User Rankings from Comparisons:
Learning Permutations in High Dimensions

loannis Mitliagkas, Aditya Gopalan, Constantine CaramaStiram Vishwanath
Department of Electrical and Computer Engineering
The University of Texas at Austin
Austin, TX 78712
i oanni s@it exas. edu, {gadit, caramani s}@rail . ut exas. edu, sriram@ustin. utexas. edu

Abstract—We consider the problem of learning users’ (Is 7/10 good? or bad? or average?). In standardized tests
preferential orderings for a set of items when only a limited sych as SAT and LSAT, relative performance is captured
number of pairwise comparisons of items from users is using a percentile ranking which has now become the

available. This problem is relevant in large collaborative Id standard dmissi Th th Ki f
recommender systems where overall rankings of users for gold standard tor admissions. us, the ranking of a

objects need to be predicted using partial information from Product relative to its peers is valuable information for
simple pairwise item preferences from chosen users. We ultimate user consumption.
consider two natural schemes of obtaining pairwise item As mentioned before, given all ratings, rankings can
orderings — random and active (or intelligent) sampling. e gptained by sorting the ratings for each user. However,
Under both these schemes, assuming that the users OIrOIeIr_finding user ratings first and then transforming them to
ings are constrained in number, we develop efficient, low-] = e : -
complexity algorithms that reconstruct all the orderings rankings is indirect, and may require much more infor-
with provably order-optimal sample complexities. Finally, mation and structure than the problem setting allows.
our algorithms are shown to outperform a matrix comple- This is due to the fact that the range of user ratings
tion based approach in terms of sample and computational 5y pe quite subjective. For example, given a rating
requirements in numerical experiments. . .
scale of(0 to 10, a user can pick her top rating to I6e

and least favorable rating ds limiting the actual range
of values significantly. As a result, the actual ranking

Modeling and understanding user ratings based afi a product can be considerably different from what
structure is a recent but well-studied discipline. In thithe rating indicates when taken out-of-context. In other
setting, we have: products andn users, and our goal words, two users with identical rankings of products can
is to determine the overall rating-matrix — which ishave a very different set of ratings. In some settings
comprised of ratings each user for each product. Tl&ch as funding-proposal rating, coursework grading etc.,
main issue though, is that users only provide us withwae frequently observe a rating/grauhdlation, where the
subset (possibly random) of ratings, and we must nominge of ratings associated with the work being assessed
attempt to learn the remainder of the matrix entriegs skewed in favor of a less-punitive scale.
To this end, structure plays a key role, and low-rank The subjectivity of ratings provided by users also
structure is particularly useful in helping complete theegatively impacts low-rank structure — the basis for the
overall matrix [1], [2], [3]. effectiveness of powerful matrix completion techniques

In many scenarios, however, the ultimate goal is o predicting missing ratings.
understand useranking with ratings merely being a Motivating Example Even if all m users in the system
stepping stone along the way. In other words, we atmve exactly the same ranking for all products, their
interested in determining the order in which each afhoices of real-valued ratings can result in a rating matrix
the users would like these products. For example, tifiat is full rank. Without loss of generality, we can
the n products were movies, ranking reflects each usegssume the common ranking to jde. . ., n]. If each user
preference of movies using an integer ordering, with tiagere to generate real numbers uniformly ovej0, 10]
broken randomly. Similarly, whenever we have multipland then sort them in descending order, the resulting
products/brands of the same type (whether they e x n matrix will be full rank with high probability.
toasters, washers or restaurants), a rank-ordering of thértuitive justification for low-rank matrix completion
proves to be an effective representation of their relatitechniques originates from the fact that user preferences
merits. Intuitively, a raw rating of 7 out of 10 in thehave only a few degrees of freedom. However, with
absence of any other information is potentially uselesignificant user subjectivity, we expect rankings to cap-

I. INTRODUCTION

ture similarities in user preferences more effectivelynthaalgorithms matches lower bounds on the number of
ratings. pairwise samples needed by any procedure to learn

Conseguently, learning the rankings of a collection gfermutations with high probability, whem, n, and r
users directly is of primary interest. Indeed, as Weimere large. This shows that these reconstruction algorithms
et al. [4] argue, “Rating algorithms solve the wrongireorder-optimal— in the sense of sample complexity —
problem, and one that is actually harder: The absolufier learning users’ rankings from pairwise comparisons.
value of the rating for an item is highly biased forThe superior performance of our algorithms for the task
different users, while the ranking is far less prone tof learning user orderings is also borne out in practice
this problem.” in the results of numerical experiments that we report.

Much of existing work on learning rankings of ob- Organization: The remainder of the paper is orga-
jects deals with learning a single, “globally appropriatehized as follows. We describe the setup for the problem
ordering using preferences from training examples, tf learning users’ orderings from pairwise comparisons
minimize a suitable notion of loss ([5], [6]). Thesein Section Il. In Section I, we present our algorithms to
include the populatearning-to-rankapproaches [7], [8] infer users’ orderings, state performance guarantees and
and graph-based learning techniques [9], [10], and ocenverse results for the learning problem, and discuss
line permutation learning algorithms and framework#he implications of our results. Section IV presents
[11], [12], [13]. Related work on sorting with noise ornumerical results for the performance of our approach
sorting partially ordered sets can be found in [14], [15ompared to that of a matrix completion based technique
[16]. to solve the same problem.

When a collection of orderings from users is to Notation: We let [n] denote the set of all integers
be learnt, such methods could ideally be applied infeom 1 to n. We denote the symmetric group dn]
sequential, decoupled fashion to deduce the orderings. S,,. A permutationm € S,, is a bijection on[n],
However, structure among user orderings, if present, cand (i) represents the rank of objectThroughout this
potentially be exploited to learn the orderings with sapaper, we useV £ () = n(n — 1)/2 to denote the
ings in sample complexity. Researchers have noted tmtmber of distinct pairgi,j) € [n] x [n], i < j. We
rankings in a population of users often exhibit forms ofan also represent a permutatione S,, by an x n
“low-dimensional” structure — to paraphrase Jagabathutaatrix P, such thatP,(i,j) = —1 if =(¢) > = (j) and
and Shah [17], “Irrespective of the number of candidatd’; (i, j) = +1 otherwise. Sinc® . is skew-symmetric, a
in an election, the number of distinct vote rankings thahore practical representation is the stacking of its upper
prevail in the population are likely to be few, consideringriangular entries into a vectqs, € {—1,1}V. There is
a small set of ‘issues’ influences ranking patterns ovartrivial bijection between the two representations, so we
candidates.” This inspires the following question whense them interchangeably. Throughout, the phrase “with
jointly estimating users’ rankings of objects: How carmigh probability” is used to mean with probability at
structure among user orderings be effectively leveragéehstl — cn~! for constantc > 0.
to learn orderings with significantly less effort?

In this work, we study the problem of learning a Il. LEARNING USERS ORDERINGS SETUP
collection of permutations chosen by users forn)
items using only pairwise ordering information. Pairwise Consider the setup where each onerofisers totally
sampling asks a user to compare two specified items e&¥Hers @ set ofn objects; we denote the resulting
time, and is not only a natural choice for attemptin§ermutation of usek € [m] by m € S,. The goal
to deduce ordering information, but also easy to infS t© recover all of these permutations with a small
plement in practical systems. We consider the learifymber ofpairwise ordering samples.e. how a user
problem under botrandom(i.e., algorithm-independent) relatively o_r(_jers a specified pair of objects, from each
andactive (i.e., algorithm-dependent) pairwise sampling';er- Specifically, leM = [pr, Pr, --. Pn,] be the
schemes. As a reasonable structural constraint on tex 7 matrix of pairwise orderings for all users. The
space of user permutations, we assume a stochaS@nPling set? C [N] x [m] denotes the indices of
model in which the users pick permutations uniformigntries of M we sample,M(€2) denotes the set of all
from a pool ofr possible orderings. samples acquired, and= || is the number of acquired

For both the random and active sampling schemes, wamples. Sampling can be performed either uniformly at
design efficient, low-complexity algorithms that can ref@hdom tandom samplingor arbitrarily and adaptively

construct all the users’ orderings with a guaranteed nuff¥ the algorithm gctive sampling In this setup, we are

ber of pairwise samples, with high probability. Moreovernterested in
we establish, using information-theoretic techniques ande Quantifying the minimumsample complexityof
concentration results, that the sample-complexity of our the learning problem, i.e., the number of samples

required to infer all the users’ permutations withthe implications of our results and comment on their
high probability, and consequences.
« Developingefficient algorithmghat areoptimal for
sample-complexityi.e., that successfully recoverA. Learning with Random Pairwise Samples
all permutations drawing the minimum number of Suppose that the set of sampl@sis obtained by
samples required. uniform sampling with replacement frorfiV] x [m],
Model for User Permutations: Without further as- i.e., the set of all (object pair, user) combinations.
sumptions on the permutations, that all the users This models the case where, for instance, every user
choose, the problem of learning all thg is in general is asked to independently provide pairwise comparisons
decoupled. This renders unnecessary anything other tiian a uniformly randomly chosen set of object pairs.
a sequential, independent approach to learn each permibe problem is then to use these results to deduce the
tation with pairwise samples. The problem of learningsers’ orderings of all the objects. We introduce our
a collection of orderings becomes interesting when wiesst algorithm (Algorithm 1) to learn the permutations
impose structure on these orderings, since we can thgiMen s randomly drawn samples, and show that it
hope to exploit the resulting “coupling” between userecovers all the orderings with high probability given a
ordering behavior. sufficient number of random samples. In this description,
In practice, as noted in the introduction, item orderingge denote the sampling set by, C [N]x [m] to indicate
across a population of users are likely to be much few#s size s and usef), , C [N] to denote the positions
than all then! permutations irS,,. This can be attributed (object pairs) sampled from usere [m].
primarily to a small set of underlying “features” that In essence, Algorithm 1 uses tkepairwise samples
essentially drive the users’ preferences. We considierfirst separate each pair of users if there is disgrep-
a natural structural model where each user picks hancyin their sampled comparisons. A discrepancy occurs
permutation uniformly at random and independentlpetween two users andk if their sampled orderings for
from a common pool of randomly selected permutsa pair of objectgs, j) disagree, i.e.(i,7) € Qs N Qs i
tions. Specifically, we impose a “low-dimensionality"and M(Qg, ., u) ¢ ;) # M(Qs k. k)¢5 Having “clus-

constraint as follows: tered” the users’ permutations thus, the algorithm pro-
Assumption: There exists a set of permutations ceeds to completely learn the (presumably correctly clus-
{p1,p2,-..,pr}, Where eachp; is drawn independently tered) permutations by collecting all pairwise samples

and uniformly at random frons,,. Eachr; is drawn from users belonging to each cluster and topologically

from thep; independently and uniformly at random, i.e.sorting the resulting Directed Acyclic Graph (DAG).

P(r, = p;) =1/r Yk e [m], j € [r]. Our first result concerns the sample-complexity of
We remark that in correspondence with the matrixAlgorithm 1:

completion literature, the assumption above makes t

+1 matrix of pairwise orderings across all useM & r — 6(m7) for a fixedy > 0. Algorithm 1 recov-

[I.)’” Pr, .- Pr,]) at most“rankr, an thus may be ers all permutations correctly, with high probability,
viewed as a surrogate to “low-rank” structure in our

: : . .~when the number of random samplesis at least
permutation-learning setup. The setup is characterized
. . max{(12/v)mlogr,2rN logn}.

completely by the triple(n, m,r), and our algorithms
and results are expressed chiefly in terms of theBwoof sketchThe two terms given in the bound of Theo-
parameters. rem 1 above quantify separately the sample-complexities
needed to successfully complete both steps of the algo-
rithm, i.e. clusteringand learning We first establish a
concentration result for the pairwise Hamming distance

In this section, we present algorithms for recoveringetween two distinct permutations drawn uniformly at
(and sampling when permitted) all the permutationsndom. This allows us to show thét(logr) random
under both the random and active sampling modelgairwise comparisons per permutation are sufficient to
For each case, we provide rigorous analytical guarantegdistinguish them. Alongside, for any fixed permuta-
on the number of samples sufficient for our algorithmson, we identify a necessary and sufficient condition
to exactly recover all permutations with high probato exactly learn the permutation, from pairwise sam-
bility. This is followed by matching converse resultsples, in terms of the unique Hamiltonian path of the
using information-theoretic source-coding techniquedijgraph induced by the permutation. This is used to-
that establish fundamental lower bounds on the samplgether with a coupon-collecting argument to show that
complexity required byany algorithm to learn the per- the permutation-learning stage of Algorithm 1 requires
mutations with a significant probability. We discus®) (N logn) random samples per cluster (i.e. for each

l?‘aheorem 1 (Random Sampling, Algorithm 1)Suppose

IIl. ALGORITHMS, MAIN RESULTS AND
IMPLICATIONS

Algorithm 1

Input: Set of sampled position&®, C [N] x [m] and
samplesM (Q;) € {—1,+1}".

Output: Permutations of all usersr;)i* ; € S,,.
Stage 1 Clustering:

1) SetC to be an empty collection of clusters.

“clusterings”, and using a source-coding proof technique
that results in a converse theorem. For the permutation
learning stage, an important step is to show that the
number of random pairwise samples needed to learn a
single permutation with high probability @(NV logn).

For this purpose, the necessary and sufficient Hamilto-

2) Setld + [m], to be the set of all unclustered usershian path condition — from the proof of Theorem 1 —

3) If U =0, go to Stage 2.
4) Letwu < mingey k, setld < U\ v and L < {u}.
5) For everyk e U
o If M(Qs_’u N Qs7k7u) = M(Qs,u N Qs,k’vk)
then setf <~ U\ k and L < LU {k}.
6) SetC + CU{L} and go to Step 3.
Stage 2 Permutation Learning:
For every cluster € C,
1) Let QL — UkEL Qs,k
2) Let G = (V,E) denote a directed graph, with
vertex setV’ = [n] and edge sef = ().
3) For every sample positiop in Q,, drawn from
userk and corresponding to object pdif, j)
o if M(p,k) =—1thenE <+ EU{(i,j)}; else
E+— EU{(j,4)}
4) Setp, <+ Topol ogi cal Sorting(Q
5) Setn, «+ p. forall k € L.

p;) to completely infer the cluster. Putting together these
estimates gives the theorem. The details of the proof are
provided in the full version ([18]) of the present paper.

On the other hand, we establish a converse res
on the minimum number of samples needed for su

cessful permutation recovery. For this purpose, consider

a general algorithmA4 that takes as input pairwise
random sampledVI(€2;) and maps it to its output: a
possibly random estimatdM = [p:, ps, -..ps, | Of

all the permutations, one for each user. We denote the

probability of successful reconstruction witd on s
samples byP,... = P..{A,s) = P[M = M].

Theorem 2 (Random Sampling, Lower Bound on
Sample Complexity) For any algorithm A, if s <
max{(m—r)logr,rNlogn}, thenP,,.— 0asn — cc.

Proof sketch:For the sake of contradiction, assume that
an algorithm can learn the orderings with fewer than
the claimed number of samples. It follows that this
results in an algorithm that performs the easier clustering
and permutation learning (given clustering information)
tasks with those samples. Hence, it suffices to prove
separate converse results for these two stages. A key
contribution of this work is to prove a strong converse
theorem for clustering. This is carried out by first ex-
tending the information-theoretic notion of typicality to

that characterizes when a permutation is learnt can be
used along with concentration estimates for the lower
tail of the coupon-collector problem to prove the result.
We defer details of the full proof to the full version ([18])

of this paper.

Note that Theorem 2 is &trong conversei.e., it
states thatny algorithm fails to recover all the users’
item orderings correctly wittoverwhelming probability
when the number of random samples drawn is below a
threshold.

Implications of Theorems 1 and 2:

« When the number of users is relatively small,
viz. m = O(rNlogn) = O(rn?logn), Algorithm

1 succeeds overwhelmingly with(r N log n) sam-
ples according to Theorem 1. At the same time,
with our standing assumption that = 6(m?)

for a fixed -, the converse Theorem 2 forces at
least Q(rNlogn) samples to be drawn for cor-
rect reconstruction. Thus, in this regime, Algorithm
1 is order-optimal for the sample-complexity of
the problem. Further, it demands on an average
- N log n random samples from each userylk 1
additionally, this means that each user needs to con-
tribute avanishing numbeof pairwise comparisons
for successful recovery. This represents a significant
gain compared to decoupling the learning problem
across users and reconstructing each permutation
independently (whose net sample complexity is
mN logn).

In general, the best reconstruction algorithm for
any number of samples is information-theoretically
specified to be thélaximum-Likelihood (ML)re-
construction algorithm, i.e., the algorithm that out-
puts a set of user permutations that maximizes the
a posterioriprobability of permutations given sam-
pled observations. Solving the maximum likelihood
problem requires performing a potentially hard
combinatorial optimization over the space of all
possible user ordering patterns — a computationally
infeasible task. However, in the above regime with
a relatively small number of users, it is remarkable
that the efficient and simple Algorithm 1 achieves
the same sample complexity as the ML algorithm
for the permutation-learning problem.

ult
C-

B. Learning with Active Pairwise Samples Theorem 3 (Active Sampling, Algorithm 2) Algorithm

In many application scenarios, it is often desirablg corre_ctly recovers all permutations,vx_/ith_high probabil-
(and possible) tactively query users for comparisonsity, takings = O(mlogr + rnlogn) pairwise samples.

of objects. Thus, the choice of samples could be MOE;,4 sketch:The arguments used to prove Theorem 3
intelligent, and we can hope to accomplish the learning) o,y the same outline as those for Theorem 1, viz.
task with asmaller numbenf carefully chosen pairwise ggtimating the number of samples sufficient to perform
samples than if we took uncontrolled random pairwisge 1o steps of clustering users and learning the clusters.
samples. Here, we indeed show that this is the caggyncentration properties for the Hamming distance be-
and provide a joint sampling and permutation-learningeen randomly chosen permutations are employed for
algorithm (Algorithm 2) that is both (a) order-optimal,e egtimate oi0(logr) random common object pairs
across all learning algorithms, and (b) requires fewgich quarantees successful clustering for all users. This
samples than its random-sampling counterpart. is followed by observing that actively sampling and
learning a single cluster/permutation is equivalent to
sorting items using pairwise comparisons, and standard
tail bounds for the performance of a standard sorting
algorithm such as Quicksort show th@tn logn) pair-
wise samples suffice to learn each cluster with high
~ probability. Putting together these estimates gives the
1) Setf) to be a random subset of [N], of sizepromised bound. The full proof details are provided in
min {clogr, s} _ the full version ([18]) of this paper.
2) SetC to be an empty collection of clusters. For the case of active sampling, we provide a matching
3) Setid « [m], to be the set of all unclustered userseqnyerse theorem — in the same spirit as Theorem 2 —
4 IfuU=9, 9o to Stage 2. for the sample complexity afny algorithm that isfree
5) Letu « mingey k, setd <~ U \uandL « {u}. 5 draw any pairwise samples from the users. Recall
6) For everyk c U from the random sampling scenario, that we denote the
o If M(Qc,u) = M(Qc, k) then sel/ <~ U\ k probability of successful reconstruction, using algerith
and £ < LU {k}. A on s samples, byP,.. = P,.(A, s).
7) SetC + CU{L} and go to Step 3.

Algorithm 2

Input: Pairwise representation matrixI; Number of
sampless the algorithm is allowed to use.

Output: Permutations of all user&r,)i>, € S,.
Stage 1 Clustering

S 5p ion L g th h Sorti Theorem 4 (Active Sampling, Lower Bound on Sample
tage ermutation Learning through Sorting Complexity) For any active-sampling algorithrd, if

For every CIUSte[_ﬁ €c, _ _ s < max{(m — r)logr,rnlogn}, then P, — 0 as
1) Use a sorting algorithm to sort thje] objects in ,, .

cluster(balancing the sample load across all users

in the cluster. Proof sketchThe proof for this active sampling converse
2) If Samp|e budgeg is reached before Comp|etion,the0rem uses the same high'|6VE| outline as that for
stop and declare failure. Theorem 2. The first part — for the clustering stage — is

the same information-theoretic source coding argument
Algorithm 2 follows the same basic outline of oper-as in the proof of Theorem 2'_ Eor the sef:ond part, we
se a converse argument for jointly learning a set of

ation as Algorithm 1, i.e., working by clustering and'>€ ; hich iall i h
learning each clustered permutation. The key departlgl?t'nCt permutations, which essentially generalizes the

here is that it is free to specify pairs of items that it wan (nlogn) pairwise comparison result to sort a setrof
compared by certain users, and so it uses this erxibiIi1t m. W? reproduce the full details of the proof in the
to cluster and learn permutations faster. Specifically, I ver5|or_1 ([18]) of this paper.

first picks a randomcommonset of clogr pairs of Implications of Theorems 3 and 4:

objects that it asksll r users to order, and uses these « Algorithm 2 achieveperfect reconstructiowith an
samples to cluster users’ putative permutations. Once order optimalnumber of samples (i.€)(mlogr +
clustering is accomplished, the algorithm pretends that rnlogn)). In other words, distinguishing users on
each cluster is a single ordering and attempts to learn the the basis of a few@(mlogr)) common pairwise
ordering using a standard sorting algorithm »eritems comparisons decouples the overall learning prob-
(we use Quicksort in our implementation, Section IV) lem tightly into » independent “cluster-learning” or
that issues pairwise queries to essentially “complete” sorting problems.

the permutation. Following the same outline as with « Compared to the sample complexity of learning
Algorithm 1, we first bound the sample complexity of with random samples (Theorems 1, 2), Algorithm 2
Algorithm 2 as follows. exhibits a saving in sample complexity of the order

of n. This can be directly attributed to the gainof samples — the “correct” normalization suggested by
in “collaboratively sorting” users clustered togethefheorems 1 and 2.

as the “same”, in the second phase of the algo-
rithm. Also, the sample complexity of Algorithm 2
translates into an average &f logn samples per
user — a gain of the order af/mn over trying

to reconstruct all permutations independent of eac
other.

Remark. It is worth noticing that, even if the order
samples argj-ary (i.e. full orderings of subsets of size
q) instead of pairwise samples, for constanthe order-
wise behaviour of the sample complexities does nc
change.

IV. EXPERIMENTAL RESULTS

This section describes results of numerical experi
ments on synthetic data following the stochastic mode.
for user permutations introduced in this work. For the
random sampling case, Matrix Completion (MC) is an
attractive choice of algorithm to hope to recover users
permutations, since (a) we essentially get to see parti
entries from the+1 matrix M of pairwise representa-
tions of the permutations (note, though, that the:?)
pairwise representation is over-complete), and (b) i
the users have at most distinct permutations among
themselves, the rank d¥I is at mostr. Hence, for the
random sampling problem, we compare the performanc
of our algorithms — both in terms of sample complexity
and running time — with an Augmented Lagrangian
Method version of Matrix Completion (ALM-MC, rel-
evant code from [19]). Finally, we also present an

Probability of success

Probability of success

0.9

4
©

o
3

o
2
T

o
w
T

o
IS

o
w
T

I
[N}
T

o
=

1H

0.9

0.8

0.7

0.6

0.5F

04r

0.3

0.2

0.1r

T T
r — © —n=100

—8—n=175
& n=250
—<{- n=325

L| — % —n=400

T T
- © —-n=100

—8—n=175

¢ n=250
—-n=325
— % —n=400

Q'

9

m I I I
. . . 1 12 1.4

si(r n? log n)

overall comparison of sample complexities across bot
random and active sampling cases and algorithms. This
helps to put both sampling methods in perspective, and (b)

also _”IUStr_ates the order-wise gai_ns_when th_e Ieami%. 1. Probability of success vs. number of random samples
algorithm is allowed to sample pairwise orderings fromormalized byrn? log n for Algorithm 1, (@)r = m2%,m = n,(b)
users at will. All the routines run in MATLAB on a 2.4 =m"?,m =n.

GHz desktop computer system with 4 GB of memory.

A. Random Sampling: Algorithm 1 and ALM-MC for ALM-MC (matrix completion on the pairwise:1
For our random sampling experiments we set= matrix) in Figure 2. An important point here is that
n, varying from 100 to 400, and consider two scaling due to our stochastic model for user permutations, the
regimes ofr: » = m%2 andr = m%®. We generate matrix of pairwise ordering representations of users is
random permutations for ath users by first picking- at most rankr, and the number of samples required
random permutations and then assigning users randortdy complete this matrix (and recover all orderings) is
to these permutations. O(rN'2log N) = O(rn**logn) when incoherence is
Figure 1 shows how the reconstruction success prolmenstant, according to Caesl and Recht [2]. Thus, we
bility of Algorithm 1 scales with the normalized numbermse this normalizing factor for the number of samples in
s/(rn?logn) of random pairwise samples drawn fromour plots.
users. Each of the colored curves represents a fixed valuélote the similar phase transition for the success prob-
of n, the number of items, and depicts the success praiility for ALM-MC as the number of drawn samples
ability of Algorithm 1 as the number of random samplesaries. Also, since the phase transition occurs at the
s is varied. We observe a sharp “phase transition” effeaf# timescale instead of the? timescale for Algorithm
for the probability of success at this normalized scale (Figure 1), ALM-MC requires order-wisex’4 more

We plot the corresponding probabilities of success

samples than Algorithm 1 to succeddot only is this ‘ ‘ ‘
concordant with the lower bound on sample complexity J —
given by Theorem 2, but it also demonstrates the orde T i

wise superior performance of Algorithm 1 to solve the

-

4
©

o
<)

permutation-learning problem from random samples. 407
[
8
é 06 4153 1
m=n, r=n*2° 205 by 4 7
\ z 8
1H{ - © —n=100 2 04 $ 1
—8—n=175 & i e f
0.9 O n=250 i3 B 0.3 | 4
- % —n=325 @g‘k Q(Sm
08 | o 1 0.2 1
| I 2)
807 ® = 1 01 L 1
8 g
g ! I o
3 o6t I | 1 s . . .
5 @ 0.8 1 12 14 16 18 2
2 05F ! @ 4 s/(rnlog n)
= ! [
£ 0af ' ! :
S 0.
g o €Y
0.3 1 | 7 0.5
| \ m=n, r=n""
0.2 - g T T T
& | 1H{= e —n=100
01 J —%—n=175
: 09} O n=250 & 1
L 1214 1) L . L ~0—n=325 2
) 0.15 0.2 025 03 0.8/ — < —n=400 al % J
sl(r n?4 log n) Dg
9 07) 1
8 %l 4,
(a) § 06 ® [4
k] =N éﬂ
m=n, r=n"® 2051 @ I 7
T o
1H[- & -n=100 L S o4t S g i
—8—n=175 I 1 pr
09t O n=250 e Q@ 4 03l !]
~ % —n=325 e o
08t I 4 02} H J
o 4
0.7 ! ! B L |
g P 01 &
% 06 *L 1::1] b
2 | 08 1 12 14 16 18 2
205 | 4 s/(rn log n)
y
8 04 4
8 (b)

o
w

Fig. 3. Probability of success vs. number of sample®rmalized by
i rnlog n for Algorithm 2 (active sampling), (a) = m%2°%, m = n,(b)
R r=m->°,m=mn.

I
N}

o
=

— 02.‘]‘;5 0‘,2 0,‘25 0.3
s oen C. Overall Comparison: Sample Complexities and Run-
(b) ning Time
Fig. 2. Probability of success vs. number of random samples TO put all the algorithms considered so far in perspec-
s normalized byrn®“logn for Augmented Lagrange Multiplier- tive, we compare and contrast their sample complexities
Eafeioh.ﬂs?ﬂxfz_mplet'on (ALMMC), (@) = m™,m = n0) 504 running times together.

Figure 4(a) compares the number of samples at the
success probability phase transitiaf égainst the prob-
lem size) for Algorithms 1 and 2 and ALM-MC.
Algorithm 2 dramatically outperforms its random sam-
pling counterparts, lending support to the active sampling

We plot the success probability of Algorithm 2 whichmodel of attempting to learn user rankings. On the other
draws active samples (Figure 3), for the same reginmand, in the random sampling case, though ALM-MC
(m,n,r) as in the random sampling case. Here, gsnatrix completion) fares better than the order-optimal
indicated by Theorems 3 and 4, the right scale of noAlgorithm 1, we suspect that this is due to overheads
malization for the number of samples takemislogn — occurring at low problem sizes and observe that the
ann-fold improvement over reconstruction with randonturves for ALM-MC and Algorithm 1 are projected to

sampling. The phase transition for Algorithm 2’s successoss over at larger sizes of
probability is clearly visible in Figure 3. In Figure 4(b) shows the running times on a 2.4 GHz

B. Active Sampling: Algorithm 2

CPU with 4 GB of memory, for our implementations ofsampling actively. Moreover, there is a significant gain
Algorithms 1 and 2, and the off-the-shelf implementatiowhen solving the problem jointly compared to learning
of ALM-MC. Here, the standard ALM matrix completion each permutation individually. Experiments were carried
algorithm is outperformed by both Algorithms 1 andut that validated the performance benefits of the algo-
2, illustrating the gain in computational efficiency thatithms we presented, and in many cases showed their su-
periority over traditional matrix-completion approaches

these algorithms offer

—&— ALM Matrix Completion
— % — Algorithm 1
21| - —<— - Algorithm 2

n

(a) Experimental sample-complexities ws.for Algorithms 1, 2 and

ALM-MC, m = n andr = n9-2.

10°

—&— ALM Matrix Completion
— % — Algorithm 1
—<]— - Algorithm 2

10

10°

Average Execution Time (seconds)

n

(1]

(2]

(3]

(4]

(5]
(6]
(7]

(8]
&l
(20]

(11]

(12]

(23]

(14]

(b) Experimental execution time in seconds wusfor Algorithms 1, 2 (15]

and ALM-MC, m = n andr = n0-5,

Fig. 4. Experimental results on sample and time complexity of aW'G]

algorithms.

V. CONCLUSION

(17]

We considered the problem of learning a collection qig;
users’ permutations of items using just partial pairwise
comparisons. Both random and active/intelligent sam-

pling schemes were separately considered. In both cages,

we developed efficient algorithms that reconstruct the
permutations with a guaranteed sample complexity, and
using corresponding lower bounds on sample complexity
showed that these algorithms are order-optimal, addition-
ally with an order-wise performance improvement when

REFERENCES

R. H. Keshavan, A. Montanari, and S. Oh, “Matrix completio
from a few entries,lEEE Transactions on Information Theory
vol. 56, pp. 2980-2998, 2010.

E. J. Canés and B. Recht, “Exact matrix completion via con-
vex optimization,”Found. Comput. Math.vol. 9, pp. 717-772,
December 2009.

B. Recht, “A simpler approach to matrix completiolGoRR vol.
abs/0910.0651, 2009.

M. Weimer, A. Karatzoglou, Q. V. Le, and A. Smola, “CoFiRank
Maximum Margin Matrix Factorization for Collaborative Rank
ing,” in Advances in Neural Information Processing Systems
vol. 20, 2007.

B. Zelinka, “Distances between partially ordered Setdathe-
matica Bohemicavol. 118, no. 2, pp. 167-170, 1993.

A. Haviar and B. Bystrica, “A metric on a system of ordered
sets,"Mathematica Bohemicaol. 121, no. 2, pp. 123-131, 1996.
Y. Freund, R. lyer, R. E. Schapire, and Y. Singer, “An eéfit
boosting algorithm for combining preferenced,”"Mach. Learn.
Res, vol. 4, pp. 933-969, December 2003.

W. W. Cohen, R. E. Schapire, and Y. Singer, “Learning tdesr
things,” J. Artif. Intell. Res. (JAIR)vol. 10, pp. 243-270, 1999.
S. Agarwal, “Learning to rank on graphsiWachine Learning
vol. 81, no. 3, pp. 333-357, 2010.

S. Rajaram and S. Agarwal, “Generalization bounds fer
partite ranking,” inProceedings of the NIPS-2005 Workshop on
Learning to Rank2005.

D. Helmbold and M. Warmuth, “Learning permutations with ex
ponential weights,” irProceedings of the 20th annual conference
on Learning theory Springer-Verlag, 2007, pp. 469-483.

G. Fung, R. Rosales, and B. Krishnapuram, “Learning irags
via convex hull separation,Advances in Neural Information
Processing Systemsgol. 18, p. 395, 2006.

G. Lebanon and J. Lafferty, “Cranking: Combining rard€n
using conditional probability models on permutations,”Rro-
ceedings of the Nineteenth International Conference onhiifec
Learning Morgan Kaufmann Publishers Inc., 2002, pp. 363—
370.

M. Ajtai, V. Feldman, A. Hassidim, and J. Nelson, “Sortiagd
selection with imprecise comparisongfitomata, Languages and
Programming pp. 37-48, 2009.

U. Feige, P. Raghavan, D. Peleg, and E. Upfal, “Computiity
noisy information,”SIAM J. Comput.vol. 23, no. 5, pp. 1001—
1018, 1994.

C. Daskalakis, R. Karp, E. Mossel, S. Riesenfeld, anetbin,
“Sorting and selection in posets,” Proceedings of the twentieth
Annual ACM-SIAM Symposium on Discrete Algorithn®ociety
for Industrial and Applied Mathematics, 2009, pp. 392-401.

S. Jagabathula and D. Shah, “Inferring rankings undam- c
strained sensing,” ildvances in Neural Information Processing
Systems2008, pp. 753-760.

I. Mitliagkas, A. Gopalan, C. Caramanis, and S. Vish-
wanath, “User rankings from comparisons: Learning per-
mutations in high dimensions,” long version available at
webspace. ut exas. edu/ i md454/ www/ .

Z. Lin, M. Chen, L. Wu, and Y. Ma, “The augmented Lagrange
multiplier method for exact recovery of corrupted low-rank
matrices,”Arxiv preprint arXiv:1009.50552010.

