
User Rankings from Comparisons:
Learning Permutations in High Dimensions

Ioannis Mitliagkas, Aditya Gopalan, Constantine Caramanis, Sriram Vishwanath
Department of Electrical and Computer Engineering

The University of Texas at Austin
Austin, TX 78712

ioannis@utexas.edu, {gadit,caramanis}@mail.utexas.edu, sriram@austin.utexas.edu

Abstract—We consider the problem of learning users’
preferential orderings for a set of items when only a limited
number of pairwise comparisons of items from users is
available. This problem is relevant in large collaborative
recommender systems where overall rankings of users for
objects need to be predicted using partial information from
simple pairwise item preferences from chosen users. We
consider two natural schemes of obtaining pairwise item
orderings – random and active (or intelligent) sampling.
Under both these schemes, assuming that the users’ order-
ings are constrained in number, we develop efficient, low-
complexity algorithms that reconstruct all the orderings
with provably order-optimal sample complexities. Finally,
our algorithms are shown to outperform a matrix comple-
tion based approach in terms of sample and computational
requirements in numerical experiments.

I. I NTRODUCTION

Modeling and understanding user ratings based on
structure is a recent but well-studied discipline. In this
setting, we haven products andm users, and our goal
is to determine the overall rating-matrix – which is
comprised of ratings each user for each product. The
main issue though, is that users only provide us with a
subset (possibly random) of ratings, and we must now
attempt to learn the remainder of the matrix entries.
To this end, structure plays a key role, and low-rank
structure is particularly useful in helping complete the
overall matrix [1], [2], [3].

In many scenarios, however, the ultimate goal is to
understand userranking, with ratings merely being a
stepping stone along the way. In other words, we are
interested in determining the order in which each of
the users would like these products. For example, if
then products were movies, ranking reflects each user’s
preference of movies using an integer ordering, with ties
broken randomly. Similarly, whenever we have multiple
products/brands of the same type (whether they be
toasters, washers or restaurants), a rank-ordering of them
proves to be an effective representation of their relative
merits. Intuitively, a raw rating of 7 out of 10 in the
absence of any other information is potentially useless

(Is 7/10 good? or bad? or average?). In standardized tests
such as SAT and LSAT, relative performance is captured
using a percentile ranking which has now become the
gold standard for admissions. Thus, the ranking of a
product relative to its peers is valuable information for
ultimate user consumption.

As mentioned before, given all ratings, rankings can
be obtained by sorting the ratings for each user. However,
finding user ratings first and then transforming them to
rankings is indirect, and may require much more infor-
mation and structure than the problem setting allows.
This is due to the fact that the range of user ratings
can be quite subjective. For example, given a rating
scale of0 to 10, a user can pick her top rating to be6
and least favorable rating as4, limiting the actual range
of values significantly. As a result, the actual ranking
of a product can be considerably different from what
the rating indicates when taken out-of-context. In other
words, two users with identical rankings of products can
have a very different set of ratings. In some settings
such as funding-proposal rating, coursework grading etc.,
we frequently observe a rating/gradeinflation, where the
range of ratings associated with the work being assessed
is skewed in favor of a less-punitive scale.

The subjectivity of ratings provided by users also
negatively impacts low-rank structure – the basis for the
effectiveness of powerful matrix completion techniques
in predicting missing ratings.
Motivating Example: Even if all m users in the system
have exactly the same ranking for all products, their
choices of real-valued ratings can result in a rating matrix
that is full rank. Without loss of generality, we can
assume the common ranking to be[1, . . . , n]. If each user
were to generaten real numbers uniformly over[0, 10]
and then sort them in descending order, the resulting
m × n matrix will be full rank with high probability.
Intuitive justification for low-rank matrix completion
techniques originates from the fact that user preferences
have only a few degrees of freedom. However, with
significant user subjectivity, we expect rankings to cap-



ture similarities in user preferences more effectively than
ratings.

Consequently, learning the rankings of a collection of
users directly is of primary interest. Indeed, as Weimer
et al. [4] argue, “Rating algorithms solve the wrong
problem, and one that is actually harder: The absolute
value of the rating for an item is highly biased for
different users, while the ranking is far less prone to
this problem.”

Much of existing work on learning rankings of ob-
jects deals with learning a single, “globally appropriate”
ordering using preferences from training examples, to
minimize a suitable notion of loss ([5], [6]). These
include the popularlearning-to-rankapproaches [7], [8]
and graph-based learning techniques [9], [10], and on-
line permutation learning algorithms and frameworks
[11], [12], [13]. Related work on sorting with noise or
sorting partially ordered sets can be found in [14], [15],
[16].

When a collection of orderings from users is to
be learnt, such methods could ideally be applied in a
sequential, decoupled fashion to deduce the orderings.
However, structure among user orderings, if present, can
potentially be exploited to learn the orderings with sav-
ings in sample complexity. Researchers have noted that
rankings in a population of users often exhibit forms of
“low-dimensional” structure – to paraphrase Jagabathula
and Shah [17], “Irrespective of the number of candidates
in an election, the number of distinct vote rankings that
prevail in the population are likely to be few, considering
a small set of ‘issues’ influences ranking patterns over
candidates.” This inspires the following question when
jointly estimating users’ rankings of objects: How can
structure among user orderings be effectively leveraged
to learn orderings with significantly less effort?

In this work, we study the problem of learning a
collection of permutations chosen bym users forn
items using only pairwise ordering information. Pairwise
sampling asks a user to compare two specified items each
time, and is not only a natural choice for attempting
to deduce ordering information, but also easy to im-
plement in practical systems. We consider the learning
problem under bothrandom(i.e., algorithm-independent)
andactive(i.e., algorithm-dependent) pairwise sampling
schemes. As a reasonable structural constraint on the
space of user permutations, we assume a stochastic
model in which the users pick permutations uniformly
from a pool ofr possible orderings.

For both the random and active sampling schemes, we
design efficient, low-complexity algorithms that can re-
construct all the users’ orderings with a guaranteed num-
ber of pairwise samples, with high probability. Moreover,
we establish, using information-theoretic techniques and
concentration results, that the sample-complexity of our

algorithms matches lower bounds on the number of
pairwise samples needed by any procedure to learn
permutations with high probability, whenm, n, and r
are large. This shows that these reconstruction algorithms
areorder-optimal– in the sense of sample complexity –
for learning users’ rankings from pairwise comparisons.
The superior performance of our algorithms for the task
of learning user orderings is also borne out in practice
in the results of numerical experiments that we report.

Organization: The remainder of the paper is orga-
nized as follows. We describe the setup for the problem
of learning users’ orderings from pairwise comparisons
in Section II. In Section III, we present our algorithms to
infer users’ orderings, state performance guarantees and
converse results for the learning problem, and discuss
the implications of our results. Section IV presents
numerical results for the performance of our approach
compared to that of a matrix completion based technique
to solve the same problem.

Notation: We let [n] denote the set of all integers
from 1 to n. We denote the symmetric group on[n]
by Sn. A permutationπ ∈ Sn is a bijection on[n],
andπ(i) represents the rank of objecti. Throughout this
paper, we useN ,

(

n
2

)

= n(n − 1)/2 to denote the
number of distinct pairs(i, j) ∈ [n] × [n], i < j. We
can also represent a permutationπ ∈ Sn by a n × n
matrix Pπ such thatPπ(i, j) = −1 if π(i) > π(j) and
Pπ(i, j) = +1 otherwise. SincePπ is skew-symmetric, a
more practical representation is the stacking of its upper
triangular entries into a vectorpπ ∈ {−1, 1}

N . There is
a trivial bijection between the two representations, so we
use them interchangeably. Throughout, the phrase “with
high probability” is used to mean with probability at
least1− cn−1 for constantc > 0.

II. L EARNING USERS’ ORDERINGS: SETUP

Consider the setup where each one ofm users totally
orders a set ofn objects; we denote the resulting
permutation of userk ∈ [m] by πk ∈ Sn. The goal
is to recover all of these permutations with a small
number ofpairwise ordering samples, i.e. how a user
relatively orders a specified pair of objects, from each
user. Specifically, letM = [pπ1

pπ2
. . . pπm

] be the
N ×m matrix of pairwise orderings for all users. The
sampling setΩ ⊆ [N ] × [m] denotes the indices of
entries ofM we sample,M(Ω) denotes the set of all
samples acquired, ands = |Ω| is the number of acquired
samples. Sampling can be performed either uniformly at
random (random sampling) or arbitrarily and adaptively
by the algorithm (active sampling). In this setup, we are
interested in

• Quantifying the minimumsample complexityof
the learning problem, i.e., the number of samples



required to infer all the users’ permutations with
high probability, and

• Developingefficient algorithmsthat areoptimal for
sample-complexity, i.e., that successfully recover
all permutations drawing the minimum number of
samples required.

Model for User Permutations: Without further as-
sumptions on the permutationsπk that all the users
choose, the problem of learning all theπk is in general
decoupled. This renders unnecessary anything other than
a sequential, independent approach to learn each permu-
tation with pairwise samples. The problem of learning
a collection of orderings becomes interesting when we
impose structure on these orderings, since we can then
hope to exploit the resulting “coupling” between user
ordering behavior.

In practice, as noted in the introduction, item orderings
across a population of users are likely to be much fewer
than all then! permutations inSn. This can be attributed
primarily to a small set of underlying “features” that
essentially drive the users’ preferences. We consider
a natural structural model where each user picks her
permutation uniformly at random and independently
from a common pool of randomly selected permuta-
tions. Specifically, we impose a “low-dimensionality”
constraint as follows:

Assumption:There exists a set ofr permutations
{ρ1, ρ2, . . . , ρr}, where eachρj is drawn independently
and uniformly at random fromSn. Eachπk is drawn
from theρj independently and uniformly at random, i.e.,
P(πk = ρj) = 1/r ∀k ∈ [m], j ∈ [r].

We remark that in correspondence with the matrix-
completion literature, the assumption above makes the
±1 matrix of pairwise orderings across all users (M =
[pπ1

pπ2
. . . pπm

]) at most rankr, and thus may be
viewed as a surrogate to “low-rank” structure in our
permutation-learning setup. The setup is characterized
completely by the triple(n,m, r), and our algorithms
and results are expressed chiefly in terms of these
parameters.

III. A LGORITHMS, MAIN RESULTS AND

IMPLICATIONS

In this section, we present algorithms for recovering
(and sampling when permitted) all the permutations
under both the random and active sampling models.
For each case, we provide rigorous analytical guarantees
on the number of samples sufficient for our algorithms
to exactly recover all permutations with high proba-
bility. This is followed by matching converse results,
using information-theoretic source-coding techniques,
that establish fundamental lower bounds on the sample-
complexity required byany algorithm to learn the per-
mutations with a significant probability. We discuss

the implications of our results and comment on their
consequences.

A. Learning with Random Pairwise Samples

Suppose that the set of samplesΩ is obtained by
uniform sampling with replacement from[N ] × [m],
i.e., the set of all (object pair, user) combinations.
This models the case where, for instance, every user
is asked to independently provide pairwise comparisons
for a uniformly randomly chosen set of object pairs.
The problem is then to use these results to deduce the
users’ orderings of all the objects. We introduce our
first algorithm (Algorithm 1) to learn the permutations
given s randomly drawn samples, and show that it
recovers all the orderings with high probability given a
sufficient number of random samples. In this description,
we denote the sampling set byΩs ⊂ [N ]×[m] to indicate
its size s and useΩs,u ⊂ [N ] to denote the positions
(object pairs) sampled from useru ∈ [m].

In essence, Algorithm 1 uses thes pairwise samples
to first separate each pair of users if there is anydiscrep-
ancyin their sampled comparisons. A discrepancy occurs
between two usersu andk if their sampled orderings for
a pair of objects(i, j) disagree, i.e.,(i, j) ∈ Ωs,u ∩Ωs,k

and M(Ωs,u, u)(i,j) 6= M(Ωs,k, k)(i,j). Having “clus-
tered” the users’ permutations thus, the algorithm pro-
ceeds to completely learn the (presumably correctly clus-
tered) permutations by collecting all pairwise samples
from users belonging to each cluster and topologically
sorting the resulting Directed Acyclic Graph (DAG).

Our first result concerns the sample-complexity of
Algorithm 1:

Theorem 1 (Random Sampling, Algorithm 1). Suppose
r = θ(mγ) for a fixed γ > 0. Algorithm 1 recov-
ers all permutations correctly, with high probability,
when the number of random sampless is at least
max{(12/γ)m log r, 2rN log n}.

Proof sketch:The two terms given in the bound of Theo-
rem 1 above quantify separately the sample-complexities
needed to successfully complete both steps of the algo-
rithm, i.e. clustering and learning. We first establish a
concentration result for the pairwise Hamming distance
between two distinct permutations drawn uniformly at
random. This allows us to show thatO(log r) random
pairwise comparisons per permutation are sufficient to
distinguish them. Alongside, for any fixed permuta-
tion, we identify a necessary and sufficient condition
to exactly learn the permutation, from pairwise sam-
ples, in terms of the unique Hamiltonian path of the
digraph induced by the permutation. This is used to-
gether with a coupon-collecting argument to show that
the permutation-learning stage of Algorithm 1 requires
O(N log n) random samples per cluster (i.e. for each



Algorithm 1
Input : Set of sampled positionsΩs ⊂ [N ] × [m] and
samplesM(Ωs) ∈ {−1,+1}s.
Output : Permutations of all users(π̂k)

m
k=1 ∈ Sn.

Stage 1: Clustering:

1) SetC to be an empty collection of clusters.
2) SetU ← [m], to be the set of all unclustered users.
3) If U = ∅, go to Stage 2.
4) Let u← mink∈U k, setU ← U \ u andL ← {u}.
5) For everyk ∈ U

• If M(Ωs,u ∩ Ωs,k, u) = M(Ωs,u ∩ Ωs,k, k)
then setU ← U \ k andL ← L ∪ {k}.

6) SetC ← C ∪ {L} and go to Step 3.

Stage 2: Permutation Learning:
For every clusterL ∈ C,

1) Let ΩL ←
⋃

k∈L
Ωs,k

2) Let G = (V,E) denote a directed graph, with
vertex setV = [n] and edge setE = ∅.

3) For every sample positionp in ΩL, drawn from
userk and corresponding to object pair(i, j)

• if M(p, k) = −1 thenE ← E ∪ {(i, j)}; else
E ← E ∪ {(j, i)}

4) Setρ̂L ← TopologicalSorting(G)

5) Setπ̂k ← ρ̂L for all k ∈ L.

ρj) to completely infer the cluster. Putting together these
estimates gives the theorem. The details of the proof are
provided in the full version ([18]) of the present paper.

On the other hand, we establish a converse result
on the minimum number of samples needed for suc-
cessful permutation recovery. For this purpose, consider
a general algorithmA that takes as inputs pairwise
random samplesM(Ωs) and maps it to its output: a
possibly random estimatêM , [pπ̂1

pπ̂2
. . . pπ̂m

] of
all the permutations, one for each user. We denote the
probability of successful reconstruction withA on s
samples byPsucc = Psucc(A, s) = P[M̂ = M].

Theorem 2 (Random Sampling, Lower Bound on
Sample Complexity). For any algorithm A, if s <
max{(m−r) log r, rN log n}, thenPsucc→ 0 asn→∞.

Proof sketch:For the sake of contradiction, assume that
an algorithm can learn the orderings with fewer than
the claimed number of samples. It follows that this
results in an algorithm that performs the easier clustering
and permutation learning (given clustering information)
tasks with those samples. Hence, it suffices to prove
separate converse results for these two stages. A key
contribution of this work is to prove a strong converse
theorem for clustering. This is carried out by first ex-
tending the information-theoretic notion of typicality to

“clusterings”, and using a source-coding proof technique
that results in a converse theorem. For the permutation
learning stage, an important step is to show that the
number of random pairwise samples needed to learn a
single permutation with high probability isΩ(N log n).
For this purpose, the necessary and sufficient Hamilto-
nian path condition – from the proof of Theorem 1 –
that characterizes when a permutation is learnt can be
used along with concentration estimates for the lower
tail of the coupon-collector problem to prove the result.
We defer details of the full proof to the full version ([18])
of this paper.

Note that Theorem 2 is astrong converse, i.e., it
states thatany algorithm fails to recover all the users’
item orderings correctly withoverwhelming probability
when the number of random samples drawn is below a
threshold.

Implications of Theorems 1 and 2:

• When the number of usersm is relatively small,
viz. m = O(rN log n) = O(rn2 log n), Algorithm
1 succeeds overwhelmingly withO(rN log n) sam-
ples according to Theorem 1. At the same time,
with our standing assumption thatr = θ(mγ)
for a fixed γ, the converse Theorem 2 forces at
least Ω(rN log n) samples to be drawn for cor-
rect reconstruction. Thus, in this regime, Algorithm
1 is order-optimal for the sample-complexity of
the problem. Further, it demands on an average
r
m
N log n random samples from each user. Ifγ < 1

additionally, this means that each user needs to con-
tribute avanishing numberof pairwise comparisons
for successful recovery. This represents a significant
gain compared to decoupling the learning problem
across users and reconstructing each permutation
independently (whose net sample complexity is
mN log n).

• In general, the best reconstruction algorithm for
any number of samples is information-theoretically
specified to be theMaximum-Likelihood (ML)re-
construction algorithm, i.e., the algorithm that out-
puts a set of user permutations that maximizes the
a posterioriprobability of permutations given sam-
pled observations. Solving the maximum likelihood
problem requires performing a potentially hard
combinatorial optimization over the space of all
possible user ordering patterns – a computationally
infeasible task. However, in the above regime with
a relatively small number of users, it is remarkable
that the efficient and simple Algorithm 1 achieves
the same sample complexity as the ML algorithm
for the permutation-learning problem.



B. Learning with Active Pairwise Samples

In many application scenarios, it is often desirable
(and possible) toactively query users for comparisons
of objects. Thus, the choice of samples could be more
intelligent, and we can hope to accomplish the learning
task with asmaller numberof carefully chosen pairwise
samples than if we took uncontrolled random pairwise
samples. Here, we indeed show that this is the case,
and provide a joint sampling and permutation-learning
algorithm (Algorithm 2) that is both (a) order-optimal
across all learning algorithms, and (b) requires fewer
samples than its random-sampling counterpart.

Algorithm 2
Input : Pairwise representation matrixM; Number of
sampless the algorithm is allowed to use.
Output : Permutations of all users(π̂k)

m
k=1 ∈ Sn.

Stage 1: Clustering

1) Set ΩC to be a random subset of [N], of size
min

{

c log r, s
}

2) SetC to be an empty collection of clusters.
3) SetU ← [m], to be the set of all unclustered users.
4) If U = ∅, go to Stage 2.
5) Let u← mink∈U k, setU ← U \ u andL ← {u}.
6) For everyk ∈ U

• If M(ΩC , u) = M(ΩC , k) then setU ← U \k
andL ← L ∪ {k}.

7) SetC ← C ∪ {L} and go to Step 3.

Stage 2: Permutation Learning through Sorting
For every clusterL ∈ C,

1) Use a sorting algorithm to sort the[n] objects in
clusterL balancing the sample load across all users
in the cluster.

2) If sample budgets is reached before completion,
stop and declare failure.

Algorithm 2 follows the same basic outline of oper-
ation as Algorithm 1, i.e., working by clustering and
learning each clustered permutation. The key departure
here is that it is free to specify pairs of items that it wants
compared by certain users, and so it uses this flexibility
to cluster and learn permutations faster. Specifically, it
first picks a randomcommonset of c log r pairs of
objects that it asksall r users to order, and uses these
samples to cluster users’ putative permutations. Once
clustering is accomplished, the algorithm pretends that
each cluster is a single ordering and attempts to learn the
ordering using a standard sorting algorithm onn items
(we use Quicksort in our implementation, Section IV)
that issues pairwise queries to essentially “complete”
the permutation. Following the same outline as with
Algorithm 1, we first bound the sample complexity of
Algorithm 2 as follows.

Theorem 3 (Active Sampling, Algorithm 2). Algorithm
2 correctly recovers all permutations, with high probabil-
ity, taking s = O(m log r + rn log n) pairwise samples.

Proof sketch:The arguments used to prove Theorem 3
follow the same outline as those for Theorem 1, viz.
estimating the number of samples sufficient to perform
the two steps of clustering users and learning the clusters.
Concentration properties for the Hamming distance be-
tween randomly chosen permutations are employed for
the estimate ofO(log r) random common object pairs
which guarantees successful clustering for all users. This
is followed by observing that actively sampling and
learning a single cluster/permutation is equivalent to
sorting items using pairwise comparisons, and standard
tail bounds for the performance of a standard sorting
algorithm such as Quicksort show thatO(n log n) pair-
wise samples suffice to learn each cluster with high
probability. Putting together these estimates gives the
promised bound. The full proof details are provided in
the full version ([18]) of this paper.

For the case of active sampling, we provide a matching
converse theorem – in the same spirit as Theorem 2 –
for the sample complexity ofany algorithm that isfree
to draw any pairwise samples from the users. Recall
from the random sampling scenario, that we denote the
probability of successful reconstruction, using algorithm
A on s samples, byPsucc = Psucc(A, s).

Theorem 4 (Active Sampling, Lower Bound on Sample
Complexity). For any active-sampling algorithmA, if
s < max{(m − r) log r, rn log n}, then Psucc → 0 as
n→∞.

Proof sketch:The proof for this active sampling converse
theorem uses the same high-level outline as that for
Theorem 2. The first part – for the clustering stage – is
the same information-theoretic source coding argument
as in the proof of Theorem 2. For the second part, we
use a converse argument for jointly learning a set ofr
distinct permutations, which essentially generalizes the
Ω(n log n) pairwise comparison result to sort a set ofn
item. We reproduce the full details of the proof in the
full version ([18]) of this paper.

Implications of Theorems 3 and 4:

• Algorithm 2 achievesperfect reconstructionwith an
order optimalnumber of samples (i.e.O(m log r+
rn log n)). In other words, distinguishing users on
the basis of a few (O(mlogr)) common pairwise
comparisons decouples the overall learning prob-
lem tightly into r independent “cluster-learning” or
sorting problems.

• Compared to the sample complexity of learning
with random samples (Theorems 1, 2), Algorithm 2
exhibits a saving in sample complexity of the order



of n. This can be directly attributed to the gain
in “collaboratively sorting” users clustered together
as the “same”, in the second phase of the algo-
rithm. Also, the sample complexity of Algorithm 2
translates into an average ofrn

m
log n samples per

user – a gain of the order ofr/mn over trying
to reconstruct all permutations independent of each
other.

Remark. It is worth noticing that, even if the order
samples areq-ary (i.e. full orderings of subsets of size
q) instead of pairwise samples, for constantq, the order-
wise behaviour of the sample complexities does not
change.

IV. EXPERIMENTAL RESULTS

This section describes results of numerical experi-
ments on synthetic data following the stochastic model
for user permutations introduced in this work. For the
random sampling case, Matrix Completion (MC) is an
attractive choice of algorithm to hope to recover users’
permutations, since (a) we essentially get to see partial
entries from the±1 matrix M of pairwise representa-
tions of the permutations (note, though, that theO(n2)
pairwise representation is over-complete), and (b) if
the users have at mostr distinct permutations among
themselves, the rank ofM is at mostr. Hence, for the
random sampling problem, we compare the performance
of our algorithms – both in terms of sample complexity
and running time – with an Augmented Lagrangian
Method version of Matrix Completion (ALM-MC, rel-
evant code from [19]). Finally, we also present an
overall comparison of sample complexities across both
random and active sampling cases and algorithms. This
helps to put both sampling methods in perspective, and
also illustrates the order-wise gains when the learning
algorithm is allowed to sample pairwise orderings from
users at will. All the routines run in MATLAB on a 2.4
GHz desktop computer system with 4 GB of memory.

A. Random Sampling: Algorithm 1 and ALM-MC

For our random sampling experiments we setm =
n, varying from 100 to 400, and consider two scaling
regimes ofr: r = m0.25 and r = m0.5. We generate
random permutations for allm users by first pickingr
random permutations and then assigning users randomly
to these permutations.

Figure 1 shows how the reconstruction success proba-
bility of Algorithm 1 scales with the normalized number
s/(rn2 log n) of random pairwise samples drawn from
users. Each of the colored curves represents a fixed value
of n, the number of items, and depicts the success prob-
ability of Algorithm 1 as the number of random samples
s is varied. We observe a sharp “phase transition” effect
for the probability of success at this normalized scale

of samples – the “correct” normalization suggested by
Theorems 1 and 2.
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Fig. 1. Probability of success vs. number of random sampless

normalized byrn2 logn for Algorithm 1, (a)r = m0.25,m = n,(b)
r = m0.5,m = n.

We plot the corresponding probabilities of success
for ALM-MC (matrix completion on the pairwise±1
matrix) in Figure 2. An important point here is that
due to our stochastic model for user permutations, the
matrix of pairwise ordering representations of users is
at most rankr, and the number of samples required
to complete this matrix (and recover all orderings) is
O(rN1.2 logN) = O(rn2.4 log n) when incoherence is
constant, according to Candès and Recht [2]. Thus, we
use this normalizing factor for the number of samples in
our plots.

Note the similar phase transition for the success prob-
ability for ALM-MC as the number of drawn samples
varies. Also, since the phase transition occurs at the
n2.4 timescale instead of then2 timescale for Algorithm
1 (Figure 1),ALM-MC requires order-wisen0.4 more



samples than Algorithm 1 to succeed. Not only is this
concordant with the lower bound on sample complexity
given by Theorem 2, but it also demonstrates the order-
wise superior performance of Algorithm 1 to solve the
permutation-learning problem from random samples.
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Fig. 2. Probability of success vs. number of random samples
s normalized byrn2.4 logn for Augmented Lagrange Multiplier-
based Matrix Completion (ALM-MC), (a)r = m0.25,m = n,(b)
r = m0.5,m = n.

B. Active Sampling: Algorithm 2

We plot the success probability of Algorithm 2 which
draws active samples (Figure 3), for the same regime
(m,n, r) as in the random sampling case. Here, as
indicated by Theorems 3 and 4, the right scale of nor-
malization for the number of samples taken isrn log n –
ann-fold improvement over reconstruction with random
sampling. The phase transition for Algorithm 2’s success
probability is clearly visible in Figure 3.
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Fig. 3. Probability of success vs. number of sampless normalized by
rn logn for Algorithm 2 (active sampling), (a)r = m0.25,m = n,(b)
r = m0.5,m = n.

C. Overall Comparison: Sample Complexities and Run-
ning Time

To put all the algorithms considered so far in perspec-
tive, we compare and contrast their sample complexities
and running times together.

Figure 4(a) compares the number of samples at the
success probability phase transition (s) against the prob-
lem size (n) for Algorithms 1 and 2 and ALM-MC.
Algorithm 2 dramatically outperforms its random sam-
pling counterparts, lending support to the active sampling
model of attempting to learn user rankings. On the other
hand, in the random sampling case, though ALM-MC
(matrix completion) fares better than the order-optimal
Algorithm 1, we suspect that this is due to overheads
occurring at low problem sizes and observe that the
curves for ALM-MC and Algorithm 1 are projected to
cross over at larger sizes ofn.

In Figure 4(b) shows the running times on a 2.4 GHz



CPU with 4 GB of memory, for our implementations of
Algorithms 1 and 2, and the off-the-shelf implementation
of ALM-MC. Here, the standard ALM matrix completion
algorithm is outperformed by both Algorithms 1 and
2, illustrating the gain in computational efficiency that
these algorithms offer.
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(a) Experimental sample-complexities vs.n for Algorithms 1, 2 and
ALM-MC, m = n andr = n0.5.
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(b) Experimental execution time in seconds vs.n for Algorithms 1, 2
and ALM-MC, m = n andr = n0.5.

Fig. 4. Experimental results on sample and time complexity of all
algorithms.

V. CONCLUSION

We considered the problem of learning a collection of
users’ permutations of items using just partial pairwise
comparisons. Both random and active/intelligent sam-
pling schemes were separately considered. In both cases,
we developed efficient algorithms that reconstruct the
permutations with a guaranteed sample complexity, and
using corresponding lower bounds on sample complexity
showed that these algorithms are order-optimal, addition-
ally with an order-wise performance improvement when

sampling actively. Moreover, there is a significant gain
when solving the problem jointly compared to learning
each permutation individually. Experiments were carried
out that validated the performance benefits of the algo-
rithms we presented, and in many cases showed their su-
periority over traditional matrix-completion approaches.

REFERENCES

[1] R. H. Keshavan, A. Montanari, and S. Oh, “Matrix completion
from a few entries,”IEEE Transactions on Information Theory,
vol. 56, pp. 2980–2998, 2010.

[2] E. J. Cand̀es and B. Recht, “Exact matrix completion via con-
vex optimization,”Found. Comput. Math., vol. 9, pp. 717–772,
December 2009.

[3] B. Recht, “A simpler approach to matrix completion,”CoRR, vol.
abs/0910.0651, 2009.

[4] M. Weimer, A. Karatzoglou, Q. V. Le, and A. Smola, “CoFiRank,
Maximum Margin Matrix Factorization for Collaborative Rank-
ing,” in Advances in Neural Information Processing Systems,
vol. 20, 2007.

[5] B. Zelinka, “Distances between partially ordered sets,” Mathe-
matica Bohemica, vol. 118, no. 2, pp. 167–170, 1993.

[6] A. Haviar and B. Bystrica, “A metric on a system of ordered
sets,”Mathematica Bohemica, vol. 121, no. 2, pp. 123–131, 1996.

[7] Y. Freund, R. Iyer, R. E. Schapire, and Y. Singer, “An efficient
boosting algorithm for combining preferences,”J. Mach. Learn.
Res., vol. 4, pp. 933–969, December 2003.

[8] W. W. Cohen, R. E. Schapire, and Y. Singer, “Learning to order
things,” J. Artif. Intell. Res. (JAIR), vol. 10, pp. 243–270, 1999.

[9] S. Agarwal, “Learning to rank on graphs,”Machine Learning,
vol. 81, no. 3, pp. 333–357, 2010.

[10] S. Rajaram and S. Agarwal, “Generalization bounds fork-
partite ranking,” inProceedings of the NIPS-2005 Workshop on
Learning to Rank, 2005.

[11] D. Helmbold and M. Warmuth, “Learning permutations with ex-
ponential weights,” inProceedings of the 20th annual conference
on Learning theory. Springer-Verlag, 2007, pp. 469–483.

[12] G. Fung, R. Rosales, and B. Krishnapuram, “Learning rankings
via convex hull separation,”Advances in Neural Information
Processing Systems, vol. 18, p. 395, 2006.

[13] G. Lebanon and J. Lafferty, “Cranking: Combining rankings
using conditional probability models on permutations,” inPro-
ceedings of the Nineteenth International Conference on Machine
Learning. Morgan Kaufmann Publishers Inc., 2002, pp. 363–
370.

[14] M. Ajtai, V. Feldman, A. Hassidim, and J. Nelson, “Sortingand
selection with imprecise comparisons,”Automata, Languages and
Programming, pp. 37–48, 2009.

[15] U. Feige, P. Raghavan, D. Peleg, and E. Upfal, “Computingwith
noisy information,”SIAM J. Comput., vol. 23, no. 5, pp. 1001–
1018, 1994.

[16] C. Daskalakis, R. Karp, E. Mossel, S. Riesenfeld, and E.Verbin,
“Sorting and selection in posets,” inProceedings of the twentieth
Annual ACM-SIAM Symposium on Discrete Algorithms. Society
for Industrial and Applied Mathematics, 2009, pp. 392–401.

[17] S. Jagabathula and D. Shah, “Inferring rankings under con-
strained sensing,” inAdvances in Neural Information Processing
Systems, 2008, pp. 753–760.

[18] I. Mitliagkas, A. Gopalan, C. Caramanis, and S. Vish-
wanath, “User rankings from comparisons: Learning per-
mutations in high dimensions,” long version available at
webspace.utexas.edu/im4454/www/.

[19] Z. Lin, M. Chen, L. Wu, and Y. Ma, “The augmented Lagrange
multiplier method for exact recovery of corrupted low-rank
matrices,”Arxiv preprint arXiv:1009.5055, 2010.


