamic Links and Mobile Agents: A more surprising result
is obtained by considering spreading on a grid with additional
dynamic links, i.e., long-range links which can change their
endpoints as time progresses. Unlike a static link which can
transmit the infection only once (before both its endpoints are
infected), such dynamic links can be re-used over time to help
spread the infection. However, we now show that dynamic
links do not in fact reduce the order of the spreading time.

Corollary 4. Let Gn be a symmetric n-node d-dimensional
grid graph, with L = O(n1−ε), ε ∈ (0, 1] additional dynamic
links. Then E[T ] = Ω

((
n
L

) 1
d+1

)
.

A related model is of epidemic spreading via mobile
agents–in such a context, assuming L(n) mobile agents, each
with constant infection-rate, Theorem 5 again gives the same
converse for spreading time, i.e., Ω

(
(n/L(n))

1
d+1

)
for d-

dimensional grids. Furthermore, the techniques of Theorems
1 and 2 can be used to give upper bounds for various models
of mobility: for example, for L mobiles moving randomly on
a d-dimensional grid (where each mobile is unconstrained by
the graph as to its next location), Theorem 1 shows that the
spreading time is O

(
(n/L(n))

1
d+1

)
.

Sub-Polynomial Spreading Time: In the above examples,
we consider settings where the spreading time is polynomial
in the graph size (i.e., nα for some α ∈ (0, 1]). However
our techniques do not yield tight bounds in the two extreme
regions: non-spatially-constrained graphs, i.e., having sub-
polynomial diameter, and high external-infection rate, i.e.,
L(t) = Ω(n). There is very little work in literature in
analyzing such regimes, and the existing work focuses on
specific graph and infection models. Two notable results in this
respect are tight bounds on deterministic spreading with ad-
versarial external-infection in d-dimensional hypercubes [31]
(where the graph diameter is Θ(log n)), and the Θ(log n)-
diameter characterization of small-world graphs [32] (where
the number of edges added is Ω(n log n)); both however use
techniques tailored to their specific problems. While it would
be interesting to obtain general bounds like ours for these
regimes, it is not clear that this can be achieved.

IV. PROOFS: UPPER BOUNDS FOR SPECIFIC POLICIES

In this section, we formally prove the upper bounds on
spreading time we stated in Section III-A. We first prove

Theorem 1, which gives an upper bound for the spreading time
achieved by a random external-spreading policy. Essentially,
Theorem 1 says that given any partition of a large graph,
the spreading time of an externally-aided epidemic process is
determined by (a) the time taken for the spread to start in each
segment of the partition and (b) the worst possible time taken
by the intrinsic spread within each segment. The former can
be estimated under random external-infection using a coupon-
collector argument, while the latter involves understanding
intrinsic epidemic spreading on a graph (i.e., without external
aid), using techniques from (a) stochastic majorization and
(b) graph sparsification using shortest-path spanning trees.

Proof of Theorem 1: Under the random external-infection
policy, we have that Li(t) ≥ Lmin(n)/n for all i = 1, . . . , n.
As before, (S(t))t≥0 denotes the infection state process. Ob-
serve that each subgraph Gn,i ≡ Gi is prone to infection (i.e.,
some node in Gn,i contracts infection) due to external sources
with an exponential rate of Ω (Lmin(n) · s(n)/n). Now we
consider an alternative infection-spreading process (S̃(t))t≥0

which evolves in two phases:

• Phase-1: Infection spread occurs only due to external
agents, and not through internal epidemic spreading. The
phase starts at t = 0 and ends when at least one node in
each subgraph Gi is infected. Let T1 be the end time of
this phase.

• Phase-2: Infection spread occurs only due to intrinsic epi-
demic spreading in G, and not through external sources.
At t = T1, for each subgraph Gi, only the first node
infected in phase-1, say Ni, is assumed to be infected,
and all other nodes in Gi are considered to be healthy.
Finally, the process S̃(·) proceeds via the SI dynamics
within each Gi, i.e. the infection does not spread across
edges that connect different subgraphs. Denote by T2 the
additional time taken (since T1) for all nodes in all the
Gi to get infected.

Standard coupling arguments (e.g., see Theorem 8.4 in [16])
establish that N (S(t)) stochastically dominates N (S̃(t)) for
all t, i.e., S̃ is a ’slower’ process than S. Thus, the spreading
time for S̃(·) stochastically dominates that of S(·), i.e.

T ≤st T1 + T2. (1)

It remains to estimate the means of T1 and T2, and their
tail probabilities, to finish the proof. The analysis for T1 fol-
lows a standard coupon-collecting argument: memorylessness
of the exponential distribution implies that T1 is stochasti-
cally dominated by the maximum of g(n) i.i.d. exponential
random variables with parameter Ω(Lmin(n) · s(n)/n), i.e.,
Ω(Lmin(n)/g(n)). Hence, using a well-known result about the
expectation of the maximum of i.i.d. exponentials, we obtain

E[T1] = O

(
Hg(n)

Lmin(n)/g(n)

)
= O(g(n) log g(n)/Lmin(n)), (2)

where Hk
4
=
∑k
i=1 i

−1 = O(log k) is the kth harmonic
number. Also, by a union bound over the tails of g(n) i.i.d.
exponential random variables, for any κ > 0 we can estimate
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the tail of T1:

P[T1 ≥ κg(n) log g(n)] ≤ g(n)e−(Θ(Lmin(n)/g(n))κg(n) log g(n))

= g(n)−Θ(κLmin(n))+1. (3)

To estimate the statistics of T2, we further consider the
following ‘slower’ mode of (static) spread than that of phase-
2: for each subgraph Gi (with diameter O(d(n))), let Wi be a
shortest-path spanning tree of Gi rooted at the node Ni which
is infected in phase-1. Such a tree has diameter O(d(n))) and
can, in principle, be obtained by performing a Breadth-First
Search (BFS) on Gi starting at Ni. If we now insist that the
phase-2 static infection process in Gi spreads only via the
edges of Wi, then again, a standard coupling can be used to
show that the time T̂2 when all nodes in G get infected thus
stochastically dominates T2.

Before proceeding, we need the following simple lemma,
which we state without proof:

Lemma 1. For real numbers aij , 1 ≤ i ≤ m, 1 ≤ j ≤ n,
maxmi=1

∑n
j=1 aij ≤

∑n
j=1 maxmi=1 aij .

Now for each tree Wi, let its leaves be labeled
Ni1, . . . , Nil(i). Each leaf Nij has a unique path pij starting
from Ni to itself, of length O(d(n)). Let T̂jk be the time taken
for the infection to spread across the kth edge on this path pij ,
i.e. the (exponentially distributed) interval between the times
when the (k − 1)th node and the kth node on the path are
infected. Then, the time T̂2,i taken for all nodes in Wi (hence
Gi) to get infected can be upper-bounded by using Lemma 1:

T̂2,i =
l(i)

max
j=1

|pij |∑
k=1

T̂jk ≤
O(d(n))∑
k=1

(
l(i)

max
j=1

T̂jk

)
,

and a further application of the lemma bounds the phase-2
spreading time T̂2 = max

g(n)
i=1 T̂2,i as

T̂2 ≤
g(n)
max
i=1

O(d(n))∑
k=1

(
l(i)

max
j=1

T̂jk

)

≤
O(d(n))∑
k=1

(
g(n)
max
i=1

l(i)
max
j=1

T̂jk

)
.

Note that the above inequalities are pointwise, i.e., they hold
for every sample-path. The term in brackets is simply the
maximum of the infection spread times across all stage-k
edges of all the trees Wi within G. Hence, it is stochastically
bounded above by the maximum of n i.i.d Exponential(1)
random variables (say Z1, . . . , Zn), using which we can write:

E[T2] ≤ E[T̂2] ≤
O(d(n))∑
k=1

O(Hn) = O(d(n) log n). (4)

Again, using the union bound to estimate the tail probability
of T2, we have, for any κ > 0,

P[T2 ≥ κd(n) log n] ≤ P[T̂2 ≥ κd(n) log n]

≤ O(d(n))P[Z1 ≥ κ log n]

≤ n · ne−κ logn = n−κ+2. (5)

We now have all the required pieces. Combining (1), (2)

and (4) with the fact that g(n) = O(n) proves the first part of
the theorem. For the second part, the hypothesis that g(n) =
Ω(nδ), together with (3), gives

P[T1 ≥ κh(n) log n] ≤ P[T1 ≥ κg(n) log g(n)]

≤ n−δΘ(κLmin(n))+δ,

which, together with (1) and (5), gives

P[Tπr ≥ 2κh(n) log n] ≤ P[T1 + T2 ≥ 2κh(n) log n]

≤ n−δΘ(κLmin(n))+δ + n−κ+2

≤ 2n−min{δ(Θ(κLmin(n))−1),κ−2}

Choosing κ s.t. min{δ(Θ(κLmin(n))− 1), κ− 2} ≥ γ yields
the bound in the second part of the theorem.

The factor of log n in the bound of the above theorem is
actually only due to the ‘coupon-collector’ effect phase-1 time
T1; a more refined analysis of the phase-2 time T2 shows that
if d(n) = log n + ω(1), i.e. the piece diameter is sufficiently
large, then T2 is order-wise d(n) in expectation and w.h.p.
This is the intuition behind the spreading time bound for the
Greedy Subgraph Infection policy: given the subgraphs Gi,
they are infected through sequential greedy (as opposed to
homogeneous) external infection, i.e., L(t) is concentrated on
a single node j(t) within any maximally healthy subgraph at
time t, i.e., one which minimizes |Gi ∩ S(t)|.

Proof of Theorem 2: Using the same notation as the
earlier proof, we consider the slower, two-phase spreading
process, such that T ≤st T1 + T2: in this case however,
phase-1 consists of a sequential ‘seeding’ of each subgraph
(it is clear that this is stochastically dominated by the greedy
subgraph infection). Thus T1 now corresponds to the sum
of g(n) i.i.d exponential random variables with parameter
Ω(Lmin(n)) (i.e., there is no coupon-collector effect), and
thus, via standard results, concentrates around around its mean
which is O(g(n)/Lmin(n)). To complete the proof, we need
to tighten our previous bound for T̂2 (and hence, T2), which,
using our previous notation, can be written as:

T̂2 =
g(n)
max
i=1

T̂2,i =
g(n)
max
i=1

l(i)
max
j=1

|pij |∑
k=1

T̂jk,

i.e., T̂2 is the maximum sum of infection times over all leaves
in all trees Wi. Since the total number of leaves in all the trees
Wi is at most n, a union bound yields, for any α > 0,

P[T̂2 > αd(n)] ≤ nP

d(n)∑
i=1

Zi > αd(n)

 ,
where all the Zi are independent Exponential(1) random
variables. A Chernoff bounding technique yields

P

d(n)∑
i=1

Zi > αd(n)

 ≤ e−ψαd(n)E
[
eψ
∑d(n)
i=1 Zi

]
= e−ψαd(n)

(
E
[
eψZ1

])d(n)

= e−ψαd(n)(1− ψ)−d(n)
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where 0 ≤ ψ < 1. With ψ = 1/2 and any α > 0, we have,

P[T̂2 > αd(n)] ≤ n · 2d(n)e−
αd(n)

2 .

Finally, for estimating E[T̂2] we have,

E[T̂2] =

∫ ∞
0

P[T̂2 > x]dx

≤ (2 log 2 + 2)d(n)

+ d(n)

∫ ∞
2 log 2+2

P[T̂2 > αd(n)]dα.

≤ 3d(n) + 2nnd(n)

∫ ∞
2 log 2+2

e−
αd(n)

2 dα

= 3d(n) + 2ne−d(n) = O(d(n))

Thus we have E[T ] = O
(

max
(

g(n)
Lmin(n) , d(n)

))
.

We conclude this section with a proof of Theorem 3, which
gives a conductance-based upper bound on the spreading time
with random external-agents.

Proof of Theorem 3: As in Theorem 1, we study an
associated two-phase spreading process (S̃(t))t≥0, where the
first phase takes time T1 to infect at least one node in each
Gi, and the infection takes a further time T2 to spread within
every (connected) Gi. A coupling argument establishes that
Tπr ≤st T1 + T2.

As before, T1 is distributed as the maximum of g(n)
Exponential(Θ(Lmin(n)/g(n))) random variables, and stan-
dard results yield (for κ > 0):

E[T1] = O(g(n) log g(n)/Lmin(n)), (6)

and for the variance:

Var[T1] =
1

Θ(Lmin(n)2/g(n)2)

g(n)∑
i=1

1

i2

= Θ
(
g(n)2/Lmin(n)2

)
. (7)

Next we have that T2 is the maximum of the times T2,i for
infection to spread in each subgraph Gi. We stochastically
dominate each T2,i as follows: for each subgraph Gi, consider
a continuous time Markov chain (Ẑi)t≥0 on the state space
1, . . . , |V (Gi)| with Ẑi(0) = 1 and transitions j → j+1 at rate
jΨ(n) if 1 ≤ j ≤ |V (Gi)|/2, and at rate (|V (Gi)| − j)Ψ(n)
if |V (Gi)|/2 < j ≤ |V (Gi)| − 1. Let T̂2,i be the time taken
for the Markov chain Ẑi to hit its final state |V (Gi)|; T̂2,i =∑|V (Gi)|−1
j=1 T̂2,i,j where T̂2,i,j is the sojourn time of Ẑi in

state j. We claim that T̂2,i stochastically dominates T2,i. To
see this, note that at any time t, if the number of infected nodes
in the phase-2 spreading process in Gi is 1 ≤ j ≤ |V (Gi)|/2,
then by the definition of conductance, the rate at which a new
healthy node in Gi is infected is at least jΨ(n). Similarly, if
the number of infected nodes is |V (Gi)|/2 < j < |V (Gi)| (i.e.
the number of healthy nodes is (|V (Gi)|−j)), then the rate at
which a new healthy node is infected is at least (|V (Gi)|/2−
j)Ψ(n). Hence, by standard Markov chain coupling arguments
(Theorem 8.4 of [16]), we have that T2,i ≤st T̂2,i.

By independence of the original phase-2 spreading pro-

cesses within the Gi for all i = 1, . . . , g(n), we have

T2 = max
i
T2,i ≤st max

i
T̂2,i = max

i

|V (Gi)|−1∑
j=1

T̂2,i,j

≤
|V (Gi)|−1∑

j=1

max
i
T̂2,i,j

Hence we have

E[T2] ≤
|V (Gi)|−1∑

j=1

E
[
max
i
T̂2,i,j

]
= 2

|V (Gi)|/2∑
j=1

log g(n)

jΨ(n)

= O

(
log s(n) log g(n)

Ψ(n)

)
(8)

Also,

Var

|V (Gi)|−1∑
j=1

max
i
T̂2,i,j

 =

|V (Gi)|−1∑
j=1

Var
(

max
i
T̂2,i,j

)

= 2

|V (Gi)|/2∑
j=1

Θ

(
1

j2Ψ(n)2

)
= Θ

(
1

Ψ(n)2

)
. (9)

Combining (6) and (8) gives the first part of the theorem. For
the second part, we have

P[Tπr ≥ κk(n) log g(n)] ≤ P[T1 + T2 ≥ κk(n) log g(n)]

≤ P
[
T1 + T2 ≥

κ

2

(
g(n) +

log s(n)

Ψ(n)

)
log g(n)

]
.

Now, using the variance estimates (7) and (9) with Cheby-
shev’s inequality, we have for large enough κ > 0

P[Tπr ≥ κk(n) log g(n)]

≤
Var
(
T1 +

∑|V (Gi)|−1
j=1 maxi T̂2,i,j

)
log2 g(n)

(
g(n) + log s(n)

Ψ(n)

)2

= O

 g(n)2

Lmin(n)2 + 1
Ψ(n)2

log2 g(n)
(
g(n) + log s(n)

Ψ(n)

)2


= O

(
(log g(n))

−2
)
.

This completes the proof.

V. PROOFS: LOWER BOUNDS FOR SPECIFIC GRAPHS

In the previous section, we upper bound the time taken by
random (and greedy) external-infection policies to infect all
nodes in a network. In this section, we derive corresponding
lower bounds for certain commonly studied spatially limited
networks, in particular, line/ring networks, d-dimensional grids
and random geometric graphs. As discussed in Section III-B,
for each of these classes of graphs, we establish lower bounds
on the spreading time of any spreading strategy (possibly
omniscient and adversarial) that match the upper bounds (upto
logarithmic factors for random spread, and exactly for the GSI
policy).
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A. Ring/Linear Graphs

As before, for each n we define Gn = (Vn, En) to be
the ring graph with n contiguous nodes Vn

4
= {v1, . . . , vn},

En
4
= {(vi, vj) : j − i ≡ 1 (mod n)} . Partitioning Gn into√

n successive
√
n-sized segments, we get (from Theorem 1)

that the spreading time on an n-ring using random external-
infection, is O(

√
n log n) in expectation and with high prob-

ability (see Corollary 1).
We now prove that the spreading time on a grid or line graph

with any (possibly infection-state aware) external-infection
spread strategy must be Ω(

√
n), both in expectation and with

high probability. This establishes that for ring graphs (or 1-
dimensional grids), random external-infection is as good as
any other form of controlled infection in an order-wise sense,
up to logarithmic factors. Furthermore, we use this theorem
to introduce a general technique for obtaining lower bounds
based on stochastic dominance via a parallel cluster-growing
process. For ease of notation, we assume ||L̄(t)||1 ≤ 1 in this
proof – in the next section, we obtain the more general bound
(with dependence on Lmax(n)) for d-dimensional grids.

Proof of Theorem 4: To keep the proof general, we use
a parameter β for the intrinsic spreading rate over an edge
(assumed to be 1 earlier). Along with the spreading process
(Sπ(t))t≥0 induced by the policy π, consider a random process
(S̃(t))t≥0 described as follows:

(a) At all times t, S̃(t) consists of an integer number (C̃t) of
sets of points called clusters, where (C̃t)t≥0 is a Poisson
process with intensity Lmax(n) = 1, and C̃0 = 1 (the 1
denotes an ‘initial’ cluster in which intrinsic spreading
starts).

(b) Once a new cluster is formed at some time s, it grows,
i.e. adds points, following a Poisson process of intensity
2β (recall β is the intrinsic spreading rate for an edge
in the graph).

Via a coupling argument, it can be shown that for all
spreading strategies π ∈ Π, at all times t ≥ 0, the total number
of points in S̃(t) (denoted by Ñt) stochastically dominates that
in Sπ(t) (informally, this is due to two reasons: first, that the
rate of ‘seeding’ of new clusters by π is at most as fast as that
in S̃(·); secondly, each cluster in S̃(·) grows independently and
without interference from other existing clusters, as opposed
to clusters that could ‘merge’ in the process Sπ(·)). Fig. 1
depicts the structure of the dominating process S̃(·).

β2Mobile agent

Ring/line 
graph

Actual infection 
spread process

Dominating 
spread process

Coupling

C
lusters

0tt =

1tt =

2tt =

β2

β2

β2

Origin

Fig. 1. Dominating the infection spread using independently growing clusters

Let T̃
4
= inf{t ≥ 0 : Ñt = n} be the time when the

number of points in S̃(·) first hits n. Owing to the stochastic
dominance N (Sπ(t)) ≤st Ñt, we have that

T̃ ≤st Tπ ∀π ∈ Π. (10)

Knowing the way S̃(·) evolves, we can calculate E[Ñt]:

E[Ñt] = E[E[Ñt|C̃t]] =

∞∑
k=0

P(C̃t = k)E[Ñt|C̃t = k]

=

∞∑
k=0

e−ttk

k!
E[Ñt|C̃t = k].

Since C̃t is a Poisson process, conditioned on {C̃t = k}, the
k cluster-creation instants are distributed uniformly on [0, t].
Let the times of these arrivals be T̃1, . . . , T̃k; then [T̃i, t] is the
time for which the ith cluster has been growing. Since every
cluster grows at a rate of 2β, conditioned on {C̃t = k}, the
expected size of the ith cluster is 2β(t− T̃i), 1 ≤ i ≤ k. Also,
the expected size of the ‘0-th’ cluster at time t is 2βt. Using
E[T̃i|C̃t = k] = t/2, we obtain:

E[Ñt|C̃t = k] = 2βt+

k∑
i=1

E[2β(t− T̃i)|C̃t = k]

= β(k + 2)t

⇒ E[Ñt] =

∞∑
k=0

e−ttk

k!
E[Ñt|C̃t = k]

=

∞∑
k=0

e−ttk

k!
β(k + 2)t = βt2 + 2βt.

Hence, using Markov’s inequality, we have:

P (T̃ > t) = P (Ñt < n) = 1− P (Ñt ≥ n)

≥ 1− E[Ñt]

n
≥ 1− β(t+ 1)2

n

⇒ E[T̃ ] =

∫ ∞
0

P(T̃ > x)dx ≥
∫ √n

β−1

0

P(T̃ > x)dx

≥
∫ √n

β−1

0

(
1− β(x+ 1)2

n

)
dx

=
2

3

√
n

β
− 1 +

β2

3n2
= Θ(

√
n).

Together with (10), this forces infπ∈Π E[Tπ] = Ω(
√
n).

For the second part, denoting the size of the ith-created
cluster at time s ≥ Ti by X̃i(s), we can write:(

2et⋂
i=0

{X̃i(t+ Ti) < 4eβt}

)⋂
{C̃t < 2et}

⊆

C̃(t)⋂
i=0

{X̃i(t+ Ti) < 4eβt}

⋂{C̃t < 2et}

⊆

C̃(t)⋂
i=0

{X̃i(t) < 4eβt}

⋂{C̃t < 2et}

⊆ {Ñt < 8βe2t2}.
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Here, the sets refer to sample-trajectories (i.e., points in the
underlying sample space) satisfying the stated conditions.
Applying a standard Chernoff bound (P[Y ≥ 2eλ] ≤ (2e)−λ

for Y ∼ Poisson(λ)) to C̃t ∼ Poisson(t) and X̃i(t + Ti) ∼
Poisson(2βt) above, we can write:

P[Ñt ≥ 8βe2t2]

≤ P[C̃t ≥ 2et] +

2et∑
i=1

P[X̃i(t+ Ti) ≥ 4eβt]

≤ (2e)−t + 2et · (2e)−2βt = O(e−t(1∧2β)).

In conclusion, using the stochastic dominance (10):

P
[
Tπ <

√
n

8βe2

]
≤ P

[
T̃ <

√
n

8βe2

]
= P

[
Ñ√ n

8βe2
> n

]
= O

(
e−Θ(1)

√
n
)
.

This completes the proof.

B. d-Dimensional Grid Graphs

Extending the previous result, this section shows that the
simple, state-oblivious random external-infection spreading
strategy achieves the optimal order-wise spreading time (up to
logarithmic factors) on d-dimensional grid networks for d ≥ 2.
For such a dimension d, the d-dimensional grid graph Gn =

(Vn, En) on n nodes is given by Vn
4
= {1, 2, . . . , n1/d}d, and

En
4
= {(x, y) ∈ Vn × Vn : ||x− y||1 = 1}.

Consider a partition of Gn into (n/Lmin)1/(d+1) identical
and contiguous ‘sub-grids’ Gn,i, i = 1, . . . , n1/(d+1). By
this, we mean that each Gn,i is induced by a copy of
{1, 2, . . . , (n/Lmin)1/(d+1)}d (and thus has (n/Lmin)d/(d+1)

nodes). For instance, in the case of a planar
√
n ×
√
n grid

(with Lmin = 1), imagine tiling it horizontally and vertically
with 3

√
n identical 3

√
n × 3
√
n sub-grids (Fig. 2). With such a

partition, an application of Theorem 1 (see Corollary 2) shows
that the spreading time with random external-infection on a

d-dimensional n-node grid is O
((

n
Lmin(n)

)1/(d+1)

log n

)
in

expectation and with high probability.
We now show that any external-infection spreading policy

on a grid must take time Ω

((
n

Lmax(n)

)1/(d+1)
)

to spreading

to all nodes w.h.p., and consequently also in expectation.
Barring a logarithmic factor, this shows that such a random
policy is as good as any other (possibly omniscient) policy for

nn ×
grid

33 nn ×
sub-grid

Fig. 2. Partitioning a planar grid into sub-grids

grids. In order to derive this lower bound, we first need the
following lemma from the theory of first-passage percolation
[15], which lets us control the extent to which infection on an
infinite grid has spread at time t:

Lemma 2. Let (Z̃(t))t≥0 ∈ {0, 1}Z
d

represent a static/basic
infection spread process on the infinite d-dimensional lattice
Zd starting at node (0, 0, . . . , 0) at time 0. Then, there exist
positive constants l, c3, c4 such that for t ≥ 1,

P[N (Z̃(t)) > tdld] ≤ c1t2de−c2
√
t.

Proof: Let

B̃(t)
4
= {v ∈ Zd : Z̃v(t) = 1} ⊂ Zd (⊂ Rd)

be the set of infected nodes at time t in Z̃. We use the
following version of a result, from percolation on lattices
with exponentially distributed edge passage times, about the
‘typical shape’ of B̃(t) [15]:
(Theorem 2 in [15]) There exists a fixed (i.e. not depending
on t) cube B0 =

[
− l

2 ,
l
2

]d ⊂ Rd, and constants c1, c2 > 0,
such that for t ≥ 1,

P
[
B̃(t) ⊂ tB0

]
≥ 1− c1t2de−c2

√
t. (11)

It follows from (11) that for t ≥ 1,

P[N (Z̃(t)) > tdld] = P[|B̃(t)| > tdld]

≤ P[B̃(t) * tB0] ≤ c1t2de−c2
√
t.

Lemma 2 allows us to control the growth of individual
infected clusters; this is analogous to the dominating spread
process (growing at rate 2β) for line graphs. Using this, we
now obtain a lower bound on the spreading-time.

Proof of Theorem 5: We introduce a (dominating)
counting process (S̃(t))t≥0 (Fig. 3), as follows:
• ∀ t ≥ 0, S̃(t) consists of an integer number (C̃t) of clus-

ters, where (C̃t)t≥0 is a Poisson process with intensity
Lmax(n), and C̃0 = 1 (i.e., an ‘initial’ infected node).

• Each cluster grows as an independent copy of the intrinsic
spreading process on an exclusive infinite d-dimensional
grid Zd starting at (0, 0, . . . , 0).

Note that in the process S̃, the growth of each cluster follows
the intrinsic spreading dynamics in a d-dimensional grid graph.

Mobile agent

0tt =

Dominating spread processActual infection spread process

1tt =

2tt =

Coupling (0,0)

Fig. 3. The grid graph: Coupling infection spreading with mobility to a
dominating ‘cluster-growth’ process
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A standard coupling argument shows that ∀t ≥ 0, the total
number of points in S̃(t) (denoted by Ñt) stochastically
dominates that in S(t) – this is essentially due to (a) cluster
’seeding’ at the highest possible rate Lmax(n), and (b) the
absence of multiple infections incident at any single node (Fig.
3). Let T̃

4
= inf{t ≥ 0 : Ñt = n} be the time when the number

of points in S̃(·) first hits n. Then we have:

N (S(t)) ≤st Ñt ⇒ T̃ ≤st T. (12)

Let us denote by X̃i(s) the size of the ith created cluster of
S̃(·) at time s ≥ Ti. Then, for t ≥ 0, we have(

2et⋂
i=0

{X̃i(t+ Ti) < tdld}

)⋂(
{C̃t < 2eLmax(n)t}

)
⊆ {Ñt < 2eLmax(n)ldtd+1},

Now each random variable X̃i(t + Ti) is distributed as the
number of infected nodes in a static infection process on an
infinite grid at time t. Thus, using Lemma 2 and a standard
Chernoff bound for C̃t ∼ Poisson(tLmax(n)), we can write:

P
[
Ñt ≥ (2eLmax(n)ld)td+1

]
≤ P

[
C̃t ≥ 2eLmax(n)t

]
+

2eLmax(n)t∑
i=1

P
[
X̃i(t+ Ti) ≥ tdld

]
≤ (2e)−Lmax(n)t + 2eLmax(n)t · c3t2de−c4

√
t

= O(Lmax(n)e−c4
√
t).

With the stochastic dominance (12), this forces:

P

[
T ≤

(
n

2eLmax(n)ld

)1/(d+1)
]

≤ P

[
T̃ ≤

(
n

2eLmax(n)ld

)1/(d+1)
]

= P

[
Ñ(

n

2eLmax(n)ld

)1/(d+1) ≥ n

]

= O

(
e−c2(

n
Lmax(n) )

1/(2d+2)
)
, (13)

for the appropriate c2, establishing the first part of the theorem.
To see how this implies the second part, note that the estimate
(13), together with the fact that Lmax(n) = O(n1−ε) and the
Borel-Cantelli lemma, gives us

P

[
T̃ ≤

(
n

2eLmax(n)ld

)1/(d+1)

for finitely many n

]
= 1,

⇒ lim inf
n→∞

T̃

(n/Lmax(n))
1/(d+1)

a.s.
≥ c4

4
=

1

(2eld)1/(d+1)
> 0

By Fatou’s lemma, we have:

lim inf
n→∞

E

[
T̃

(n/Lmax(n))
1/(d+1)

]

≥ E

[
lim inf
n→∞

T̃

(n/Lmax(n))
1/(d+1)

]
≥ c4 > 0.

Thus proving E[T ] ≥ E[T̃ ] = Ω
(

(n/Lmax(n))
1/(d+1)

)
.

C. Geometric Random Graphs
We finally prove the upper and lower bounds for the

Geometric Random Graph (RGG). Recall that an RGG Gn(rn)
is a family of random graphs wherein n points (i.e. nodes) are
picked i.i.d. uniformly in [0, 1] × [0, 1]. Two nodes x, y are
connected by an edge iff ||x − y|| ≤ rn, where rn is called
the coverage radius.

It is known that when the coverage radius rn is above a
critical threshold of

√
log n/π, the RGG is connected with

high probability [35]. In this section, we state and prove two
results that show that random spreading on RGGs in this
critical connectivity regime is optimal upto logarithmic factors.
First, we show with high probability that random spreading
finishes in time O( 3

√
n log n), and follow it up by showing that

with high probability, no other policy can better this order (up
to a logarithmic factor). This parallels the earlier results about
spreading times on grids, where random external spreading
exhibits the same property.

Proof of Theorem 6: Divide the unit square [0, 1]× [0, 1]
into square tiles of side length rn/

√
5 each; there are thus 5/r2

n

such tiles, say k1, . . . , k5/r2n
. If n points are thrown uniformly

randomly into [0, 1] × [0, 1], then, with E denoting the event
that some tile is empty:

P [E ] ≤ 5

r2
n

P [tile 1 empty]

=
5

r2
n

(
1− r2

n

5

)n
≤ 5

r2
n

exp

(
−nr

2
n

5

)
≤ n

log n
exp(− log n) =

1

log n

n→∞−→ 0. (14)

By construction, note that the maximum distance between
points in two (horizontally or vertically) adjacent tiles is
exactly rn. Hence, two nodes in adjacent tiles are always
connected by an edge. Also, a node in a tile is not connected
to any node in a tile at least three hops away.

If we now divide [0, 1]× [0, 1] into (bigger) square chunks
of side length 1/ 6

√
nLmin(n)2 each, there are 3

√
n

Lmin(n) such

square chunks, each containing a
√

5
rn 6
√
n
×
√

5
rn 6
√
n

grid of square
tiles. In the case where no tile is empty, it follows from the
arguments in the preceding paragraph that the diameter of the
subgraph induced within each chunk is

O

(
1/ 6
√
nLmin(n)2

rn

)
= O

 3

√
n

Lmin(n)
√

log n

 ,

since rn ≥
√

5 log n. An application of Theorem 1 in this case
shows that E [Tπr |E ] = O( 3

√
n/Lmin(n) log n), and for some

α, γ > 0, P
[
Tπr ≥ α 3

√
n/Lmin(n) log n | E

]
= O(n−γ).

Using (14), we conclude that

P[Tπr ≥ α
3
√
n/Lmin(n) log n] = O

(
1

log n

)
n→∞−→ 0.

Consider an infinite planar grid with additional one-hop
diagonal edges, i.e. G = (V,E) where V = Z2, E = {(x, y) ∈
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Z2 : ||x − y||∞ ≤ 1}. Let an infection process (S(t))t≥0

start from 0 ∈ Z2 at time 0 according to the standard static
spread dynamics, i.e. with each edge propagating infection at
an exponential rate µ, and let I(t) denote the set of infected
nodes at time t. The following key lemma helps control the
size of I(t), i.e. the extent of infection at time t:

Lemma 3. There exists c1 > 0 such that for any c2 > 0 and
t large enough,

P [∃x ∈ I(t) : ||x||∞ ≥ (c1µ+ c2)t] =

O
(
(c1µ+ c2)t · e−c2t

)
.

Proof:

P[∃x ∈ I(t) : ||x||∞ ≥ ct]
≤ P[∃v ∈ Z2 : ||v||∞ = bctc, T (v) ≤ t]

≤
∑

v∈Z2:||v||∞=bctc

P[∃ a path r : 0→ v, T (r) ≤ t].

Observe that for any v with ||v||∞ = bctc and any path of
edges r from 0 to v, there must exist bctc + 1 nodes v0 =
0, v1, . . . , vbctc on the path r such that ||vi||∞ ≤ bctc and
||vi+1 − vi||∞ = 1. Indeed, each edge on a path can increase
the || · ||∞ distance from 0 by at most 1. Therefore, continuing
the above chain of inequalities, we have:∑
{v:||v||∞=bctc}

∑
v0,...,vbctc

P [∃ a path r : 0→ v passing

successively through the vi, T (r) ≤ t]

≤
∑

{v:||v||∞=bctc}

∑
v0,...,vbctc

P

[
∃ a path r passing

successively through the vi,
bctc−1∑
i=0

T (vi, vi+1) ≤ t

]

≤
∑

{v:||v||∞=bctc}

∑
v0,...,vbctc

P

bctc−1∑
i=0

T (vi, vi+1) ≤ t

 , (15)

where the second sum runs throughout over all vi with v0 = 0,
||vi||∞ ≤ bctc and ||vi+1− vi||∞ = 1, and T (x, y) represents
the infection passage time from node x to node y. Letting
T ′(vi, vi+1) be random variables identically distributed as
T (vi, vi+1) but independent for i = 1, . . . , bctc − 1, we can
write, for ψ > 0,

∑
v0,...,vbctc

P

bctc−1∑
i=0

T (vi, vi+1) ≤ t


=

∑
v0,...,vbctc

P

bctc−1∑
i=0

T ′(vi, vi+1) ≤ t


≤ eψt

∑
v0,...,vbctc

bctc−1∏
i=0

E
[
e−ψT

′(vi,vi+1)
]

= eψt

 ∑
{u:||u||∞=1}

E
[
e−ψT

′(0,u)
]bctc .

In the last step of the above display, we have successively
summed over vbctc, vbctc−1, . . . , v0, and have used the fact
that infection spread times are translation-invariant, i.e. for
any x, y, a ∈ Z2,

T ′(x, y)
d
= T (x, y)

d
= T (x+ a, y + a)

d
= T ′(x+ a, y + a).

For any u ∈ Z2 such that u is a neighbor of 0 (i.e. ||u||∞ =
1), we must have T (0, u) ≥ minw:||w||∞=1 t((0, w)), where
t(e) ∼ Exp(µ) is the travel time of the infection across edge
e ∈ E. Since the number of neighbors of 0 in G is exactly
8 (4 up-down/left-right and 4 diagonal), T (0, u) stochastically
dominates an exponential random variable with parameter 8µ.
Thus, defining T̂ ∼ Exp(8µ), we have:

E
[
e−ψT

′(u,v)
]
≤ E

[
e−ψT̂

]
=

(
1 +

ψ

8µ

)−1

, (16)

⇒ eψt

 ∑
{u:||u||∞=1}

E
[
e−ψT

′(0,u)
]bctc

≤ eψt
(

8

(
1 +

ψ

8µ

)−1
)bctc

. (17)

Setting ψ = 8µ(8e − 1) so that 8(1 + ψ/µ)−1 = e−1, (17)
becomes

eψt

( ∑
{u:||u||∞=1}

E
[
e−ψT

′(0,u)
])bctc

≤ e8µ(8e−1)t · e−ct+1.

Finally, letting c1 = 8(8e − 1) and c = c1µ + c2, we obtain
the desired result from (15) and the above:

∑
{v:||v||∞=bctc}

∑
v0,...,vbctc

P

bctc−1∑
i=0

T (vi, vi+1) ≤ t


≤ |{v : ||v||∞ = bctc}| · e−c2t+1

≤ (4ct) · e−c2t+1

= O
(
(c1µ+ c2)t · e−c2t

)
.

Using Lemma 3, we can derive a converse result for the
geometric random graph, which we present in Theorem 7. As
the proof techniques are similar to those presented before, we
present only a sketch of the proof for this result.

Proof sketch of Theorem 7: The method of approach
is along the lines of that used to prove Theorem 5 along
with certain geometric considerations for the case of the
random geometric graph. We introduce a spreading process
that spreads ‘faster’ than π, and show using Lemma 3 that
even this process must take at least the claimed amount of
time to spread. For ease of exposition, we break the proof
into two steps:

Step 1: Divide the unit square [0, 1] × [0, 1] row and
column-wise into rn × rn tiles; there are thus 1/r2

n tiles, say
k1, . . . , k1/r2n

. By standard balls-and-bins arguments, with the
n nodes thrown randomly into n/ log n tiles, each tile receives
a maximum of O(log n) nodes with probability 1− o(1).
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Step 2: Within the event in step 1, we introduce the
following associated spreading process which, via coupling
arguments, can be shown to dominate the spread due to π at
each time t: first, take each tile to be the vertex of a square
grid where adjacent diagonals are connected. Also, set the
rate of infection spread on every edge to be Exp(µ log2 n).
This effectively upper-bounds the best rate of spread among
neighboring tiles. Create a dominating process by creating
non-interfering clusters at a Poisson rate 1, with each cluster
growing independently on an infinite square grid with diagonal
edges and the above spread rate. Lemma 3 shows that w.h.p.,
by time t, O(t) clusters are formed, and each cluster has at
most O(t2 log4 n) nodes. Thus it takes at least O

(
3
√
n

log4/3 n

)
time for spreading to spreading w.h.p.

VI. CONCLUSION

We have modeled and analyzed the spread of epidemic pro-
cesses on graphs when assisted by external agents. For general
graphs, we have provided upper bounds on the spreading time
due to external-infection with bounded virulence for random
and greedy infection policies; these bounds are in terms of
the diameter and the conductance of the graph. On the other
hand, for certain spatially-constrained graphs such as grids and
the geometric random graph, we have derived corresponding
lower bounds: these indicate that random external-infection
spreading is order-optimal up to logarithmic factors (and
greedy is order-optimal) in such scenarios. Finally, we have
discussed applications of our result to graphs with long-range
edges and/or mobile agents.
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[21] V. Colizza, A. Barrat, M. Barthélemy, and A. Vespignani, “The role of
the airline transportation network in the prediction and predictability of
global epidemics,” Proceedings of the National Academy of Sciences,
vol. 103, no. 7, pp. 2015–2020, 2006.

[22] D. Kempe, J. Kleinberg, and A. Demers, “Spatial gossip and resource
location protocols,” J. ACM, vol. 51, no. 6, pp. 943–967, 2004.

[23] R. Durrett, Random graph dynamics, vol. 20. Cambridge university
press, 2007.
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