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Abstract—We study limited-coordination scheduling in a wire-
less downlink network with multiple base stations, each serving a
collection of users over shared channel resources. If neighboring
base stations simultaneously schedule users on the same channel
resource, collisions occur due to interference, leading toloss of
throughput. Full coordination to avoid this problem requir es
the base stations to have complete ‘instantaneous’ channel-state
information for all its own users, as well as the ability to
communicate on the same time-scale as channel fluctuations,with
neighboring base stations. As such a scheme is impractical,if not
impossible, to implement, we consider the setting where each base
station has only limited instantaneous channel-state information
for its own users, and can periodically (on a slower time-scale
using a wired back-haul) communicate with other base stations
in order to loosely coordinate scheduling decisions.

In this setting, we first characterize the throughput capacity
of the system. A key observation is that sharing (delayed)
queue-length information enables loose coordination among the
base stations, and this permits each base station to use limited
and local channel-state along with global delayed queue-state
to stabilize its own user queues. Based on this, we develop a
distributed queue-aware scheduling (and information exchange)
algorithm that provably stabilizes the system. We finally study
the effect of inter-base-station coordination delay on thesystem
packet delay performance.

I. I NTRODUCTION

Next-generation cellular systems like 3GPP Long Term
Evolution (LTE) [1] are based on the technique of Orthog-
onal Frequency Division Multiple Access (OFDMA), and
promise high-speed packet-switched services for a varietyof
applications. In a typical downlink of such a system, base
stations enable multiple mobile users to share common channel
resources by assigning them different frequency bands or
‘tones’. Base stations obtain channel quality measurements
from the mobiles attached to them on a timescale of about
every 2 ms; this helps them exploit local channel fluctuations
to better schedule data transmissions to the mobiles.

A multicellular environment with several base stations,
however, is prone to suffer from intercell interference, where
transmissions to neighboring mobile users assigned the same
frequencies in different cells collide resulting in loss of
throughput. Static frequency planning among a collection of
base stations helps reduce interference between such users
at the cell edges. Yet, even after frequency planning and
allocation, a significant amount of interference can persist
between users. The fact that the base stations are connected
through a common wired backhaul with low-bandwidth (which

allows only limited communication on a slower timescale
compared to channel scheduling) can then potentially be used
to coordinate scheduling decisions across base stations. This
slower and limited coordination timescale does not permit
instantaneous channel state information to be shared across
base stations but allows other slowly varying information to
be propagated. An additional issue is that base stations cannot
acquire even the complete ‘local’ instantaneous channel states
for all their own users. This is because OFDM systems such
as LTE have many sub-channels, and getting channel state
information for all sub-channels for each user in every time-
slot may be prohibitive in terms of feedback bandwidth.

How to effectively use this combination of network state
information available to base stations – partial ‘local’ informa-
tion such as instantaneous channel states from users on a fast
timescale, and ‘global’ information such as channel statistics
and accumulated queue lengths from other base stations on
a slow timescale – to maximize throughput now becomes a
challenging problem.

In this paper, we consider a collection of base stations
each serving an exclusive set of users in a time-slotted
system. Transmissions to interfering users collide if scheduled
simultaneously. In every time slot, each base station picksa
subsetof its users and observes instantaneous channel states
for those users in every time slot (thus, the base station
has partial local channel state), and together with globally
shared information (e.g.,delayed queue length state, channel
statistics) from other base stations schedules users in that
subset. We first characterize the network throughput region
under such a scenario. Using the key observation that common
state information provided by global delayed queues allows
coupling of decisions, we demonstrate the optimal way of
using this coupled state in a multi-base-station scenario and
develop a provably throughput-optimal scheduling algorithm.
To the best of our knowledge, this is the first throughput-
optimality result using the information structure of local,
limited instantaneous channel state and global delayed queue
lengths. We also examine how the packet delay performance
of such an algorithm is related to the amount of delay in
the shared queue length information, by way of analysis and
simulations.

A. Main Contributions

The main contributions of this paper include the following:



1) We derive the throughput region of a system with
coordinated scheduling using limited and local channel
state information. Moreover, we show that the region can
be parametrized using a simple class of static scheduling
policies based on binary decision vectors for each user,
in which each base station always picks a fixed subset
of its users and for each user in that subset decides to
schedule the user or not schedule it depending solely on
its instantaneous channel state and a fixed binary vector
associated with it.

2) We develop a two-tier distributed, throughput-optimal
scheduling policy in which the base stations first com-
municate queue lengths of their respective users to each
other once everyT time slots whereT is a fixed integer.
The base stations then use this information along with
knowledge about channel correlations and interference
patterns to pick their user subsets and make scheduling
decisions with limited local information in the nextT
slots.

3) We explore the relationship between the inter-base-
station coordination delay, i.e., the ‘staleness’ of ex-
changed queue length information, and the system
packet delay performance, and present analytical and
simulation results to illustrate the degradation in the
latter due to an increase in the former.

B. Related Work

Throughput-optimal scheduling for wireless networks dates
back to the pioneering work of Tassiulas et al. [2], [3].
Since then, there has been much work on throughput-optimal
wireless scheduling, both with a central scheduler having
complete network-state information [4], [5], [6] and distributed
implementations [7], [8], [9], [10]. Further references can be
found in [11], [12]. Scheduling with partial or limited channel
state information has been addressed in [13], where infrequent
channel state information used to schedule, and [14], [15],
[16] where scheduling is studied with partial or inaccurate
observability of the aggregate channel state. In [17], [18], the
authors develop throughput-optimal algorithms using delayed
channel-state information with channel state and topology
uncertainty in an ad hoc network setting, where channels are
independent across users. Our results differ in two ways. First,
the authors in [17], [18] do not consider the setting as in this
paper where onlylimited channel-state is available at base
stations (in the ad hoc network setting where neighborhoods
are small, complete channel state is available, which is notthe
case in 4G base stations). In addition to the challenge of the
subset selection problem, the key conceptual difference and
contribution of this paper is that this subset selection occurs
through the base station coordination, as we further explain
below. Second, our results in this paper allow channels to be
arbitrarily correlated across users. This combination of limited
and correlated channel state leads to different trade-offsand
algorithms.

In the multiple base station setting, two-tiered interference
mitigation through load balancing and base station coordina-

tion has been studied in [19], albeit under the assumption that
a central scheduler has instantaneous queue states of all users,
and each base station has complete channel states of its users.
The authors use the central scheduler to determine (based on
statistics and instantaneous queue state) which of the base
stations are allowed to transmit (ON base stations) and which
are OFF in order to minimize interference, following which
each ON base station schedules users based on their channel
state information. However, the authors do not investigate
queue-stability or throughput-optimality. Further, as wewill
see from our analysis, in a distributed setting where there is
no central coordinator, the optimal scheduler in fact allows
collisions between transmissions from multiple base stations
(roughly because due to channel randomness, it is better to be
“optimistic” under some situations and attempt transmission at
a base station with the “hope” that a contending base station’s
channels will be poor, and hence the contending base station
will not attempt to transmit).

In [20] the authors propose a gradient power-control algo-
rithm to mitigate intercell interference and dynamically reuse
frequencies. [21] studies scheduling algorithms to effectively
allocate subcarriers or frequencies to users in a multicell
environment to maximize the sum throughput of the system. In
[22] the authors assume coarse-grained communication among
base stations along with a dynamic user model in which users
enter and exit the network randomly, and extensively simulate
scheduling strategies with the main metric being file transfer
delay. None of these works, though, examine the importance of
using global information via delayed queue lengths and local
instantaneous channel state information to stabilize queues and
achieve throughput-optimality.

Finally, there is work from a physical layer perspective
to maximize sum rate. However, it does not address either
delayed/limited information or stability. The reader is referred
to [19] for a comprehensive survey.

II. A M OTIVATING EXAMPLE

In this section, we introduce an example to help understand
how global coordination among base stations can improve the
throughput region of a wireless system.
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Fig. 1. Capacity regions under different scheduling information structures

Let us consider a scenario involving two base stations and
two wireless users: base stationb1 serving useru1 and base



stationb2 serving useru2 in discrete time slots. Assume that
the joint channel states of the two users are either(1, 2) or
(2, 1) (each with probability 0.45), or(2, 2) (with probability
0.1), independently in each time slot. Also, we assume that
transmissions to the users collide if scheduled together. At
every time slot, each base station decides whether to schedule
its respective user or not depending on the structure of network
state information it possesses. We consider three possible
structures of network state information:

1) First, assume that at every time slot, each base station
knows only its own user’s current channel state (i.e.,
the base stations havelocal channel state information).
In this case we can show that the throughput region is
enclosed by the solid curved lines connecting the points
(0, 1.55), (0.9, 0.9) and(1.55, 0) in Figure 1 (essentially,
this is equivalent to saying that each base station decides
independently to schedule its own user with some fixed
probability). The first (resp. third) point represents the
case when useru1 (resp.u2) is always scheduled and
the other user is always not scheduled. The second point
represents the case when each user is scheduled if and
only if its observed channel state is 2.

2) Next, assume again that each base station knows only
its own user’s current channel state, but the base stations
can additionally ‘talk’ and exchange their queue length
values or other auxiliary information (but not their users’
current channel states) before deciding to schedule their
respective users. For instance they could toss a common
coin and make their scheduling decisions depending on
the outcome of the toss. This is the situation in which
the base stations havelocal channel state information
with global coordination, and we see that the throughput
region expands to the convex hull of the earlier three
points; intuitivelycollaboration allows timesharing.

3) Finally, if we assume the base stations can coordi-
nate completely, i.e., get to know both users’ channel
states before making scheduling decisions (i.e., the base
stations haveglobal channel state information), the
throughput region expands further to the convex hull of
the points(0, 1.55), (0.9, 1.1), (1.1, 0.9) and (1.55, 0).
This is because the second (resp. third) point can be
achieved by schedulingonly user u1 (resp.u2) when
its channel state is 2 - the advantage in knowing the
other user’s channel state comes from the fact that a
base station can ‘back off’ when both channels have
state 2.

This example illustrates that there can be a significant dif-
ference in throughput depending on whether local or global
channel state information or a combination of both is used.
With this as a starting point, we develop a formal model of
coordinated scheduling with local and limited channel state
information and seek to understand what the throughput capa-
bilities of such a system are, and what scheduling strategies
can achieve maximum throughout.
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Fig. 2. Coordinated scheduling with local information

III. M ODEL AND DEFINITIONS

This section deals with establishing notation and definitions
necessary for developing a formal model for coordinated
wireless scheduling.

Network model:ConsiderN base stationsb1, . . . , bN

wishing to send packet data toM usersu1, . . . , uM on the
wireless downlink. Each user is associated with a unique base
station from which it can receive data; we useU(bi) to denote
the set of users associated to base stationbi, andB(uj) to
denote the base station to which useruj is associated. We
denote the set of base stations and the set of users byN and
M respectively.

Arrival and channel model:Time is slotted into discrete
units. Data packets destined for useruj ∈ U(bi) arrive at base
station bi as a stationary nonnegative integer-valued random
processAj(t), t = 1, 2, . . .. For simplicity we will assume
that Aj(t) is independent and identically distributed (iid)
over time slotst with E[Aj(t)] = λj , Aj(t) ≤ Amax a.s..

Let A(t)
△
= (A1(t), . . . , AM (t)). The packets get queued if

they are not immediately transmitted. The channel between
user uj and its associated base station is time-varying; -we
denote the corresponding channel state random process by
Cj(t), t = 1, 2, . . ., where for anyj, Cj(t) takes values in a
finite setC ⊂ Z

+. We explicitly assume thatC consists of the
valuesc1 < c2 < · · · < cK = Cmax. The aggregate channel

state processC(t)
△
= (Cj(t) : j = 1, . . . , M) is assumed to

be iid over time slots. Note however that thechannels can be
correlated across users. Let π(·) denote the probability mass
function of the aggregate channel state(C1(t), . . . , CM (t)),

i.e., π(r1, . . . , rM )
△
= P[C1(t) = r1, . . . , CM (t) = rM ], with

ri ∈ C for all i. Such a wireless system is shown in Figure 2.

Queueing model:Each base stationbi maintains one packet
queue for every useruj associated with it, into which data
packets destined touj get buffered if they are not immediately
transmitted. When useruj ∈ U(bi) is successfully scheduled



for data reception at time slott (which we denote by letting a
binary random variableDj(t) = 1), up to Cj(t) packets can
be drained from its packet queue. Thus ifQj(t) denotes the
queue-length process for the packet queue of useruj , then the
evolution ofQj can be described as

Qj(t + 1) = max{Qj(t) − Dj(t)Cj(t), 0} + Aj(t). (1)

Another form of (1) which we will use later is

Qj(t + 1) = Qj(t) + Aj(t) − Ej(t), (2)

where Ej(t)
△
= min{Dj(t)Cj(t), Q(t)}. Let Q(t) represent

the vector of queue lengths(Q1(t), . . . , QM (t)) at time slot
t.

Scheduling model:For each base stationbi, let a collection
of subsets ofU(bi) - denoted byO(bi) - be fixed. These
subsets define which user channels the base station can observe
and schedule in each time slot.

We model coordinated scheduling with local and limited
channel state information in the network as follows. At any
time slot t, let the history of the system be denoted by

the random vectorHT (t)
△
= (Q(t − T ), . . . , Q(t), C(t −

T ), . . . , C(t − 1), A(t − T ), . . . , A(t − 1)) whereT ≥ 1 is
a fixed integer throughout.HT (t) represents the cumulative
queue length, channel state and arrival history for the previous
T time slots. In addition assume that there exists a sequence
of independent discrete random variablesG(t), t = 1, 2, . . .
which can be thought of as a source ofcommon, auxiliary
scheduling information available globally to the base stations.

Let the stateof the system be defined byXT (t)
△
= (HT (t) :

G(t−T ), . . . , G(t)), i.e., a concatenation of the system history
and auxiliary information history for the lastT time slots.
This is essentially the information that we allow each base
station to know at the global level. For a random variableX
and aσ-algebraA, we write X ∈ A to mean thatX is A-
measurable. Ascheduling policyis defined as the following
two-step procedure carried out at each time slott:

1) Each base stationbi first picks a subsetObi
(t) ∈ O(bi)

of its users depending on the system state (system
history and auxiliary information history). Formally, we
write Obi

(t) ∈ σ(XT (t)).
2) Let the chosen subset of users forbi at time t be

Obi
(t) = {uj1 , . . . ujL

}. For every userujl
in the

chosen subsetObi
(t), base stationbi either schedules the

user for data transmission or not by setting a decision
variable Bjl

(t) to 1 or 0 respectively. The remaining
users associated tobi are necessarily not scheduled, i.e.,
Bj(t) = 0 for all usersuj ∈ U(bi)\Obi

(t). Furthermore,
for each userujl

in the chosen subsetObi
(t), we require

thatBjl
(t) ∈ σ(XT (t), Cjl

(t)), i.e., the final scheduling
decision for each user can potentially depend on(i)
system history,(ii) auxiliary information in the past,(iii)
whether the user is or is not in the subset chosen by
its base station, and most importantly(iv) its currently
observed channel state.

To summarize, every base stationfirst picks a subset of
its users to observe their current channel states, depending
on queue lengths, channel states, arrivals and auxiliary infor-
mation (global information) in the lastT slots. After having
observed channel states in that subset, itnextdecides whether
to schedule those users depending on their current channel
states (limited local information) and the global information
it already has. We remark that this scheduling model captures
two important aspects:

1) Global coordination:By letting the base stations pick
subsets of users depending on the system history along
with common randomness in Step 1, we essentiallylet
the base stations collaborate (using a common backhaul)
to decide which subset each chooses for the current time
slot. This is a key feature in the scheduling model we use
- instead of each base station deciding which subset of its
users’ channels it wants to locally sample independent of
other base stations, it is allowed to ‘loosely coordinate’
with other basestations to choose its subset so as to
further mitigate interference and improve throughput.
The common auxiliary informationG(t) represents any
other additional form of information that the base sta-
tions could use to decide which subsets to pick. Simple
examples could be time-sharing depending on the time
index, or time-sharing depending on a common ‘coin
toss’.

2) Limited and local information: Each base station
must commit to choosing a subset of users in the
first step whose channel states are then revealed to
it, which models the fact that every base station
has limited information about the channel states of
its users. Further, each user whose channel state is
observed in Step 1 is scheduled depending on common
shared information and that users’s current channel
state. This says that the instantaneous channel state
information available to the base station for scheduling
is local - instantaneous channel states ofotherusers are
not availableto a base station while scheduling its users.

Interference model:We model interference in the network
by treating the aggregate channel between the base stationsand
users as acollision channel, i.e., we associate to each useruj ∈
M its interference setI(uj) ⊂ M, with the understanding
that useruj cannot receive any data packets in a time slot
in which a useruk ∈ I(uj) is scheduled (we assume that
uj /∈ I(uj) for any j). We write this formally as

Dj(t) = Bj(t)
∏

uk∈I(uj)

(1 − Bk(t)). (3)

With this, the maximum number of packets that can be drained
from the queue for useruj at time t becomes

Fj(t)
△
= Cj(t)Dj(t). (4)

We remark that this collision interference model together
with the ‘GO/NO-GO’ type scheduling model described



earlier models a rudimentary ‘binary’ power-control scheme
for users in the network.

Objective:For the setup described above, note that under
any scheduling policy, the system stateXT (t) is a discrete
time Markov chain. Let us assume that this Markov chain
is irreducible and aperiodic. We say a vector of arrival rates
λ = (λ1, . . . , λM ) with λi ≥ 0, i = 1, . . . , M is supported
by a scheduling policy ifXT (t) is positive recurrent under
the policy when the packet arrival rates at the user queues
are E[Aj(t)] = λj , j = 1 . . . , M . This corresponds to the
intuitive notion that the queues in the network are drained
as fast as they fill up, i.e., they arestable. The goal is then
to characterize thestability region, which we define to be
the set of all vectors of arrival rates(λj : j = 1, . . . , M)
supported by at least onescheduling policy. In addition, we
wish to investigate whether there exists asingle scheduling
policy which can supportanyarrival rate vector in the stability
region.

IV. T HE STABILITY REGION

In this section, we explicitly characterize the stability re-
gion of a system of base stations that schedule users with
coordination and limited local channel state information.We
first introduce a simpler class of scheduling policies that use
just current local channel state information to make scheduling
decisions, and show that the stability region can be described
using just these policies. In other words,anyscheduling policy
can be thought of as mimicking some policy in this special
class, in the sense of long-term service rates.

A. SSS Policies

We introduce a class of ‘simple’ scheduling policies which
we will call Static Service Split(SSS) policies, inspired by
[4]. Unlike the standard SSS policies used in literature in
scheduling with complete channel state information, however,
our SSS policies respect the two-tiered scheduling setup in-
troduced in this work, and are seen to be specifications of
(i) fixed subsets that base stations must always pick and(ii)
fixed ‘binary vectors’ per user that dictate for which observed
channel states the users must be scheduled.

Formally, an SSS policyP is defined by the tupleP =
(W1, . . . , WN , z1, . . . , zM ), where for eachi, Wi is a permis-
sible subset of users for base stationbi, and for eachj, zj is
a binary decision vector of length|C|. Equivalently, we will
think of zj as a map fromC into {0, 1}. Scheduling using the
SSS policyP is carried out as follows. At each time slott,

1) Each base stationbi picks afixed subsetObi
(t) = Wi

of its users to observe channel states for.
2) All the users forbi not in Wi are not scheduled, i.e.,

Bj(t) = 0 for such users. For a useruj in Wi, if its
observed channel state isCj(t) = c, uj is scheduled if
and only if zj(c) = 1, i.e., Bj(t) = zj(c).

B. Static Time-sharing Policies

Extending the concept of an SSS policy to include a com-
bination of SSS policies leads to the notion of aStatic Time-
sharing(STS) policy. An STS policyP is specified by a finite
set of SSS policies(Pi)

K
i=1 together with a corresponding set

of nonnegative weights(φi)
K
i=1 that sum to 1. At each time

slot t, independent of previous time slots, all the base stations
together decide to schedule according to the SSS policyPi

with probability φi.

C. Characterization of the Stability Region

Towards an explicit characterization of the stability region,
let us define therate vectorµP associated with an SSS policy
P . For each useruj, as in (4), let

FP
j (t)

△
= Cj(t)D

P
j (t),

where DP
j (t) is simply Dj(t) from (3) but with the su-

perscriptP indicating explicit dependence on the scheduling

policy P . Next letµP △
= (µP

1 , . . . , µP
M ), where

µP
j

△
= E[FP

j (t)] =
∑

r1,...,rM



π(r1, . . . , rM ) · rj · Bj(rj) ×

∏

uk∈I(uj)

(1 − Bk(rk))



 . (5)

Intuitively, µP
j is the vector of long term ‘service rates’

that scheduling using the SSS policyP delivers to the flows
to all the users in the system. In a similar manner, ifP is
an STS policy in thatP is a combination of SSS policies
(P1, . . . ,PK) with weights φ1, . . . , φK , we define the rate
vectorµP associated withP as

µP
j

△
=

K
∑

i=1

φiµ
Pi

j . (6)

Essentially, the rate vector of an STS policy is just a convex
combination of the rate vectors of its component SSS policies.

From the way SSS and STS policies are defined, they
always choose fixed subsets and schedule users in those
subsets using fixed binary decision vectors. Thus they are
a class of valid scheduling policies. Hence, any arrival
rate vectorλ = (λ1, . . . , λM ) with λi ≥ 0, i = 1, . . . , M
dominated by such a vectorµP

j must be supported by some
scheduling policy, namelyP for one. Extending the argument,
any arrival rate vector within the convex hull of all STS
rate vectors must also be supported by some scheduling policy.

Let
R

△
= int Co({µP : P an STS policy})

be the interior of the convex hull of the set of rate vectors
corresponding to all possible STS scheduling policies. The
heuristic argument in the previous paragraph indicates that R
is definitely an inner bound to the stability region (recall that
the stability region consists of all those arrival rate vectors



which can be supported by some scheduling policy). The
following result formalizes that in fact, the stability region
cannot be larger thanR:

Theorem 1. The stability region of the system isR, i.e., a
vector of arrival ratesλ = (λ1, . . . , λM ) with λi ≥ 0, i =
1, . . . , M is supported by a scheduling policy if and only if
λ ∈ R.

This result says that any scheduling policy which stabilizes
the system for a certain choice of arrival rates effectively
behaves like a suitable time-sharing combination of SSS
scheduling policies, in the sense of the long-term service rates
it is able to provide. It will be useful when we are interested
later in showing that a particular type of scheduling policy
is throughput-optimal. The proof of this theorem is similar
in spirit to the ones in [4], [17], [18] used to characterize
the stability region, and intuitively relies on the fact that a
system stable under a policy must have long term fractions
which can be used to construct STS policies yielding the
same service rates. Refer to Appendix A for the proof.

D. Example: Stability Region for a Three-user Two-base-
station System

Shared backbone
b2 λ2

λ3

Q2(t)

Q3(t)

b1

λ1

Q1(t)
C2(t)

C3(t)

C1(t)

u1

u2

u3
Interfering channels

Fig. 3. Stability region example

To illustrate the concepts and result of the previous section,
let us derive the stability region for a simple case of two base
stationsb1 and b2 serving a total of three users{u1, u2, u3}.
u1 is associated tob1 whereasu2 and u3 are associated to
b2. Channel states for all the three users are either 0 or 1
(ON/OFF channels). Two users interfere if and only if they
are associated to different base stations, i.e.,I(u1) = {u2},
I(u2) = I(u3) = {u1}.

Let us assume that base stationb2 can pick at most one of
its users at any time slot to sample, i.e.,O(b2) = {{b2}, {b3}},
while O(b1) = {{u1}} trivially. For simplicity, we let the
joint channel state distribution of the aggregate channel
(C1(t), C2(t), C3(t)) take one of four statess1, . . . , s4 as
shown in Table I:

Let us compute the throughput region of the system with
the given channel state statistics, according to Theorem 1.
First, consider the case when base stationb2 always picksu2

to sample in the first scheduling step. The set of achievable

Channel\ State s1 s2 s3 s4

C1(t) 0 0 1 1
C2(t) 1 0 0 1
C3(t) 0 1 0 1
State

probability 1

2

1

4

1

8

1

8

TABLE I
CHANNEL STATE DISTRIBUTION FOR3-USER EXAMPLE

long-term throughput rates with just usersu1 and u2 is the
shaded region shown in Figure 4. In this figure, the extreme
points (1

4 , 0) and (0, 5
8 ) are the service rates when usersu1

andu2 are always scheduled for service respectively, with the
other user in each case never scheduled. The extreme point
(1
8 , 1

2 ) represents the service rates when usersu1 andu2 are
scheduled if and only if their respective channel state is 1
(ON ). In this case there is a loss of throughput due to collision
when both channel states are 1.

Remark:The dotted line in Figure 4 represents the addi-
tional throughput obtained when both base stations can see
the channel states ofboth u1 andu2 before scheduling. This
helps reduce collisions when both the channels have state 1
and hence increases throughput.
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2
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4
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(0, 5
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2
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8
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Fig. 4. Stability region for usersu1 andu2

Similarly, we can compute the set of service rates when
base stationb2 always picks u3. The set of achievable
long-term throughput rates with just usersu1 and u3 is the
shaded region shown in Figure 5. Here again, we see three
extreme points on the ‘northeast’ boundary of the region,
having similar interpretations as in the previous figure. Also,
the dotted line represents throughput gained if both base
stations know the joint channel states ofu1 and u3 before
scheduling.

Theorem 1 now tells us that the stability region of the sys-
tem can be found by taking the convex hull of the two ‘sub’-
rate regions we found earlier. This is depicted graphicallyas
the shaded region in Figure 6.

V. THROUGHPUT-OPTIMAL SCHEDULING

This section focuses on developing a throughput-optimal
information exchange and scheduling policy in which base sta-
tions exploit infrequently exchanged queue length information
from other base stations, together with instantaneous limited
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local information about their users’ channels, to guarantee
stability of the queues for any arrival rate in the stabilityregion
R. We also show that in certain special cases of our network
model, the throughput-optimal policy can be considerably
simplified in form.

A. A Throughput-optimal Policy

Consider the following queue-length-aware, collaborative
scheduling policy:

Scheduling policyPT :

• At every T -th timeslott = kT wherek ∈ Z
+,

1) Each base station broadcasts the vector of queue
lengths for its users to all other base stations.

2) Let the global queue length vector at time slotkT
be Q(kT ) = q ≡ (q1, . . . , qM ). Each base station
bi then solves the following (common) optimization

problem:

max
Sb1

,...,SbN
,

z1,...,zM





M
∑

j=1

qj

∑

r1,...,rM

π(r1, . . . , rM )×

rjzj(rj)1uj∈SB(uj)
×

∏

uk∈I(uj)

(

1 − zk(rk)1uk∈SB(uk)

)





(7)

s.t. Sbi
∈ O(bi), i = 1, . . . , N,

zj : C → {0, 1}, j = 1, . . . , M.

• Let (S∗
b1

, . . . , S∗
bN

, z∗1 , . . . , z∗M ) be a choice of arguments
that solves (7). For the nextT time slots, i.e.,t =
kT, . . . , kT + T − 1, each base stationbi picks S∗

bi
as

its chosen subset of users, and schedules a useruj in
that subset at time slott if and only if z∗j (Cj(t)) = 1.

In other words, the policyPT works as follows:
1) Each base station accesses the global vector of queue

lengths everyT slots.
2) The global vector of queue lengths time slotkT is used

to choose a ‘temporally local’ SSS policy for the next
T time slots. The subsets and binary decision vectors
for this local SSS policy are chosen in such a way
as to maximize the sum of service rates delivered to
each queue weighted by its corresponding delayed queue
length.

The following theorem is a key result in this paper, and
establishes that the scheduling policyPT is in fact throughput-
optimal for any value ofT , i.e., it can support any arrival rate
λ in the stability regionR:

Theorem 2. For any value ofT , the scheduling policyPT

is throughput-optimal, i.e., for an arrival rate vectorλ ∈ R,
the system stateXT (t) is a positive recurrent discrete time
Markov chain underPT .

The proof uses Lyapunov-function type arguments similar
to the ones in [3], [13], [17], additionally incorporating the
effect of the queue delay parameterT . Refer to Appendix B
for the proof of the theorem.

B. Special Cases

The scheduling policyPT introduced earlier was shown to
be throughput-optimal under the network model described for
this work. The network model is quite general in the sense of
modeling scheduling with global system history and limited
local channel states in a system with fading channels and
inter-channel interference in the form of data collisions.In
what follows, we consider some special cases of the network
model and remark that the proposed scheduling policyP
reduces to ‘simpler’/known scheduling policies; in this way the
scheduling model examined in this work naturally generalizes
several ones in the scheduling literature.



1) Interference-free channels:When there is no (or practi-
cally negligible) interference or collision between any pair of
channels/users in the system, i.e., whenI(uj) = ∅ for all users
uj , we see that the optimization suggested by (7) becomes
separable in the users, and hence across base stations. There
is no need for collaboration among the base stations; at time
kT each base stationbi picks the subsetWi of its users that
maximizes

∑

j:uj∈Wi
Qj(kT ) E[Cj(kT )] and for the nextT

time slots schedules all the users in that subset.
An interesting case is when there is interference only within

users associated to the same base station, and in a way that any
two such users always interfere. In this situation, in addition
to picking a subsetWi as earlier, each base stationbi in the
second step uses theMax-Weight/M-LWWFscheduling rule [4]
to schedule a useruj ∈ Wi that maximizesQj(kT )Cj(kT ).
This is an earlier result presented in [15].

2) Fading-free symmetric system, singleton subsets:Con-
sider the case when every channel state is constant over time
and interferes with every other channel, i.e.,Cj(t) = βj

irrespective oft andI(uj) = M − {uj}. In addition, if the
joint channel state distribution is assumed to be symmetric,
i.e.,π(r1, . . . , rM ) = π(rσ(1), . . . , rσ(M)) for any permutation
σ on M letters, and the observable subsets for every base
station bi consist of all the singleton users, then each base
station merely has to pick a user at every time slot to schedule
or not. In this case, it can be shown that the policyPT reduces
to all the base stations together picking the user with the largest
product of queue length and (constant) channel state in the
system; in effectpicking the user with the longest queue is
throughput-optimal.

3) Single independent user per base station:Consider the
case when every base station has just one user, with every
user’s channel state independent of every other user’s channel
state. This is essentially the model treated in [17], this time
viewing each base station-user pair as anuplink user with the
additional restriction that channel states areiid across time
slots.

In this case, with some manipulation, it is not hard to show
that the proposed throughput-optimal scheduling policy with
T = 1 is exactly thethresholdscheduling policy shown to be
throughput-optimal in [17], i.e., if the optimum binary vector
z∗j (t) for user j resulting from (7) hasz∗j (t)(ck) = 1, then
z∗j (t)(ck′ ) = 1 for all ck′ > ck. In other words, each user
uj sets a thresholdηj(t), and decides to contend to transmit
(uplink) data if and only if its channel state at timet is at least
ηj(t).

VI. PACKET DELAY PERFORMANCE

For everyT , we saw that the scheduling policyPT in-
troduced in the previous section is throughput-optimal. The
parameterT can be interpreted as a lag or delay in the base
stations exchanging queue length information. It is natural to
expect that with increasing lagT , the queueing delays seen
by incoming arrivals grow. In this section we show that this
is indeed the case by way of an analytical bound.

The following result states that the average queue lengths
in the system grow at mostlinearly with the information lag
T . By Little’s Law, the average packet delays are linear in
the average queue lengths for fixed arrival rates, and hence
must also grow at most linearly inT . Though it is a direct
consequence of the proof of Theorem 2, we state it as a
separate theorem for its significance.

Theorem 3. Let λ ∈ R be the average arrival rate vector
for the system, and letQPT

j (τ) denote the queue length for
user uj at time slotτ when the arrival rates areλ and the
scheduling policy isPT . Then,E[QPT

j (τ)] = O(T ).

The proof follows from the proof of Theorem 2. It uses
Lyapunov techniques similar to the ones in [11] to establish
delay bounds for opportunistic scheduling. The reader is
referred to Appendix B for details.

VII. S IMULATION RESULTS

In this section we present simulation results that illustrate
the impact of the coordination delayT and system load
(i.e., how close the arrival rate vector is to the boundary of
the throughput region) on the average delay experienced by
arriving packets.

A. Simulation Setup

The network model we consider for the purpose of simu-
lation is the one presented and discussed in Section IV-D. As
per the throughput region of the system shown in Figure 6,
consider the rate vector̂λ = ( 1

16 , 1
4 , 3

16 ) which is the midpoint
of the edge joining the corner points(1

8 , 1
8 , 0) and (0, 0, 3

8 ),
and on the boundary of the throughput region. For a scaled
version λǫ = (1 − ǫ)λ̂, we say thatλǫ represents a ‘load’
of 1 − ǫ to the system, analogous to the terminology used in
describing load in anM/M/1 queue. Arrivals are generated in
an iid Bernoulli fashion and scheduling is performed using
the T -slot throughput-optimal policies developed in Section
V. We examine the average delay or waiting time experience
by packets that enter the network, in the following two cases:

B. Effect of Coordination Delay

For five different loads to the system (0.55 to 0.95 in steps of
0.1), the impact of varying the coordination intervalT from
1 to 100 on the packet delay is as shown in Figure 7. We
observe that the growth in average packet delay is linear with
T which is in accordance with the result of Theorem 3, since
by Little’s law the average delay in the network is proportional
to the average queue lengths for a fixed net arrival rate.

C. Effect of Load

For five different values of coordination interval (T = 1,
T = 10, T = 50, T = 100 andT = 150), we plot the average
packet delay in the system versus load increasing from 0.5
towards 1. The increase in average packet delay is observed
to be particularly severe as the load approaches 100%.
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VIII. C ONCLUSION

In this work, we studied multi-base-station wireless down-
link scheduling with global coordination and limited, local
channel state information. We characterized the network sta-
bility region under this information structure, and developed a
throughput-optimal distributed scheduling algorithm in which
it is sufficient for base stations to share delayed queue lengths
on a slow timescale to pick appropriate subsets of users, and
use the locally observed channel states of these users to make
good scheduling decisions. In this way, loose coordination
between the base stations in the form of delayed queue lengths
helps solve the subset-selection problem at each base station
and, together with the right rules for scheduling users in those
subsets, achieves throughput-optimality. We also investigated
the impact of the delay in shared queue length information on
the average packet delay performance of the system. Future
directions of research include:(i) considering greedy, low-
complexity scheduling strategies and evaluating their through-

put, and(ii) refining the packet delay estimates in the system
using large-deviations or heavy-traffic analysis.

APPENDIX A
PROOF OFTHEOREM 1

For showing necessity, assume that there exists a schedul-
ing policy P which supports the arrival rate vectorλ =
(λ1, . . . , λM ). This means that underP , the vectorXT (t)
is a positive recurrent discrete time Markov chain. Consider
this Markov chain in its stationary regime (arbitrarily close
approximations to the stationary regime will also suffice).

We will need the following additional notation for the proof:

1) Let O(t)
△
= (Ob1(t), . . . , ObN

(t)) be a representation of
the collection of user subsets that each base station picks
to observe at time slott.

2) For user subsetsW1, . . . , WN , and x in the sup-

port of XT (t), let φW1,...,WN ;x(t)
△
= P[Ob1(t) =

W1, . . . , ObN
(t) = WN , XT (t) = x].

3) Recall that the scheduling decisionBj(t) for user
uj ∈ U(bi) is a function of system stateXT (t),
the subsetObi

(t) chosen by its server (since users
outside this subset are not scheduled), and current
channel stateCj(t). To indicate this, we explicitly
write Bj(t) = f t

j (XT (t), Obi
(t), Cj(t)), where for ev-

ery j = 1, . . . , M and t = 1, 2, . . ., f t
j is a func-

tion that maps(XT (t), Obi
(t), Cj(t)) into {0, 1}, with

f t
j (XT (t), Obi

(t), Cj(t)) = 0 wheneverj /∈ Obi
(t).

Let uj ∈ U(bi). To begin, we note that

λj = E[Aj(t)] = E[Ej(t)] ≤ E[Fj(t)]

= E



Cj(t)Bj(t)
∏

uk∈I(uj)

(1 − Bk(t))





=
∑

W1,...,WN ,x

φW1,...,WN ;x(t)E



Cj(t)Bj(t) ×

∏

uk∈I(uj)

(1 − Bk(t))

∣

∣

∣

∣

∣

∣

O(t) = (W1, . . . , WN ),

XT (t) = x







 . (8)



Evaluating the expectation gives

E



Cj(t)Bj(t)
∏

uk∈I(uj)

(1 − Bk(t))

∣

∣

∣

∣

∣

∣

O(t) = (W1, . . . , WN ),

XT (t) = x





=
∑

r1,...,rM

P[C(t) = (r1, . . . , rM )|O(t) = (W1, . . . , WN )]×

E



Cj(t)Bj(t)
∏

uk∈I(uj)

(1 − Bk(t))

∣

∣

∣

∣

∣

∣

O(t) = (W1, . . . , WN ), XT (t) = x, C(t) = (r1, . . . , rM )]

=
∑

r1,...,rM

π(r1, . . . , rM )rjf
t
j (x, Wi, rj)

∏

uk∈I(uj)

(1 − f t
k(x, WB(uk), rk)), (9)

since C(t) is independent ofO(t). Using (9), (8) finally
becomes

λj ≤
∑

W1,...,WN ,x

φW1,...,WN ;x(t) ×

(

∑

r1,...,rM

π(r1, . . . , rM )rjf
t
j (x, Wi, rj) ×

∏

uk∈I(uj)

(1 − f t
k(x, WB(uk), rk)



 .

The fact that this equation has the same form as the one
expressed by (5) and (6) for the long term rates of STS
scheduling policies, together with the fact that

∑

W1,...,WN ,x

φW1,...,WN ;x(t) = 1,

shows that the vectorλ = (λ1, . . . , λM ) can be dominated
by a convex combination of rate vectors of SSS scheduling
policies. This finishes the proof of the theorem.

APPENDIX B
PROOF OFTHEOREM 2

To avoid cluttering up the notation, we prove the theorem
assuming that each base station can pick all its users in the
first scheduling step, viz.Obi

= {U(bi)} ∀ i = 1, . . . , N .
We remark that the extension to the general case is quite
straightforward.

First, we will bound the amount that any queue in the system
can grow inT time slots, using (1):

Lemma 1.

Qj(t+T ) ≤ max

{

Qj(t) −
t+T−1
∑

τ=t

Fj(τ), 0

}

+

t+T−1
∑

τ=t

Aj(τ).

(10)

Proof: Consider two cases:

• Qj(t) ≥
∑t+T−1

τ=t Fj(τ): In this case, according to (1),
both sides of (10) are equal.

• Qj(t) <
∑t+T−1

τ=t Fj(τ): For this case, lett′ ∈ {t, . . . , t+
T−2} be the first time thatQj(t

′)−Fj(t
′) < 0 (if no such

time exists, thenQj(t + T ) = Qj(t)−
∑t+T−1

τ=t Fj(τ) +
∑t+T−1

τ=t Aj(τ) ≤
∑t+T−1

τ=t Aj(τ) and we are done). We
must then have

Qj(t + T ) ≤
t+T−1
∑

τ=t′

Aj(τ) ≤
t+T−1
∑

τ=t

Aj(τ),

which finishes the proof.

Next, let us introduce for the Markov chain(XT (t))∞t=1 the
quadratic Lyapunov function

L(XT (t))
△
=

M
∑

j=1

Q2
j(t).

In what follows, we will bound the expected drift in this
Lyapunov function over an interval ofT time slots when
the system operates under the policyPT , and show that the
expected drift can be bounded negatively away from zero.
Consider

∆L(XT (kT ))
△
= L(XT ((k + 1)T )) − L(XT (kT ))

=

M
∑

j=1

(Q2
j(kT + T )− Q2

j(kT ))

(a)

≤
M
∑

j=1





(

kT+T−1
∑

τ=KT

Fj(τ)

)2

+

(

kT+T−1
∑

τ=KT

Aj(τ)

)2

−

2Qj(kT )

kT+T−1
∑

τ=KT

[Fj(τ) − Aj(τ)]

)

≤
M
∑

j=1



T 2C2
max + T 2A2

max−

2Qj(kT )
kT+T−1
∑

τ=KT

[Fj(τ) − Aj(τ)]

)

= M
(

T 2C2
max + T 2A2

max

)

−

2

M
∑

j=1

Qj(kT )

kT+T−1
∑

τ=KT

[Fj(τ) − Aj(τ)] ,

where (a) follows from the fact that if V, U, µ, A are
nonnegative real numbers withV ≤ max{U − µ, 0} + A,
then V 2 ≤ U2 + µ2 + A2 − 2U(µ − A). Taking conditional



expectations givenQ(kT ) = q ≡ (q1, . . . , qM ) yields

E[∆L(XT (kT ))|Q(kT ) = q] ≤ MT 2
(

C2
max + A2

max

)

−

(11)

2
M
∑

j=1

qjE

[

kT+T−1
∑

τ=KT

[Fj(τ) − Aj(τ)]

∣

∣

∣

∣

∣

Q(kT ) = q

]

= MT 2
(

C2
max + A2

max

)

+ 2T

M
∑

j=1

qjλj

− 2

M
∑

j=1

qjE

[

kT+T−1
∑

τ=KT

Fj(τ)

∣

∣

∣

∣

∣

Q(kT ) = q

]

= MT 2
(

C2
max + A2

max

)

+ 2T

M
∑

j=1

qjλj

− 2

M
∑

j=1

qjTE [Fj(kT )|Q(kT ) = q] , (12)

where the last line follows because by definition, the
scheduling choices of the policyPT from time kT upto
kT + T − 1 depend only on the queue lengthsQ(kT ) at time
kT and the optimal binary vectorsz∗1 , . . . , z∗M computed at
time slot kT , and are thus statistically identical from time
kT upto kT + T − 1.

By hypothesis,λ = (λ1, . . . , λM ) ∈ R. Hence there must
exist a smallǫ > 0 and a static time-sharing scheduling
policy PTS such thatµPT S = (1 + ǫ)λ. Let PTS be a time-
sharing (Bernoulli) combination ofn SSS policiesPi with
selection probabilitiesφi respectively,i = 1, . . . , n, where
Pi = (W i

1 , . . . , W
i
N , zi

1, . . . , z
i
M ) (the superscripti indexes

the SSS policy). We have, for1 ≤ j ≤ M ,

µPT S

j =

n
∑

i=1

φi

∑

r1,...,rM



π(r1, . . . , rM ) · rj · z
i
j(rj) ×

∏

un∈I(uj)

(1 − zi
n(rn))



 . (13)

We add and subtract2T
∑M

j=1 qjµ
PT S

j to the right hand side
of (12) to get

E[∆L(XT (kT ))|Q(kT ) = q] ≤ MT 2
(

C2
max + A2

max

)

+

2T

M
∑

j=1

qj(λj − µPTS

j )+

2T





M
∑

j=1

qjµ
PT S

j −
M
∑

j=1

qjE [Fj(kT )|Q(kT ) = q]



 .

(14)

The crucial observation here is that the scheduling policy
PT is designed such that the last term above, in round brackets,
is always non-positive:

Lemma 2. For the static time-sharing policyPTS , we have




M
∑

j=1

qjµ
PT S

j −
M
∑

j=1

qjE [Fj(kT )|Q(kT ) = q]



 ≤ 0.

Proof: With the long term rates of the STS policyPTS

satisfying (13), we can write




M
∑

j=1

qjµ
PT S

j −
M
∑

j=1

qjE [Fj(kT )|Q(kT ) = q]





=





M
∑

j=1

qj

n
∑

i=1

φi

∑

r1,...,rM



π(r1, . . . , rM ) · rj · z
i
j(rj) ×

∏

uk∈I(uj)

(1 − zi
k(rk))



−
M
∑

j=1

qjE [Fj(kT )|Q(kT ) = q]





≤



 max
i=1,...,n





M
∑

j=1

qj

∑

r1,...,rM



π(r1, . . . , rM ) · rj · z
i
j(rj) ×

∏

uk∈I(uj)

(1 − zi
k(rk))







−
M
∑

j=1

qjE [Fj(kT )|Q(kT ) = q]



 .

(15)

We also have, by the definition of our proposed scheduling
policy via (7), that

M
∑

j=1

qjE [Fj(kT )|Q(kT ) = q]

=

M
∑

j=1

qj

∑

r1,...,rM

π(r1, . . . , rM )rjz
∗
j (rj)

∏

uk∈I(uj)

(1 − z∗k(rk))

≥
M
∑

j=1

qj

∑

r1,...,rM

π(r1, . . . , rM )rjz
i
j(rj)

∏

uk∈I(uj)

(1 − zi
k(rk))

for i = 1, . . . , n, by the optimal choice of thez∗k. Together
with (15), this proves the lemma.

Using Lemma 2, (14) implies

E[∆L(XT (kT ))|Q(kT ) = q]

≤ MT 2
(

C2
max + A2

max

)

+ 2T

M
∑

j=1

qj(λj − µPT S

j )

= MT 2
(

C2
max + A2

max

)

− 2ǫT
M
∑

j=1

qjλj

= MT 2
(

C2
max + A2

max

)

− 2ǫTAmax

M
∑

j=1

qj . (16)

Taking expectations over both sides of (16) and summing from
k = 1, . . . , K leads to

E[L(XT ((K + 1)T ))] − E[L(X(T ))]

≤ MT 2
(

C2
max + A2

max

)

− 2ǫTAmax

K
∑

k=1

M
∑

j=1

Qj(kT )



Rearranging terms and noting thatL(Q((K+1)T )) ≥ 0 yields

1

K

K
∑

k=1

M
∑

j=1

E[Qj(kT )] ≤
L(XT (T ))

2ǫTK
+

TM(A2
max + C2

max)

2ǫ

⇒ lim sup
K→∞

1

K

K
∑

k=1

M
∑

j=1

E[Qj(kT )] ≤
TM(A2

max + C2
max)

2ǫ

(17)

< ∞.

Together with the fact that arrivals and channel states are
bounded, this means that the (irreducible and aperiodic) system
state processXT (t), t = 1, 2 . . . is positive recurrent. This
completes the proof.
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