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Abstract—We study limited-coordination scheduling in a wire-
less downlink network with multiple base stations, each serving
a collection of users over shared channel resources. When neigh-
boring base stations simultaneously schedule users on the same
channel resource, collisions occur due to interference, leading
to loss of throughput. Full coordination to avoid this problem
requires each base station to have complete “instantaneous”
channel-state information for all its own users, as well as the
ability to communicate on the same timescale as channel fluc-
tuations with neighboring base stations. As such a scheme is
impractical, if not impossible, to implement, we consider the
setting where each base station has only limited instantaneous
channel-state information for its own users, and can communicate
with other base stations with a significant lag from the channel
state variations to coordinate scheduling decisions.
In this setting, we first characterize the throughput capacity

of the system. A key insight is that sharing delayed queue-length
information enables coordination on a slow timescale among the
base stations, and this permits each base station to use limited
and local channel-state along with global delayed queue-state to
stabilize its users’ packet queues. Based on this, we develop a
distributed, queue-aware scheduling (and information exchange)
algorithm that is provably throughput-optimal. Finally, we
study the effect of inter-base-station coordination delay on the
system packet delay performance under the throughput-optimal
algorithm.

Index Terms—Multicellular scheduling, orthogonal frequency
division multiple access (OFDMA), resource allocation.

I. INTRODUCTION

N EXT-generation cellular systems like 3 GPP-long term
evolution (LTE) [1] are based on the technique of Or-

thogonal Frequency Division Multiple Access (OFDMA), and
promise high-speed packet-based services for a variety of appli-
cations. In a typical downlink of such a cellular system, base sta-
tions enable multiple mobile users to share available channel re-
sources by assigning them different frequency bands or “tones”.
These tone-based channels experience temporal fluctuations in
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quality due to fading, and these fluctuations dictate the instan-
taneous data rates that can be sustained within a time slot. Base
stations obtain channel quality measurements from the mobile
users attached to them, and perform resource allocation, on a
timescale of about every 1–2 milliseconds. This helps the base
stations opportunistically exploit local channel fluctuations to
schedule data transmissions to the users.
Data transmission in a multicellular environment with many

base stations is, however, impeded by the following factors:
1) Co-channel interference: A system of several base sta-
tions is prone to inter-cell interference, where transmis-
sions to neighboring mobile users assigned the same fre-
quencies in different cells collide, resulting in a loss of
throughput. The issue of interference management is espe-
cially vital in modern LTE-based femtocell networks [2],
which are comprised of a heterogeneous deployment of
base stations, eachwith a small footprint. Due to unplanned
or ad-hoc deployments, femtocell base stations suffer from
radio interference from nearby femtocells and macrocells,
and this impacts overall throughput. Mitigating inter-cell
interference in femtocell networks has thus been a subject
of much recent research [3], [4].

2) High backhaul latency: Avoiding interference entirely
demands that the base stations coordinate their trans-
missions using instantaneous channel state information
acquired from other base stations. Such coordination at
the timescale of channel fluctuations, however, is rendered
infeasible by the relatively high latencies (of the order
of 10–100 s of milliseconds) of backhaul links that con-
nect base stations. Femtocell base stations typically use
third-party IP/Ethernet backhauls to coordinate interfering
transmissions, and are constrained to communicate over
much slower timescales [3]. Communication between base
stations is thus limited to sharing information which is
significantly delayed compared to instantaneous channel
state variations.

3) Partial local channel state information: Base stations
cannot acquire even the complete instantaneous channel
states for all their own users. This is because OFDMA-
based systems like LTE have many sub-channels, and get-
ting channel state information for all users on each sub-
channel in every time-slot may be prohibitive in terms of
available feedback bandwidth.

In such a setting, the challenge is how to effectively use a
combination of network state information available at the base
stations—(a) partial “local” information, i.e., instantaneous
channel quality estimates, gathered from users at the timescale
of channel state variations, and (b) other “global” information
(such as channel statistics, accumulated queue lengths, user
interference patterns etc.) gathered from other base stations
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and significantly delayed from the instantaneous channel state
variations—and schedule for maximum throughput.
This paper considers a collection of base stations, each

serving an exclusive set of users, in a time-slotted system. To
capture the fact that certain users may interfere (e.g., users in
different cells on the same frequencies located close to each
other) while others may not (e.g., users on orthogonal channels,
or on common frequencies but far from each other), we model
an arbitrary collection of subsets of interfering users in the
user population. Inter-cell interference is modeled by assuming
that transmissions to interfering users by their respective base
stations collide if scheduled simultaneously. At each time slot,
each base station can access instantaneous channel states for
a subset of its users, exchange delayed information with other
base stations, and finally schedule users from the chosen subset.
With this information structure at the base stations, we first

characterize the network throughput region, i.e., the set of all
long-term joint service rates achievable for all users. A key ob-
servation we exploit is that common state information provided
by global delayed queues allows coupling of decisions across
base stations. We demonstrate the optimal way of using this
coupled state to coordinate scheduling across multiple base sta-
tions, and develop a provably throughput-optimal scheduling
algorithm. In other words, when it is possible to share global
delayed information among base stations, it is enough to share
delayed queue lengths to achieve throughput-optimality. To the
best of our knowledge, this is the first throughput-optimality
result using the information structure of local limited instan-
taneous channel state and global delayed information (queue
lengths). We also quantify, via analysis and simulations, how
the packet delay performance of our throughput-optimal sched-
uling algorithm varies with the amount of delay in the shared
queue length information.

A. Main Contributions

The main contributions of this paper are as follows:
1) We derive the throughput region of a multi-base-station
system, with given arbitrary subsets of interfering users,
in which the base stations schedule using the information
structure of (a) local limited channel state information, and
(b) globally shared information which is independent of
the instantaneous channel states. Moreover, we show that
any rate within the throughput region can be obtained by
timesharing, using common randomness, across a simple
class of static scheduling policies. In a static scheduling
policy, each base station always picks a fixed subset of
its users, and schedules each user in that subset depending
solely on its instantaneous channel state and a fixed binary
vector associated with that state.

2) We present a two-tier, distributed and provably throughput-
optimal scheduling algorithm that relies on the base sta-
tions sharing their users’ queue lengths every (an integer
parameter) time slots. Specifically, at every -th time slot,
all the base stations communicate their queue lengths to
each other. For the next time slots, each base station
uses this (delayed) queue length information, along with
knowledge about channel statistics and interfering users,
to locally observe an appropriate subset of its channels’

states and schedule the corresponding users. The param-
eter in our algorithm is the maximum “staleness” of ex-
changed queue length information, and is also a measure
of the inter-base-station coordination time. Moreover, the
scheduling algorithm is throughput-optimal for any fixed
value of , meaning that the coordination time can be
easily adapted to suit the latency of the backhaul between
base stations without sacrificing throughput.

3) We provide analytical bounds on the system packet delay
performance as a function of , and carry out simulations
to illustrate the degradation in the packet delay with in-
creasing .

B. Related Work

Throughput-optimal scheduling for wireless networks dates
back to the pioneering work of Tassiulas et al. [5], [6]. Since
then, there has been much work on throughput-optimal wire-
less scheduling, both with a central scheduler having complete
network-state information [7]–[9] and distributed implementa-
tions [10]–[13]. Further references can be found in [14], [15].
Scheduling with partial or limited channel state information has
been addressed in [16], where infrequent channel state infor-
mation used to schedule, and [17]–[20] where scheduling is
studied with partial or inaccurate observability of the aggregate
channel state. In [21]–[23], the authors develop throughput-op-
timal algorithms using delayed channel-state information with
channel state and topology uncertainty in an ad hoc network set-
ting, where channels are independent across users. Our results
differ in twoways. First, the authors in [21]–[23] do not consider
the setting as in this paper where only limited channel-state is
available at base stations—in the ad hoc network setting where
neighborhoods are small, complete local-channel state is avail-
able, which is not the case in 4G base stations. In addition to
the challenge of the subset selection problem, the key concep-
tual difference and contribution of this paper is that this subset
selection occurs through the base station coordination, as we
further explain below. Second, our results in this paper allow
channels to be arbitrarily correlated across users. This combi-
nation of limited and correlated channel state leads to different
trade-offs and scheduling algorithms.
In the multiple base station setting, two-tiered interference

mitigation through load balancing and base station coordination
has been studied in [24], but under the assumption that a cen-
tral scheduler has instantaneous queue states of all users, and
each base station has complete channel states of its users. The
authors use the central scheduler to determine (based on statis-
tics and instantaneous queue state) which of the base stations
are allowed to transmit (ON base stations) and which are OFF
in order to minimize interference, following which each ON
base station schedules users based on its channel state informa-
tion. However, the authors do not investigate queue-stability or
throughput-optimality. Further, as we see from our analysis, in a
distributed setting where there is no central coordinator, the op-
timal scheduler in fact allows collisions between transmissions
from multiple base stations. The intuition for this is that due to
channel randomness, it is better to be “optimistic” under some
situations and attempt transmission at a base station with the
hope that a contending base station’s channels will be poor, and
hence the contending base station will not attempt to transmit.
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In [25] the authors propose a gradient power-control algo-
rithm to mitigate inter-cell interference and dynamically reuse
frequencies, while [26] considers scheduling algorithms to ef-
fectively allocate subcarriers or frequencies to users in a mul-
ticellular environment to maximize the sum throughput of the
system. In [27] the authors assume coarse-grained communica-
tion among base stations along with a dynamic user model in
which users randomly enter and exit the network, and present
simulation results for scheduling strategies with the main metric
being file transfer delay.
The authors in [4], [3] consider the problem of delayed

coordination that results among LTE-Advanced femtocell base
stations connected by an IP-based backhaul. They develop
heuristic scheduling algorithms that account for coordination
latencies, and carry out extensive numerical studies. None of
the above works, though, examines the importance of using
global information via delayed queue lengths and local in-
stantaneous channel state information to stabilize queues and
achieve throughput-optimality.
Finally, there is work from a physical layer perspective to

maximize sum rate. However, it does not address either delayed/
limited information or stability. The reader is referred to [24] for
a comprehensive survey.

II. MOTIVATING EXAMPLE: HOW THROUGHPUT
DEPENDS ON THE COORDINATION TIMESCALE

In this section, we present an example to illustrate how the
extent of coordination in scheduling, i.e. sharing information
across base stations, affects the throughput/capacity of multi-
cellular wireless systems.
Let us consider a scenario involving two base stations and

two wireless users: base station serving user and base sta-
tion serving user in discrete time slots. Assume that the
joint channel states of the two users are either (1, 2) or (2, 1),
each with probability 0.45, or (2, 2) with probability 0.1, in-
dependently in each time slot. The channel state denotes how
many packets can be transmitted to the user in the event of a
successfully scheduled transmission. Corresponding to the sit-
uation in an LTE system where the two users are assigned the
same frequencies and are located close to each other at the cell
boundary, we assume that transmissions to these two users col-
lide if scheduled together. At every time slot, each base station
decides whether to schedule its respective user or not depending
on the structure of network state information it possesses. We
consider three possible structures of network state information:
1) First, assume that at every time slot, each base station
knows only its own user’s current channel state (i.e., the
base stations have local channel state information with no
coordination). In this case we can show that the throughput
region is enclosed by the solid curved lines connecting the
points (0, 1.55), (0.9, 0.9) and (1.55, 0) in Fig. 1. Essen-
tially, this is equivalent to saying that each base station de-
cides independently to schedule its own user with some
fixed probability. The first (respectively third) point rep-
resents the case when user (respectively ) is always
scheduled and the other user is always not scheduled. The
second point represents the case when each user is sched-
uled if and only if its observed channel state is 2.

Fig. 1. Throughput region for a 2-user system under scheduling with different
information structures.

2) Next, assume again that each base station knows only its
own user’s current channel state, but that the base sta-
tions can exchange delayed or slowly varying informa-
tion—more specifically, any information independent of
their users’ current channel states. This models the fact
that backhaul capabilities between the base stations do not
permit exchange of instantaneous channel state informa-
tion occurring on a fast timescale. For instance, the base
stations can rely on a source of common randomness to
make their scheduling decisions. This is the situation in
which the base stations have local channel state informa-
tion with “slow” global coordination. We see here that the
throughput region expands to the convex hull of the ear-
lier three points (Fig. 1); intuitively, collaboration allows
timesharing.

3) Finally, we assume the base stations can obtain instan-
taneous global channel state information, i.e., acquire
both the users’ channel states before making scheduling
decisions. This models the fact where the base stations
can hypothetically exchange information as fast as the
instantaneous channel states vary, and we find that the
throughput region expands further to the convex hull of the
points (0, 1.55), (0.9, 1.1), (1.1, 0.9) and (1.55, 0) (Fig. 1).
This is because the second (respectively third) point can
be achieved by scheduling only user (respectively )
when its channel state is 2—the advantage in knowing
both users’ instantaneous channel states comes from the
fact that a base station can suitably “back off” when both
channels have state 2.

The example shows that there can be a significant difference
in network throughput depending on the extent of global coor-
dination (none/slow/fast) between base stations. As mentioned
earlier, Case 3—when the base stations access complete instan-
taneous channel state information—is practically infeasible due
to the high latency of inter-base station backhaul links relative
to the timescale of channel quality variations. However, back-
hauls in present-day LTE-based systems effectively allow de-
layed information on a slower timescale to be shared across base
stations. This prompts us to treat Case 2 (where coordination
among base stations is possible only on a timescale slower than
that of the channel state) in detail in this paper, and to develop
throughput-optimal scheduling algorithms for this setting.

III. SYSTEM MODEL

This section describes the notation and definitions necessary
to develop a formal model for coordinated wireless scheduling,
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Fig. 2. Coordinated scheduling with local information.

incorporating the effect of coordination latencies between
scheduling base stations.

A. Network Model

Consider base stations wishing to send packet
data to users on the wireless downlink. Each
user is associated with a unique base station from which it can
receive data; we use to denote the set of users associated
to base station , and to denote the base station to which
user is associated. We denote the set of base stations and the
set of users by and , respectively.

B. Arrival and Channel Model

Time is slotted into discrete units. Data packets destined for
user arrive at base station as a stationary nonneg-
ative integer-valued random process , . For
simplicity we will assume that is independent and iden-
tically distributed (iid) over time slots with ,

and . Let . Packets
get queued if they are not immediately transmitted. The channel
between user and its associated base station is time-varying,
and we assume that its state stays constant for the duration of
a time slot. We denote the channel state random process by

, , where for any takes values in a
finite set . We explicitly assume that consists of the integers

. The aggregate channel
state process is assumed to be
independent and identically distributed (iid) over time slots, but
the channel states can be correlated across users. For a subset

of users, we overload notation and de-
note by the channel state of just the subset . Let
denote the probability mass function of the aggregate channel
state , i.e.,

. Here, for each channel , takes values
in the set of possible channel states . Such
a canonical wireless system is shown in Fig. 2.

C. Queueing Model

Each base station maintains one packet queue for every
user associated with it, into which data packets destined to

get buffered if they are not immediately transmitted. We de-
note the fact that user is successfully scheduled for
data reception at time slot by setting a binary random vari-
able . When this happens, up to packets can
be drained from its packet queue. Thus if denotes the
queue-length process for the packet queue of user , then the
evolution of can be described as

(1)

Another form of (1) which we use later is

(2)

where . Let represent the
vector of queue lengths at time slot .

D. Multiple Base Station Scheduling Model

In the multiple base station network, at every time slot , each
base station schedules transmissions for a set of its users.
Following the motivating example, we model the information
structure that each base station uses to schedule users as having
two important properties:
1) Limited, local channel state information at base sta-
tions: Each base station accesses instantaneous channel
state information for only a subset of its users prior to
scheduling. We let each base station choose a subset

of its users at every time slot , from a fixed arbitrary
collection of subsets of . Following this, the in-
stantaneous state of the chosen users’ channels
is available to , and it can use this knowledge to schedule
users in . We use a binary random variable to
represent whether a user is scheduled at time
( denotes that is scheduled). This framework
formally captures the fact that channel state feedback capa-
bilities between base stations and their users are potentially
limited.

2) Delayed, slower-timescale coordination between base
stations: Base stations can share information to help co-
ordinate scheduling, but instantaneous channel state infor-
mation at each time slot cannot be shared. This captures
the fact that the backhaul links that allow base stations
to communicate suffer from a high latency relative to the
timescale of channel state variation.
To model this formally, we first fix a sufficiently large in-
teger which we will call the system history param-
eter. At time slot , we assume that each base station can
access the history of the entire network—queue lengths,
channel states, arrivals—for all the previous time slots
up to and not including , denoted by the (random) vector

. This says that the backhaul
coordination links are capable of letting the base stations
share their past observations with each other; however, any
instantaneous (at time ) channel state information cannot
be propagated within the same time slot. We remark that
the restriction of available system history to the previous
time slots is made for technical convenience—our results
hold when, for instance, the entire system history (past
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channel states, scheduling decisions and arrivals) is avail-
able at the base stations.1

At each time slot , in addition to the system history ,
we assume that all the base stations can utilize common
randomness, represented by a random variable
that is independent from the instantaneous channel state

. The independence of from the instantaneous
channel state is in keeping with the constraint that base
stations are incapable of sharing instantaneous channel
state information among themselves. represents any
common, auxiliary information which can be used by all
the base stations. For instance, can denote measured
channel/arrival/queue statistics, or just a current time index
that drives time-dependent scheduling, or the outcome
of a common “coin toss” sequence to timeshare across
base stations etc. It models common information that can
be propagated across the inter-base station backhaul in
order to coordinate scheduling (we discuss this in detail in
Section IV in the context of time-sharing policies).
Thus, the total information available to the base stations at
each time slot , as a result of slow coordination over the
backhaul, is , which we call the
system state.

In summary, every base station first picks a subset of its users
to observe their instantaneous channel states—this can depend
on queue lengths, channel states, arrivals and auxiliary informa-
tion in the last slots. After having observed the instantaneous
channel states for that subset, the base station schedules users in
the subset depending on their instantaneous channel states and
the global information it already possesses. We term the collec-
tive set of rules applied at each time slot by every base station
to schedule users as the scheduling policy or algorithm used by
the base stations.

E. Interference Model

As introduced earlier, data transmissions to users in different
cells that are close to each other and use the same frequencies are
prone to interference. At the same time, transmissions to users
on suitably orthogonal channels (e.g. different frequencies or
tones in an OFDMA-based system) can occur simultaneously
without any interference. For each user , let
denote the set of users that interfere with , meaning that

user cannot receive any data packets in a time slot at which a
user in is scheduled. We assume that for all .
For instance, means that user does not experience
interference from any other user. Thus, we have, for all users

(3)

With this, the maximum number of packets that can be drained
from the queue for user at time becomes

(4)

1In addition, we note that if queue length information is shared with a latency
of time slots instead of 1, the scheduling algorithm proposed in this work
can be used with a slight modification to yield the same throughput and queue
length performance, so knowing the state of the network at time is not a
restrictive modeling assumption. This is because because using delayed queue
length information in scheduling does not affect stability properties as long as
the delay is bounded.

Such a collision interference model together with the
“GO/NO-GO” type scheduling model described earlier models
a rudimentary “binary” power-control scheme for users in the
network.2

F. Objective/Performance Metric

For the setup described above, note that under any scheduling
policy, the system state is a discrete time Markov chain.
Let us assume that this Markov chain is irreducible and aperi-
odic.3 Following standard terminology, we say that a vector of
arrival rates with , is
supported by a scheduling policy if the Markov chain is
positive recurrent under the policy when the packet arrival rates
at the user queues are , (this cor-
responds to the intuitive notion that the queues in the network
are drained as fast as they fill up, i.e., they are stable). The goal
is then to characterize the stability region, which we define to
be the set of all vectors of arrival rates ( : ) sup-
ported by at least one scheduling policy. In addition, we wish
to investigate whether there exists a single scheduling policy
which can support any arrival rate vector in the stability re-
gion—a property we call throughput optimality of a scheduling
policy.

IV. STABILITY REGION WITH SLOW
GLOBAL COORDINATION

In this section, we explicitly characterize the stability region
of a system of base stations that schedule users with coordina-
tion and limited local channel state information. We first intro-
duce a class of static scheduling policies, called Static Service
Split (SSS) policies, which use only instantaneous local channel
state information at each base station to make scheduling de-
cisions. SSS policies can achieve a finite set of rates in the sta-
bility region, and by using additional common randomness (e.g.,
a common sequence of coin toss outcomes), the base stations
can suitably time-share across SSS policies. We show in The-
orem 1 that the stability region is, in fact, the convex hull that
results from all the possible time-sharing combinations of SSS
policies. In other words, any given scheduling policy is similar,
in the sense of long-term service rates, to a Static Time-sharing
(STS) policy, or a time-shared combination of SSS policies.

A. SSS Policies

Let us consider a class of “simple” scheduling policies which,
inspired by [7], we will term Static Service Split (SSS) policies.
However, unlike the standard SSS policies used in literature for
scheduling with complete channel state information [7], [28],

2We remark that this zero-rate interference model is assumed only for ease of
exposition. With minor changes, our results and algorithm can be extended to a
more complex model in which interfering users experience reduced rates. More
precisely, reduced channel rates under collisions can be captured by modifying
the definition of in (3), (4) to be a specification of rates for each user
corresponding to which users interfere. This would replace the hard interfer-
ence constraint expressed in (4). Thus, the effect of adaptive modulation/coding
schemes under interference can also be modeled, but at the expense of signifi-
cant notational complications.
3As in [18], this can be ensured by imposing appropriate conditions on the

arrival and channel process (e.g. their marginal distributions are supported with
positive probability on the components in ). Weaker conditions
for different stability definitions are possible, see Section II, [18] and Section III,
[9] for additional discussion.
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our SSS policies are essentially “two-tiered,” and are specifi-
cations of both (i) fixed subsets that base stations must always
pick and (ii) fixed “binary vectors” for every observed subset
channel state, that indicate exactly which users must be sched-
uled when that channel state is observed.
Formally, an SSS policy is defined by a tuple

, where for each , is
a permissible subset of users for base station , and
is a collection of binary length- vectors, one for each
possible set of observed channel states of users in . Equiv-
alently, we can think of as a map that takes the channel
states observed for subset into a binary vector

. Scheduling using the SSS policy is
carried out as follows. At each time slot ,
1) Each base station picks a fixed subset of its
users in order to observe their instantaneous channel states.

2) All the users for not in are not scheduled,
i.e., for such users. A user in
is scheduled if and only if , i.e.,

.
As an example, suppose that base station picks the subset

of two of its users, where each user’s channel
state can be either 0 or 1. Then, it can use 4 binary vectors

—one for every 2-tuple of observed channel states
(there are 4 in all). If, say, , this means that if
both channel states are observed to be 1, only the second user
must be scheduled to transmit, and so on.
Thus, an SSS policy only specifies “local” scheduling rules

per base station: each base station uses channel-state informa-
tion from a predefined subset of users and schedules users in
the subset accordingly. Note that scheduling decisions among
different base stations are functions purely of the instantaneous
channel states of their respective users, and are not coupled
by any other common/shared information. In what follows, we
introduce a more general class of scheduling policies called
Static Time-sharing policies, which involve the base stations
time-sharing between SSS policies using a common random-
ness sequence .

B. Static Time-Sharing Policies

A Static Time-sharing (STS) policy results when base stations
use common randomness to time-share between SSS policies.
It is parameterized by a finite set of SSS policies , to-
gether with a corresponding set of nonnegative weights
that sum to 1. At each time slot , independent of previous time
slots, all the base stations together decide to schedule according
to the SSS policy with probability . This can be achieved,
if, for instance, the base stations use a common random se-
quence where each is the out-
come of an independent -sided coin-toss with probability dis-
tribution , and indexes the SSS policy for time slot
. Thus, in an STS policy, scheduling decisions among different
base stations are coupled not only through their users’ instanta-
neous channel states, but also via the common randomness that
they use. In the next section, we will see that STS policies can
achieve all rates in the convex hull of the rates of SSS policies
(i.e., the “corner point rates”), and moreover, that no scheduling
policy limited by a high-latency backhaul can stabilize rates out-
side this convex hull.

C. Characterization of the Stability Region

Towards an explicit characterization of the stability region
with slow/high-latency backhauls, let us define the rate vector
associated with an SSS policy . For each user , as in (4),

let

where is simply from (3) but with the superscript
indicating explicit dependence on the scheduling policy .

Next, let , where

(5)

Observe that represents the vector of long-term, ergodic
service rates that the SSS policy delivers to the flows to all
the users in the system.4 In a similar manner, if is an STS
policy, i.e., is a combination of SSS policies
with weights , then we define the rate vector

associated with by

(6)

Essentially, the rate vector for an STS policy is defined to be
the convex combination of the rate vectors of its component SSS
policies.
For an SSS policy with rate vector , all arrival rate vec-

tors , with , , that are
dominated by lie in the system stability region, since the
scheduling policy stabilizes them. Furthermore, any arrival
rate vector that is the convex combination of SSS policy rate
vectors also belongs to the stability region, since an appropriate
STS policy corresponding to the convex combination stabilizes
it. Let

where Int Co refers to the interior of the convex hull of
the set in standard Euclidean space. Then, the preceding ar-
gument indicates that is definitely an inner bound to the sta-
bility region (recall that the stability region consists of all those
arrival rate vectors which can be supported by some scheduling
policy). Theorem 1 below states that in fact, the stability region
is no more than :

4Equation (5) defines the expected offered service rate per time slot that
user sees under the scheduling policy . For this purpose, the product on the
right hand side in (5) is taken over all users that interfere with user (these
users could be associated to different BSs). Thus, a general term in the product
is for a user that interferes with and the (unique) BS to
which is associated. In this regard, the subscript in the sum represents the
BS of an interfering user.
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TABLE I
CHANNEL STATE DISTRIBUTION FOR THREE-USER,

TWO-BASE-STATION SYSTEM EXAMPLE

Theorem 1: The stability region of the system is , i.e., a
vector of arrival rates with ,

is supported by a scheduling policy if and only if
.
This result says that any scheduling policy which stabilizes

the system for a certain choice of arrival rates effectively be-
haves like an STS policy, i.e., a suitable time-shared combina-
tion of SSS scheduling policies, in the sense of the long-term
service rates it delivers. This result is useful later, in Section V,
towards showing that a particular scheduling algorithm we de-
velop is throughput-optimal. The proof of this theorem is sim-
ilar in spirit to the results in [7], [21], [22] used to characterize
the stability region. It uses the fact that a system stable/ergodic
under a policy must have consistent long-term fractions, which
are in turn used to construct STS policies yielding the same ser-
vice rates. Refer to Appendix A for the proof.

D. Example: Stability Region for a Three-User,
Two-Base-Station System

To illustrate the concepts and result of the previous section,
let us derive the stability region for a simple case of two base sta-
tions and serving a total of three users . is
associated to whereas and are associated to . Channel
states for all the three users are either 0 or 1 (ON/OFF channels).
Consider the case when all the users are in geographic proximity
to each other and have been assigned the same frequency bands
by their respective base stations, so that simultaneously sched-
uled transmissions to any two users collide. In other words,

, and .
Let us assume that base station can pick at most one of its

two users at any time slot to sample, i.e., ,
while trivially. For simplicity, we let the
joint channel state distribution of the aggregate channel

take one of four states as
shown in Table I.
Let us compute the throughput region of the system with the

given channel state statistics, according to Theorem 1. First,
consider the case when base station always picks to sample
in the first scheduling step. The set of achievable long-term
throughput rates with just users and is the shaded region
shown in Fig. 4(a). In this figure, the extreme points (1/4, 0)
and (0, 5/8) are the service rates when users and are al-
ways scheduled for service respectively, with the other user in
each case never scheduled. The extreme point (1/8, 1/2) repre-
sents the service rates when users and are scheduled if
and only if their respective channel state is 1 (ON). In this case

there is a loss of throughput due to collision when both channel
states are 1.
Remark: The dotted line in Fig. 4(a) represents the additional

throughput obtained when both base stations can see the channel
states of both and before scheduling. This helps reduce
collisions when both the channels have state 1 and hence in-
creases throughput.
Similarly, we can compute the set of service rates when base

station always picks . The set of achievable long-term
throughput rates with just users and is the shaded region
shown in Fig. 4(b). Here again, we see three extreme points on
the “northeast” boundary of the region, having similar interpre-
tations as in the previous figure. Also, the dotted line represents
throughput gained if both base stations know the joint channel
states of and before scheduling.
Theorem 1 now tells us that the stability region of the system

can be found by taking the convex hull of the two “sub”-rate
regions we found earlier. This is depicted graphically as the
shaded region in Fig. 4(c).

V. THROUGHPUT-OPTIMAL SCHEDULING WITH
SLOW GLOBAL COORDINATION

The result of Theorem 1 characterizes the network stability
region as the long-term service rates of static timesharing sched-
uling policies. However, observe that
• Any given static timesharing policy is not throughput-op-
timal, since the set of arrival rates stabilizable by the policy
is merely the “cube” of points that are dominated in every
coordinate by its long-term service rates, and not the whole
stability region.

• For any arrival rate in the stability region, stabilizing the
queueing system with an appropriate static timesharing
scheduling policy requires knowledge of the arrival rate.
In other words, the static timesharing policies that stabilize
the system for a given arrival rate explicitly depend on the
arrival rate. This motivates the need for a throughput-op-
timal scheduling algorithm that, for any arrival rate in the
stability region, keeps all queues stable.

In this section, we focus on developing a throughput-optimal
information exchange and scheduling algorithm in which base
stations share delayed queue length information among them-
selves, and use this information to select local SSS policies.

A. A Throughput-Optimal Scheduling Algorithm With Slow
Global Coordination

The scheduling algorithm that we describe here uses an
integer parameter , which represents the time interval (in
slots) between successive communication exchanges between
the base stations. Specifically, the algorithm operates in suc-
cessive epochs of time slots, and requires that all the queue
lengths in the system be shared globally across the base stations
at the beginning of each epoch. Thus, the timescale at which
the base stations exchange queue length information for coordi-
nating their scheduling actions is once every time slots. The
scheduling policy is as described in Algorithm 1, and essen-
tially operates as follows:
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Algorithm 1 Scheduling algorithm

Parameter: Integer .

for
1) if (mod )
• Let the global queue length vector at time slot be

. Each base station then
solves the following (common) optimization problem
with the decision variables being (i) one observable
subset per base station , and (ii) a specification
of users—represented by binary vectors —to
be scheduled for each observable subset and every
joint channel state of the subset:

(7)

• Let be a choice of
arguments that solves (7).

end if
2) Each base station chooses the subset of its users,
and schedules every user in that subset for which

.

end for

1) Each base station accesses the global vector of queue
lengths every slots.

2) The global vector of queue lengths time slot is used
to choose a “temporally local” SSS policy for the next
time slots. The subsets and binary decision vectors for this
local SSS policy are chosen in such a way as to maximize
the sum of “local” service rates delivered to each queue
weighted by its corresponding delayed queue length.

Remark: The constraints in the optimization problem (7)
mainly deal with the structure of the binary decision vectors
for BS while observing only a subset of its channel states.
The two nontrivial constraints that a vector must satisfy,
expressed by the final two constraints, are: (a) no user outside
the subset can be scheduled by , i.e., any such user’s
binary decision is 0, and (b) for a user within , its scheduling
decision can depend only on channel states observed within the
subset , i.e., the user’s binary decision cannot change if no
channel state in changes.
Note that when the history parameter is at least , the

scheduling algorithm formally makes the state process
a time-inhomogeneous Markov chain, since

within each scheduling epoch, the queue lengths used as

weights in (7) depend on how far into the epoch the algorithm
is operating. To keep the presentation clear, we avoid such
technicalities and deal, instead, with the system state sampled
at the start of every epoch , which is a
homogeneous Markov chain under the algorithm .
Our next result—Theorem 2—establishes two key properties

of the algorithm :
1) Throughput-optimality: The scheduling policy is
throughput-optimal for any fixed value of , i.e., it can
support any arrival rate in the stability region .

2) Packet-delays under are linear in : The average
queue lengths in the system, under the scheduling algo-
rithm , grow at most linearly with the information lag .
As a result, by Little’s Law, the average packet delays are
linear in the average queue lengths for fixed arrival rates,
and hence also grow at most linearly in . Indeed, the pa-
rameter models the lag or delay incurred by the base
stations in exchanging queue length information, and with
an increasing information lag , queueing delays seen by
incoming arrivals grow. Theorem 2 result helps quantify
this intuition precisely by giving an average queue
length bound.

Theorem 2: For a fixed , if the arrival rate , then
under the scheduling algorithm ,
1) is a positive-recurrent Markov chain,
2) There exists a constant , not depending on , such
that under the stationary distribution of

(8)

( denotes the expectation under the stationary distribu-
tion of .)

We have seen earlier—in Section IV and Theorem 1—that
scheduling using SSS policies can only achieve finitely many
extreme points of the stability region; additional common
randomness is required to stabilize the entire throughput re-
gion via time-sharing across SSS policies. What Theorem 2
shows is that this crucial role of global, common random-
ness can be played by delayed/slow-timescale queue-length
information shared among base stations during the operation
of the scheduling algorithm . The delayed queue-length
updates help to correctly couple the base stations’ local SSS
scheduling decisions, so as to achieve the right time-sharing
combination and stabilize any valid arrival rate. This is rem-
iniscent of the manner in which queue length information is
used in a distributed fashion by Ying and Shakkottai [21] for
transmission contention over interfering collision channels to
achieve throughput-optimality. However, their work does not
investigate a two-time-scale information structure (i.e., slower,
delayed backhaul information and faster, instantaneous channel
states restricted to base stations), whereas our model addresses
both (a) delayed inter-base station coordination and (b) the
issue of choosing subset-based partial channel state information
at each base station.
The proof of Theorem 2 relies on the key observation that

delayed queue length information in the optimization (7) helps
to pick out the “right” set of contending base stations so that,
even when collisions occur within each epoch of time slots,
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the base stations’ decisions are time-shared to ensure the
-slot negative drift of a quadratic Lyapunov function of the
queue lengths. At the same time, since each base station can
access only partial, subset-based channel state information
from its users, we employ techniques from scheduling with
subset-based CSI [18] to show that the “correct” observable
subsets are picked and time-shared by every base station so
as to locally achieve the right service rates. The results in
the above work [18] solve the problem of choosing partial,
subset-based channel state information at a lone base station
for throughput-optimality; however, in this paper we face and
overcome the novel challenge of simultaneously combining
(a) partial channel state information at every base station with
(b) global delayed queue-length updates across different base
stations, for achieving throughput-optimality in the presence of
inter-cell interference.
We show the negative drift of the quadratic Lyapunov func-

tion under by proving that
1) The -slot drift under is of the same form as that under
a static time-sharing scheduling policy, and

2) Because solves the optimization (7) at every -th time
slot, its local -slot drift is the most negative (and bounded
away from zero) across all static time-sharing policies.

Finally, the queue-length bound in (8) is obtained from the neg-
ative -slot Lyapunov drift by using a technique due to Neely
[14]. The reader is referred to Appendix B for the complete
proof of the theorem.

VI. SIMULATION RESULTS: HOW PACKET
DELAYS UNDER VARY WITH

In this section we present simulation results that illustrate the
impact of the coordination delay and system load (i.e., how
close the arrival rate vector is to the boundary of the throughput
region) on the average delay experienced by arriving packets,
under the scheduling algorithm . We consider two example
setups involving multiple base stations and users, interfering
channels and subset-constrained scheduling at base stations and
explore the packet delay performance of the algorithm.

A. 3-User, 2-Base Station Example

The network model we first consider for numerical simula-
tion is the one presented and discussed in Section IV-D, with
3 users and 2 base stations. With regard to the throughput re-
gion of the system, shown in Fig. 4(c), consider the rate vector

which is themidpoint of the edge joining
the corner points (1/8, 1/8, 0) and (0, 0, 3/8), and on the boundary
of the throughput region. For a scaled version , we
say that represents a “load” of to the system, analogous
to the terminology used in describing load in an M/M/1 queue.
Arrivals are generated in an iidBernoulli fashion and scheduling
is performed using the -slot throughput-optimal policies de-
veloped in Section V. We examine the average delay or waiting
time experience by packets that enter the network, in the fol-
lowing two cases:
1) Effect of Coordination Delay: For five different loads to
the system (0.55 to 0.95 in steps of 0.1), the impact of
varying the coordination interval from 1 to 100 on the
packet delay is as shown in Fig. 5(a). We observe that the
growth in average packet delay is linear with which is in

Fig. 3. Stability region example: Three-user, Two-base-station System with
slow coordination between the base stations.

accordance with the result of part 2 of Theorem 2, since by
Little’s law the average delay in the network is proportional
to the average queue lengths for a fixed net arrival rate.

2) Effect of Load: For five different values of coordination
interval ( , , , and
), we plot the average packet delay in the system versus

load increasing from 0.5 towards 1. The increase in average
packet delay is observed to be particularly severe as the
load approaches 100%.

B. 10-User, 3-Base Station Example

For the second simulation study, we consider a wireless net-
work comprised of 3 base stations , and that serve a
total of 10 users . Users , and are as-
sociated with , , and with and the remaining 4
users are served by base station . Fig. 6 depicts the user loca-
tions within their respective cells and their interference pattern.
Users form an interfering or colliding set of users, as
do and . This happens, for instance, when
each user in the interfering set is close to its cell edge and is
allotted the same transmission frequency by its base station (in-
dicated in Fig. 3 by a colored ellipse containing the respective
interfering users).
The channel rates for users 1, 5 and 9 are modeled as

Bernoulli (0.7) independent random variables at each time slot,
and the rates for all other users are assumed to be always ON
(i.e., 1 packet per time slot at all times). We assume a symmetric
arrival rate of 0.05 packets per time slot to all users. Each base
station can observe instantaneous NSI for 3 of its users, which
means that must pick a subset of 3 of its 4 users at each
time to observe channel state. The packet delay performance
of the scheduling algorithm is plotted in Fig. 7, for each
value of the coordination delay . This is in agreement with
our result that the average packet delay increases linearly with
the coordination latency between base stations.

VII. CONCLUSION

In this work, we considered multi-base-station wireless
downlink scheduling with slow, global coordination and lim-
ited, local channel state information. We characterized the
network stability region under this information structure,
and developed a throughput-optimal distributed scheduling
algorithm in which it is sufficient for base stations to share
delayed queue lengths on a slow timescale to pick appropriate
subsets of users, and use the locally observed channel states
of these users to make good scheduling decisions. In this way,
coordination between the base stations on a slow timescale—in
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Fig. 4. (a) Stability region for users and , (b) stability region for users
and , (c) stability region for all three users.

the form of delayed queue lengths—helps solve the subset-se-
lection problem at each base station and, together with the
right rules for scheduling users in those subsets, achieves
throughput-optimality. We also investigated the impact of the
delay in shared queue length information on the average packet
delay performance of the system.
Future directions of research include: (i) evaluating the

throughput performance of greedy, low-complexity sched-
uling strategies, and (ii) refining packet delay estimates using
large-deviations/heavy-traffic analysis.

Fig. 5. (a) Average packet delay with lag for various loads, (b) Average
packet delay with load for various lags .

APPENDIX A
PROOF OF THEOREM 1

For showing necessity, assume that there exists a sched-
uling policy which supports the arrival rate vector

. This means that under , the vector
is a positive recurrent discrete time Markov chain.

Consider this Markov chain in its stationary regime (arbitrarily
close approximations to the stationary regime will also suffice).
We will need the following additional notation for the proof:
1) Let be a representation of
the collection of user subsets that each base station picks
to observe at time slot .

2) For user subsets , and in the sup-
port of , let

.
3) Recall that the scheduling decision for user

is a function of system state , the
subset chosen by its server (since users out-
side this subset are not scheduled), and current channel
states . To indicate this, we explicitly write
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Fig. 6. Example of a system with 3 base stations and 10 users for numerical
simulation. Interfering user groups, indicated by colored ellipses, are ,

and . Channels are Bernoulli (0.7) for , and and
constant 1 for all other users. Each base station can observe channel states for 3
of its users, which means must choose 3 of its 4 users at each time.

Fig. 7. Average packet delay of the scheduling algorithm for various values
of coordination delay , for the 10-user 3-base station example.

, where for every
and , is a function

that maps into {0, 1}, with
whenever .

Let . To begin, note that at stationarity,
, and so

(9)

(10)

Evaluating the expectation gives

(11)

since is independent of . Using (11), (10) finally be-
comes

(12)

The fact that

together with the fact that (12) has the same form as that of (6)
(relying in turn on (5)) for the long term rates of STS scheduling
policies, shows that the vector can be dom-
inated by a convex combination of rate vectors of SSS sched-
uling policies. This finishes the proof of the theorem.

APPENDIX B
PROOF OF THEOREM 2

To avoid heavy notation, we prove the theorem assuming that
each base station can pick all its users in the first scheduling
step, viz. . The extension to the
general case is straightforward.
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First, we bound the amount that any queue in the system can
grow in time slots, using (1):
Lemma 1:

(13)
Proof: Consider two cases:

1) : In this case, according to (1),
both sides of (13) are equal.

2) : For this case, let
be the first time that (if no such

time exists, then
and we are done). We

must then have

which finishes the proof.

Next, for the Markov chain , let us introduce the
quadratic Lyapunov function

In what follows, we bound the expected drift in this Lyapunov
function over an interval of time slots when the system oper-
ates under the policy , and show that the expected drift can
be bounded negatively away from zero. Consider

where follows from the fact that if are nonnega-
tive real numbers with , then

. Taking conditional expectations
given yields

(14)

where the last line follows because by definition, the scheduling
choices of the policy from time upto depend
only on the queue lengths at time and the optimal
binary vectors computed at time slot , and are
thus statistically identical from time upto .
By hypothesis, . Hence, there

exists and a static time-sharing scheduling policy
such that . Let be a time-sharing
(Bernoulli) combination of SSS policies with selec-
tion probabilities , respectively, , where

(the superscript indexes the
SSS policy). We have, for

(15)

We add and subtract to the right hand side of
(14) to get

(16)

The crucial observation here is that the scheduling policy
is designed such that the last term above, in round brackets, is
always non-positive:
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Lemma 2: For the static time-sharing policy , we have

Proof: With the long term rates of the STS policy
satisfying (15), we can write

(17)

We also have, by the definition of our proposed scheduling
policy via (7), that

where the last line is due to the optimal choice of the ,
. Together with (17), this proves the lemma.

Using Lemma 2, (16) implies

(18)

Without loss of generality, . For a fixed
, outside the finite set of vectors for which

,
we have , so by
Foster’s theorem [29], is a positive recurrent
Markov chain. This proves the first part of the theorem.
Turning to the second part, we can take expectations of both

sides of (18) and sum over , so that

Rearranging terms and noting that gives

The positive recurrence of , from the previous
part, implies that

for any , and, together with the finiteness of , we
get that

for any . This proves the
second part of the theorem.
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