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Abstract—We study limited-coordination scheduling in a wire-
less downlink network with multiple base stations, each seting a
collection of users over shared channel resources. If neigloring
base stations simultaneously schedule users on the same chel
resource, collisions occur due to interference, leading ttoss of
throughput. Full coordination to avoid this problem requir es
the base stations to have complete ‘instantaneous’ channstate
information for all its own users, as well as the ability to
communicate on the same time-scale as channel fluctuationsith
neighboring base stations. As such a scheme is impracticéf,not
impossible, to implement, we consider the setting where eabase
station has only limited instantaneous channel-state infonation
for its own users, and can periodically (on a slower time-sda
using a wired back-haul) communicate with other base statios
in order to loosely coordinate scheduling decisions.

In this setting, we first characterize the throughput capaciy
of the system. A key observation is that sharing (delayed)
gueue-length information enables loose coordination amanthe
base stations, and this permits each base station to use lirad
and local channel-state along with global delayed queueate

to stabilize its own user queues. Based on this, we develop 35 slow timescale —

distributed queue-aware scheduling (and information exchnge)
algorithm that provably stabilizes the system. We finally stidy
the effect of inter-base-station coordination delay on thesystem
packet delay performance.

I. INTRODUCTION

allows only limited communication on a slower timescale
compared to channel scheduling) can then potentially bd use
to coordinate scheduling decisions across base statidns. T
slower and limited coordination timescale does not permit
instantaneous channel state information to be shared sacros
base stations but allows other slowly varying information t
be propagated. An additional issue is that base statiormsotan
acquire even the complete ‘local’ instantaneous chanagst

for all their own users. This is because OFDM systems such
as LTE have many sub-channels, and getting channel state
information for all sub-channels for each user in every time
slot may be prohibitive in terms of feedback bandwidth.

How to effectively use this combination of network state
information available to base stations — partial ‘locafoirma-
tion such as instantaneous channel states from users oh a fas
timescale, and ‘global’ information such as channel diafis
and accumulated queue lengths from other base stations on
to maximize throughput now becomes a
challenging problem.

In this paper, we consider a collection of base stations
each serving an exclusive set of users in a time-slotted
system. Transmissions to interfering users collide if dcied
simultaneously. In every time slot, each base station picks

Next-generation cellular systems like 3GPP Long Tersubsetof its users and observes instantaneous channel states

Evolution (LTE) [1] are based on the technique of Orthoder those users in every time slot (thus, the base station
onal Frequency Division Multiple Access (OFDMA), andhas partial local channel statg and together with globally
promise high-speed packet-switched services for a vadety shared information (e.gdelayed queue length state, channel
applications. In a typical downlink of such a system, basgatistic§ from other base stations schedules users in that
stations enable multiple mobile users to share common @tansubset. We first characterize the network throughput region
resources by assigning them different frequency bands wrder such a scenario. Using the key observation that common
‘tones’. Base stations obtain channel quality measuresnestate information provided by global delayed queues allows
from the mobiles attached to them on a timescale of abadupling of decisions, we demonstrate the optimal way of
every 2 ms; this helps them exploit local channel fluctuatiomising this coupled state in a multi-base-station scenar a
to better schedule data transmissions to the mobiles. develop a provably throughput-optimal scheduling aldyonit

A multicellular environment with several base stationslo the best of our knowledge, this is the first throughput-
however, is prone to suffer from intercell interference.engh optimality result using the information structure of Iocal
transmissions to neighboring mobile users assigned the sdimited instantaneous channel state and global delayedeque
frequencies in different cells collide resulting in loss ofengths. We also examine how the packet delay performance
throughput. Static frequency planning among a collectibn of such an algorithm is related to the amount of delay in
base stations helps reduce interference between such ufissshared queue length information, by way of analysis and
at the cell edges. Yet, even after frequency planning astinulations.
allocation, a significant amount of interference can persis ] o
between users. The fact that the base stations are connefred!&in Contributions
through a common wired backhaul with low-bandwidth (which The main contributions of this paper include the following:



1) We derive the throughput region of a system witkion has been studied in [19], albeit under the assumptiah th
coordinated scheduling using limited and local channelcentral scheduler has instantaneous queue states oégd| us
state information. Moreover, we show that the region caand each base station has complete channel states of its user
be parametrized using a simple class of static schedulipe authors use the central scheduler to determine (based on
policies based on binary decision vectors for each usstatistics and instantaneous queue state) which of the base
in which each base station always picks a fixed subsstations are allowed to transmit (ON base stations) andiwhic
of its users and for each user in that subset decidesai® OFF in order to minimize interference, following which
schedule the user or not schedule it depending solely each ON base station schedules users based on their channel
its instantaneous channel state and a fixed binary vecttate information. However, the authors do not investigate
associated with it. gqueue-stability or throughput-optimality. Further, as wil

2) We develop a two-tier distributed, throughput-optimalee from our analysis, in a distributed setting where there i
scheduling policy in which the base stations first corno central coordinator, the optimal scheduler in fact alow
municate queue lengths of their respective users to eaddllisions between transmissions from multiple base atati
other once ever{’ time slots wherd is a fixed integer. (roughly because due to channel randomness, it is bettex to b
The base stations then use this information along witbptimistic” under some situations and attempt transroissit
knowledge about channel correlations and interferenaebase station with the “hope” that a contending base station
patterns to pick their user subsets and make schedulictgannels will be poor, and hence the contending base station
decisions with limited local information in the neft will not attempt to transmit).
slots. In [20] the authors propose a gradient power-control algo-

3) We explore the relationship between the inter-basethm to mitigate intercell interference and dynamicalyuse
station coordination delay, i.e., the ‘staleness’ of exrequencies. [21] studies scheduling algorithms to eiffebtt
changed queue length information, and the systeafiocate subcarriers or frequencies to users in a multicell
packet delay performance, and present analytical aadvironmentto maximize the sum throughput of the system. In
simulation results to illustrate the degradation in thg2] the authors assume coarse-grained communicationgmon
latter due to an increase in the former. base stations along with a dynamic user model in which users

enter and exit the network randomly, and extensively siteula

B. Related Work scheduling strategies with the main metric being file transf

Throughput-optimal scheduling for wireless networks datelelay. None of these works, though, examine the importahce o
back to the pioneering work of Tassiulas et al. [2], [3Jusing global information via delayed queue lengths andlloca
Since then, there has been much work on throughput-optiniédtantaneous channel state information to stabilize gsiand
wireless scheduling, both with a central scheduler havimghieve throughput-optimality.
complete network-state information [4], [5], [6] and diktrted Finally, there is work from a physical layer perspective
implementations [7], [8], [9], [10]. Further referencesndae to maximize sum rate. However, it does not address either
found in [11], [12]. Scheduling with partial or limited cha@l delayed/limited information or stability. The reader isereed
state information has been addressed in [13], where infreiquto [19] for a comprehensive survey.
channel state information used to schedule, and [14], [15],
[16] where scheduling is studied with partial or inaccurate Il. A MOTIVATING EXAMPLE
observability of the aggregate channel state. In [17],,[1/83 In this section, we introduce an example to help understand
authors develop throughput-optimal algorithms using ykla how global coordination among base stations can improve the
channel-state information with channel state and topologfyroughput region of a wireless system.
uncertainty in an ad hoc network setting, where channels are
independent across users. Our results differ in two wayst,Fi e o
the authors in [17], [18] do not consider the setting as is thi 22 -~ -~ With coordination, global info
paper where onhflimited channel-state is available at base 0.159)
stations (in the ad hoc network setting where neighborhoods
are small, complete channel state is available, which igheot
case in 4G base stations). In addition to the challenge of the
subset selection problem, the key conceptual difference an
contribution of this paper is that this subset selectionuogc
through the base station coordination, as we further explai y
below. Second, our results in this paper allow channels to be (1.55,0)
arbitrarily correlated across users. This combinationroitéd
and correlated channel state leads to different tradeawfts Fig. 1. Capacity regions under different scheduling infation structures
algorithms.

In the multiple base station setting, two-tiered interfex@  Let us consider a scenario involving two base stations and

mitigation through load balancing and base station coardirtwo wireless users: base statibn serving usem;; and base

SRImeal (0.9,1.1)
e
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stationby serving usery in discrete time slots. Assume that Qs(t)
the joint channel states of the two users are eitfieR) or
(2,1) (each with probability 0.45), of2, 2) (with probability Shared backbone oo Ol=—x
0.1),
transmissions to the users collide if scheduled together. A,
every time slot, each base station decides whether to skEheduw —11J
its respective user or not depending on the structure ofar&tw | ,,
state information it possesses. We consider three possible @
structures of network state information:

1)

2)

3)

independently in each time slot. Also, we assume that

First, assume that at every time slot, each base station h Interering channels o !
knows only its own user’s current channel state (i.el, ﬁ ﬁ
the base stations havecal channel state informatign
In this case we can show that the throughput region is

enclosed by the solid curved lines connecting the points Fig. 2. Coordinated scheduling with local information
(0,1.55), (0.9,0.9) and(1.55,0) in Figure 1 (essentially,

this is equivalent to saying that each base station decides

independently to schedule its own user with some fixed I1l. M ODEL AND DEFINITIONS

probability). The first (resp. third) point represents the s section deals with establishing notation and definitio

case when usen; (resp.uy) is always scheduled andpocessary for developing a formal model for coordinated
the other user is always not scheduled. The second pQjfjfe|ess scheduling.

represents the case when each user is scheduled if and

only if its observed_ channel state is 2. . Network model:Consider N base station$,,...,by
Next, assume again that each base station knows préhing to send packet data tof usersu,,...,us on the
its own user's current channel state, but the base statigfiSe|ess downlink. Each user is associated with a unique bas

can additionally ‘talk’ and exchange their queue 1engi,iqn from which it can receive data; we ugéh;) to denote

values or other auxiliary information (but not their users o sat of users associated to base statiorand B(u;) to
J

current channel states) before deciding to schedule thgit, t the base station to which user is associated. We

respective users. For instance they could toss a commgt}, e the set of base stations and the set of users byd
coin and make their scheduling decisions depending respectively

the outcome of the toss. This is the situation in whic

the base stations havecal channel state information  Apjyai and channel modelTime is slotted into discrete
W'th global coordinationand we see that the thr‘?thpuhnits. Data packets destined for usgre U(b;) arrive at base
region gxpgnds to the convex hull Of, the earlller threé:“tation b; as a stationary nonnegative integer-valued random
points; intuitively collaboration allows timesharing rocessA, (t),t = 1,2 For simplicity we will assume

X , : ) ()t = 1,2,....
Finally, if we assume the base stations can Coorqkat 4.(1) is independent and identically distributed (iid)

nate completely, i.e., get to know both users’ channsller time slotst with E[A;(1)] = X;, A;(t) < Apax a.s..
states before making scheduling decisions (i.e., the base ’ I =

stations haveglobal channel state informatijn the Let A() = (A1(t), ..., An(1)). The packets get queued if
throughput region expands further to the convex hull 6lf'|ey are not_ |mmed|a\_tely transmltteq. The f:hannel _betvveen
the points(0, 1.55), (0.9,1.1), (1.1,0.9) and (1.55,0). useru; and its assoma;ed base station is time-varying; -we
This is because the second (resp. third) point can ggnote the corresponding chanhel state random process by
achieved by schedulingnly useru; (resp.us) when C;(t),t =1,2,..., where for anyj, C;(t) takes values in a

its channel state is 2 - the advantage in knowing tH’Eﬂte setC C Z*. We explicitly assume that consists of the

other user's channel state comes from the fact thatV@UeSct < c2 < - < cx = Cnax. The aggregate channel

A . .
base station can ‘back off’ when both channels hawate process’(t) = (C;(t) : j = 1,..., M) is assumed to
state 2. beiid over time slots. Note however that tbbannels can be

correlated across userd.et 7(-) denote the probability mass

w o s = Wireless channel Ug

This example illustrates that there can be a significant dfinction of the aggregate channel stat (¢),...,Cu (1)),
ference in throughput depending on whether local or globiat., 7(r1,...,7a) = P[Cy(t) = r1,...,Cr(t) = rar], With
channel state information or a combination of both is used. € C for all i. Such a wireless system is shown in Figure 2.
With this as a starting point, we develop a formal model of

coordinated scheduling with local and limited channelestat Queueing modelEach base statioly maintains one packet
information and seek to understand what the throughput-cap@eue for every usen; associated with it, into which data
bilities of such a system are, and what scheduling strategackets destined to; get buffered if they are not immediately
can achieve maximum throughout. transmitted. When user; € U(b;) is successfully scheduled



for data reception at time slot(which we denote by letting a

binary random variablé,(¢) = 1), up to C;(t) packets can
be drained from its packet queue. Thusjf(¢) denotes the
gueue-length process for the packet queue of usethen the
evolution of @; can be described as

Q;(t+1) = max{Q;(t) — D;()C;(t),0} + A;(t). (1)
Another form of (1) which we will use later is
Qj(t+1) = Q;(t) + A;(t) — E;(1), )

where E;(t) 2 min{D;(t)C;(t),Q(t)}. Let Q(t) represent
the vector of queue length®):(¢),...,Qa(t)) at time slot
t.

Scheduling modelor each base statidn, let a collection
of subsets oft/(b;) - denoted byO(b;) - be fixed. These

To summarize, every base statidinst picks a subset of
its users to observe their current channel states, depgndin
on queue lengths, channel states, arrivals and auxilidoy-in
mation (global information) in the last’ slots. After having
observed channel states in that subsateitdecides whether
to schedule those users depending on their current channel
states (limited local information) and the global inforioat
it already has. We remark that this scheduling model capture
two important aspects:

1) Global coordination:By letting the base stations pick
subsets of users depending on the system history along
with common randomness in Step 1, we essentiafly
the base stations collaborate (using a common backhaul)
to decide which subset each chooses for the current time
slot This is a key feature in the scheduling model we use
- instead of each base station deciding which subset of its

subsets define which user channels the base station cawebser ~ USers’ channels it wants to locally sample independent of

and schedule in each time slot.

other base stations, it is allowed to ‘loosely coordinate’

We model coordinated scheduling with local and limited ~ With other basestations to choose its subset so as to
channel state information in the network as follows. At any ~ further mitigate interference and improve throughput.

time slot ¢, let the history of the system be denoted by

the random vectorHr(t) 2 Qi —=T),...,Q(t),C(t —
T),....,Ct=1),A@t = T),...,A(t — 1)) whereT > 1 is

a fixed integer throughouttd(t) represents the cumulative

gueue length, channel state and arrival history for theipusv

T time slots. In addition assume that there exists a sequenc

of independent discrete random variab&&), t = 1,2,. ..
which can be thought of as a source @@mmon, auxiliary
scheduling information available globally to the baseisiet

Let the state of the system be defined h¥(t) 2 (Hp(t) :

G(t-T),...,G(t)), i.e., a concatenation of the system history

and auxiliary information history for the last time slots.

This is essentially the information that we allow each base

station to know at the global level. For a random variakle
and ac-algebraA, we write X € A to mean thatX is A-
measurable. Ascheduling policyis defined as the following
two-step procedure carried out at each time slot

1) Each base statioly first picks a subsed;, (t) € O(b;)

The common auxiliary informatiofi(¢) represents any
other additional form of information that the base sta-
tions could use to decide which subsets to pick. Simple
examples could be time-sharing depending on the time
index, or time-sharing depending on a common ‘coin
toss’.

5) Limited and local information: Each base station
must commit to choosing a subset of users in the
first step whose channel states are then revealed to
it, which models the fact that every base station
has limited information about the channel states of
its users. Further, each user whose channel state is
observed in Step 1 is scheduled depending on common
shared information and that users’s current channel
state. This says that the instantaneous channel state
information available to the base station for scheduling
is local - instantaneous channel statesottier users are
not availableto a base station while scheduling its users.

of its users depending on the system state (SyStemInterference modelWe model interference in the network

history and auxiliary information history). Formally,
write Oy, (t) € o(Xr(t)).

2) Let the chosen subset of users for at time ¢ be
Oy, (t) = {uj,,...u;, }. For every usery; in the

chosen subséd, (t), base station; either schedules the
user for data transmission or not by setting a decisi
variable Bj, (t) to 1 or O respectively. The remaining

Weby treating the aggregate channel between the base statidns

users as aollision channeli.e., we associate to each usgre

M its interference sefZ(u;) C M, with the understanding
that useru; cannot receive any data packets in a time slot
in which a useru, € Z(u;) is scheduled (we assume that

CU} ¢ Z(u;) for any j). We write this formally as

users associated tg are necessarily not scheduled, i.e., D;(t) = B,(t) H (1 — Bg(t)). (3)

B,(t) = 0 for all usersu; € U(b;)\ Oy, (t). Furthermore,
for each usert;, in the chosen subsél, (¢), we require
thatB;, (t) € o(Xr(t), Cy,(t)), i.e., the final scheduling
decision for each user can potentially depend (9n
system history(ii) auxiliary information in the pastjii)

whether the user is or is not in the subset chosen by

its base station, and most importan(ly) its currently
observed channel state.

up €Z (uj)

With this, the maximum number of packets that can be drained
from the queue for usex; at timet becomes

Fy(t) £ C;(t)Dj (1) @)

We remark that this collision interference model together

with the ‘GO/NO-GO’ type scheduling model described



earlier models a rudimentary ‘binary’ power-control scleemB. Static Time-sharing Policies

for users in the network. Extending the concept of an SSS policy to include a com-
bination of SSS policies leads to the notion oStatic Time-
Objective: For the setup described above, note that undgfiaring(STS) policy. An STS policyP is specified by a finite
any scheduling policy, the system stake(t) is a discrete set of SSS policie$P; )<, together with a corresponding set
time Markov chain. Let us assume that this Markov chaigf nonnegative weight$e; )<, that sum to 1. At each time
is irreducible and aperiodic. We say a vector of arrival satg|ot ¢, independent of previous time slots, all the base stations

A= (A1,...,Au) with A; > 0,i = 1,..., M is supported together decide to schedule according to the SSS péticy
by a scheduling policy ifX1(t) is positive recurrent under with probability ¢;.

the policy when the packet arrival rates at the user queues o - )

are E[A;(t)] = \;, j = 1...,M. This corresponds to the C- Characterization of the Stability Region

intuitive notion that the queues in the network are drained Towards an explicit characterization of the stability megi
as fast as they fill up, i.e., they astable The goal is then let us define theate vectoru” associated with an SSS policy
to characterize thestability region which we define to be P. For each uset;, as in (4), let

the set of all vectors of arrival rates\; : j = 1,..., M) N

supported by at least onescheduling policy. In addition, we Fjp(t) = Cj(t)Df(t),

wish to investigate whether there existssiagle scheduling
policy which can supporanyarrival rate vector in the stability
region.

where Df(t) is simply D;(t) from (3) but with the su-
perscriptP indicating explicit dependence on the scheduling

policy P. Next letuP £ (¥, ..., u%r), where
IV. THE STABILITY REGION » »
py; = E[F; (t)] :Z m(ri, ... ra) 1y Bi(rg) x
In this section, we explicitly characterize the stabilig- r T
gion of a system of base stations that schedule users with
coordination and limited local channel state informatidve H (1= Bi(r))] - (5)

first introduce a simpler class of scheduling policies theg u
just current local channel state information to make scliegu N . )
decisions, and show that the stability region can be desdrib INtuitively, ;7 is the vector of long term ‘service rates’
using just these policies. In other wordsyy scheduling policy that scheduling using the SSS poligy delivers to the flows

can be thought of as mimicking some policy in this speci#? @l the users in the system. In a similar mannerpifis
class, in the sense of long-term service rates. an STS policy in thatP is a combination of SSS policies

(P1,...,Px) with weights ¢1,...,dx, we define the rate
vector ¥ associated witlP as

up €L (uj)

A. SSS Policies .
We introduce a class of ‘simple’ scheduling policies which u;’ 2 Z ¢iufi. (6)
we will call Static Service Spli{SSS) policies, inspired by i=1

[4]. Unlike the standard SSS policies used in literature in Essentially, the rate vector of an STS policy is just a convex
scheduling with complete channel state information, h@wev combination of the rate vectors of its component SSS palicie
our SSS policies respect the two-tiered scheduling setup in From the way SSS and STS policies are defined, they
troduced in this work, and are seen to be specifications gifvays choose fixed subsets and schedule users in those

(i) fixed subsets that base stations must always pick(@hd subsets using fixed binary decision vectors. Thus they are
fixed ‘binary vectors’ per user that dictate for which ob&etv 3 class of valid scheduling policies. Hence, any arrival

channel states the users must be scheduled. rate vectorh = (Ay,...,\y) With \; > 0, = 1,..., M
Formally, an SSS policyP is defined by the tuplé® = dominated by such a vectqur}’ must be supported by some
(Wh,...,Wn,z,...,zum), Where for eachi, IV; is a permis- scheduling policy, namel§ for one. Extending the argument,

sible subset of users for base statignand for eacly, z; is any arrival rate vector within the convex hull of all STS
a binary decision vector of lengtl€|. Equivalently, we will rate vectors must also be supported by some schedulingpolic
think of z; as a map fron€ into {0, 1}. Scheduling using the

SSS policyP is carried out as follows. At each time slagt Let A
A P ;
1) Each base statiob; picks afixed subsetO, (t) = W; R =int Co({x” : P an STS policy)
of its users to observe channel states for. be the interior of the convex hull of the set of rate vectors

2) All the users forb; not in W; are not scheduled, i.e., corresponding to all possible STS scheduling policies. The
B;(t) = 0 for such users. For a user; in Wi, if its  heyristic argument in the previous paragraph indicates®ha
observed channel state @;(t) = c, u; is scheduled if js definitely an inner bound to the stability region (rechktt
and only ifz;(c) =1, i.e., B;(t) = z;(c). the stability region consists of all those arrival rate vest



which can be supported by some scheduling policy). The Chargle&)smte e
following result formalizes that in fact, the stability ieg 30 1 0 0 1
cannot be larger thaR: Cs3(t) 0o 1 o0 1
State

Theorem 1. The stability region of the system 1, i.e., a probability i 3 3 3
vector of arrival ratesA = (Ay,...,A\y) with \; > 0,7 =

1,...,M is supported by a scheduling policy if and only if TABLE |

CHANNEL STATE DISTRIBUTION FOR3-USER EXAMPLE

AER.

This result says that any scheduling policy which stabslize

the system for a certain choice of arrival rates effective I .
éwg—term throughput rates with just users and us is the
S

aded region shown in Figure 4. In this figure, the extreme
goints (,0) and (0, §) are the service rates when users
gndug are always scheduled for service respectively, with the

behaves like a suitable time-sharing combination of S
scheduling policies, in the sense of the long-term senaoesr
it is able to provide. It will be useful when we are intereste
later in showing that a particular type of scheduling polic
is throughput-optimal. The proof of this theorem is similar; ™ :
in spirit to the ones in [4], [17], [18] used to characterizes’ 3) repre_sents the service rates Whgn usgrand us are.
the stability region, and intuitively relies on the fact thea scheduled .'f and only 'T their respective channel state_|§ L
system stable under a policy must have long term fractioﬁ%N)' In this case there is a loss of throughput due to collision
which can be used to construct STS policies yielding tHEnen both channel stat_es are 1 .
same service rates. Refer to Appendix A for the proof. . Remark:The dotted .I|ne In Figure 4 represent.s the addi-
tional throughput obtained when both base stations can see

the channel states dfoth «; and u, before scheduling. This
D. Example: Stability Region for a Three-user Two-baséelps reduce collisions when both the channels have state 1

ther user in each case never scheduled. The extreme point

station System and hence increases throughput.
2
5 15
" Shared backbone gj_(ﬁL 3 0.8) s (éé)) e
A —11T] :
@(t)
Interfering Ehannels - g (1%‘0> A

Fig. 3. Stability region example Fig. 4. Stability region for users; andus

To illustrate the concepts and result of the previous segtio Similarly, we can compute the set of service rates when
let us derive the stability region for a simple case of twoebaggse stationb, always picksus. The set of achievable
stationsb; andb, serving a total of three usefsii, u2,us}.  |ong-term throughput rates with just users and us is the
uy is associated td; whereasu; and u; are associated to shaded region shown in Figure 5. Here again, we see three
bo. Channel states for all the three users are either O Ore)ltreme points on the ‘northeast’ boundary of the region’
(ON/OFF channels). Two users interfere if and only if theyyaying similar interpretations as in the previous figuresaal
are associated to different base stations, Z€u,) = {u2}, the dotted line represents throughput gained if both base

T(u2) = I(us) = {u1}. stations know the joint channel states @f and us before
scheduling.
Let us assume that base statipncan pick at most one of
its users at any time slot to sample, i@(b2) = {{b2},{bs}},  Theorem 1 now tells us that the stability region of the sys-

while O(b1) = {{ui}} trivially. For simplicity, we let the tem can be found by taking the convex hull of the two ‘sub’-
joint channel state distribution of the aggregate channge regions we found earlier. This is depicted graphicatly
(C1(t), C2(t),C3(t)) take one of four statesi,...,ss as the shaded region in Figure 6.

shown in Table I:
V. THROUGHPUFOPTIMAL SCHEDULING

Let us compute the throughput region of the system with This section focuses on developing a throughput-optimal
the given channel state statistics, according to Theoremidformation exchange and scheduling policy in which baae st
First, consider the case when base stabipalways picksus tions exploit infrequently exchanged queue length infdioma
to sample in the first scheduling step. The set of achievalitem other base stations, together with instantaneougdimi



2\
’ problem:

M
13 E §
(0,3 b (3‘{&) max q; 77(7"17 cee 7711\1) X
A1 SbyserSbys -
874 ‘(1’) 21y ZM Jj=1 T1seTM

TjZ5 (Tj)]luj €Sp(u;) <

(:%10) AL H (1 - Zk(rk)]lukESB(uk))

ur €L (uj)
(7
Fig. 5. Stability region for userg; andus st S, € O(b-) i=1 N
-t i ) T oLy e ey 9
zj:C—{0,1}, j=1,...., M.
o Let(S;,...,S;, %1, -, 2y) be achoice of arguments

that solves (7). For the next' time slots, i.e.,t =
KT,....,kT +T — 1, each base statiob; picks S; as
its chosen subset of users, and schedules a wsén
that subset at time slatif and only if 27 (C;(?)) = 1.

In other words, the policy? works as follows:

1) Each base station accesses the global vector of queue

lengths everyl” slots.

2) The global vector of queue lengths time sidt is used
to choose a ‘temporally local’ SSS policy for the next
T time slots. The subsets and binary decision vectors
for this local SSS policy are chosen in such a way
as to maximize the sum of service rates delivered to
each queue weighted by its corresponding delayed queue
. . . , length
local information about their users’ channels, to guarantq_he following theorem is a key result in this paper, and

stability of the queues for any arrival rate in the stabitigion ) ) L
R. We also show that in certain special cases of our netwo?ﬁtfdb“Shes that the sched_ulmg poliey s in fact throughput-
timalfor any value off’, i.e., it can support any arrival rate

model, the throughput-optimal policy can be considerably. - . '
simplified in form. §P|n the stability regiorR:

Fig. 6. Stability region for all three users

Theorem 2. For any value ofT, the scheduling policyPr
is throughput-optimal, i.e., for an arrival rate vector € R,
the system stat&r(t) is a positive recurrent discrete time
Markov chain undefP.

The proof uses Lyapunov-function type arguments similar
to the ones in [3], [13], [17], additionally incorporatinbet
effect of the queue delay parametgr Refer to Appendix B

. . _for the proof of the theorem.
Consider the following queue-length-aware, collabogativ

scheduling policy: B. Special Cases
The scheduling policyPr introduced earlier was shown to
be throughput-optimal under the network model described fo

A. A Throughput-optimal Policy

Scheduling policy Pr: this work. The network model is quite general in the sense of
modeling scheduling with global system history and limited
« At every T-th timeslott = kT wherek € Z+, local channel states in a system with fading channels and

inter-channel interference in the form of data collisiois.
1) Each base station broadcasts the vector of quewkat follows, we consider some special cases of the network
lengths for its users to all other base stations. = model and remark that the proposed scheduling poly
2) Let the global queue length vector at time stdt  reduces to ‘simpler’/known scheduling policies; in thisythe
be Q(kT) = ¢ = (¢1,--..,qm). Each base station scheduling model examined in this work naturally geneealiz
b; then solves the following (common) optimizationseveral ones in the scheduling literature.



1) Interference-free channeld¥hen there is no (or practi- The following result states that the average queue lengths
cally negligible) interference or collision between anyrgd in the system grow at mosinearly with the information lag
channels/users in the system, i.e., wiEén;) = () for all users T'. By Little’s Law, the average packet delays are linear in
u;, we see that the optimization suggested by (7) becontee average queue lengths for fixed arrival rates, and hence
separable in the users, and hence across base stations. Timeist also grow at most linearly i. Though it is a direct
is no need for collaboration among the base stations; at timensequence of the proof of Theorem 2, we state it as a
kT each base statioby picks the subselV; of its users that separate theorem for its significance.

maX|m|zest:uj€Wi @;(kT) E[C;(kT)] and for the next’ Theorem 3. Let A € R be the average arrival rate vector

fime s_Iots schedules 6.1" the users " that subset. . for the system, and le”” () denote the queue length for
An interesting case is when there is interference only withi ! J X

. . . userwu; at time slotr when the arrival rates are\ and the

users associated to the same base station, and in awayyhats%ﬂedu"n olicy iPr. Then,E[QP" ()] = O(T)

two such users always interfere. In this situation, in addit 9 policy 1577 g N '

to picking a subsetV; as earlier, each base statibnin the The proof follows from the proof of Theorem 2. It uses

second step uses thax-Weight/M-LWWIFEcheduling rule [4] Lyapunov techniques similar to the ones in [11] to establish

to schedule a user; € W; that maximizesQ);(kT)C;(kT). delay bounds for opportunistic scheduling. The reader is

This is an earlier result presented in [15]. referred to Appendix B for details.
2) Fading-free symmetric system, singleton subs€tsn-
sider the case when every channel state is constant over time VII. SIMULATION RESULTS
and interferes with every other channel, i.€;(t) = f; In this section we present simulation results that illustra

irespective oft andZ(u;) = M — {u;}. In addition, if the the impact of the coordination dela§’ and system load
joint channel state distribution is assumed to be symmetrige., how close the arrival rate vector is to the boundary of
e, m(ry,...,ma) = 7(ro(1); -, To(ar)) fOr any permutation the throughput region) on the average delay experienced by

o on M letters, and the observable subsets for every baggiving packets.
station b; consist of all the singleton users, then each base
station merely has to pick a user at every time slot to scleedul
or not. In this case, it can be shown that the pofigyreduces A. Simulation Setup
to all the base stations together picking the user with trgielia The network model we consider for the purpose of simu-
pro<tjuct. Qf q#eue_ltle(ngththand (cons{anttr)] cf;anneltstate n _ﬁgﬁon is the one presented and discussed in Section IV-D. As
fgs err;{ mt € ?Ctp'lc Ing the user wi € longest queue I%er the throughput region of the system shown in Figure 6,
roughput-optima _ ) consider the rate vector = (s, 1, =) which is the midpoint
3) Single independent user per bqse stat|mnn5|der_ the of the edge joining the corner poin(%, %70) and (0,0, %)’
case when every base station has just one user, with evgryy on the boundary of the throughput region. For a scaled
user’s channel state independent of every other usersnéhan,grsion \. — (1- 6)5\ we say that\, represents a ‘load’
state. This is essentially the model treated in [17], thiseti ot | _ . {5 the system, analogous to the terminology used in
viewing each base station-user pair asupfink user with the - jescribing load in aM/M/1 queue. Arrivals are generated in
additional restriction that channel states &tk across time .. iid Bernoulli fashion and scheduling is performed using
slots. _ _ o the T-slot throughput-optimal policies developed in Section
In this case, with some manipulation, it is not hard to shoyy e examine the average delay or waiting time experience
that the proposed throughput-optimal scheduling policthwipy, hackets that enter the network, in the following two cases
T =1 is exactly thethresholdscheduling policy shown to be
throughput-optimal in [17], i.e., if the optimum binary tec B. Effect of Coordination Delay
z;(t) for userj resulting from (7) has:;(t)(ck) = 1, then
z;(t)(cr) = 1 for all epr > ci. In other words, each user
u; sets a threshold;(¢), and decides to contend to transmi
(uplink) data if and only if its channel state at timés at least

For five different loads to the system (0.55 to 0.95 in steps of

.1), the impact of varying the coordination internzalfrom

to 100 on the packet delay is as shown in Figure 7. We
observe that the growth in average packet delay is linedr wit
n; (t)- T which is in accordance with the result of Theorem 3, since
by Little’s law the average delay in the network is propartb

V1. PACKET DELAY PERFORMANCE to the average queue lengths for a fixed net arrival rate.

For everyT, we saw that the scheduling poli®r in-
troduced in the previous section is throughput-optimale TH-: Effect of Load
parametefl’ can be interpreted as a lag or delay in the baseFor five different values of coordination intervdl (= 1,
stations exchanging queue length information. It is natiwa 7' = 10, 7' = 50, T'= 100 and7T" = 150), we plot the average
expect that with increasing la@, the queueing delays seerpacket delay in the system versus load increasing from 0.5
by incoming arrivals grow. In this section we show that thitowards 1. The increase in average packet delay is observed
is indeed the case by way of an analytical bound. to be particularly severe as the load approaches 100%.
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put, and(ii) refining the packet delay estimates in the system
using large-deviations or heavy-traffic analysis.

APPENDIXA
PROOF OFTHEOREM 1

For showing necessity, assume that there exists a schedul-
ing policy P which supports the arrival rate vector =
(M,..., ). This means that undeP, the vector X, (¢)
is a positive recurrent discrete time Markov chain. Conside
this Markov chain in its stationary regime (arbitrarily st
approximations to the stationary regime will also suffice).

We will need the following additional notation for the proof

1) LetO(t) 2 (Op, (t),...,0py(t)) be a representation of
the collection of user subsets that each base station picks

. to observe at time slat

a
g
T

Average Packet Delay

Wi, ..., Opy () = Wi, Xp(t) = 2.
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6 2) For user subsetdVy,..., Wy, and z in the sup-
o A
&0 port of Xp(t), let éw,,  wya(t) = POy, (t) =

A f 3) Recall that the scheduling decisioB;(¢) for user
" . « o u; € U(b;) is a function of system state{r(¢),
o P the subsetO,,(t) chosen by its server (since users
: 2 outside this subset are not scheduled), and current
oot channel stateC;(t). To indicate this, we explicitly

write B;(t) = f;(XT(t),Obi (t),C;(t)), where for ev-
eryj = 1,...,M andt = 1,2,..., fi is a func-
Fig. 8. Plot of average packet delay with load for variouss|y tion that maps(Xr(t), Oy, (t), C;(¢)) into {0,1}, with

f;?(XT(t), Oy, (1), C;(t)) = 0 wheneverj ¢ Oy, (1).

VIIl. CONCLUSION Let u; € U(b;). To begin, we note that

In this work, we studied multi-base-station wireless down-
link scheduling with global coordination and limited, lbca
channel state information. We characterized the netwak st

bility region under this information structure, and deyed a Aj = E[4;(t)] = E[E;(t)] < E[F;(t)]
throughput-optimal distributed scheduling algorithm ihigh

it is sufficient for base stations to share delayed queuethsng =E |C;(t)B;(t) H (1 — Bg(t))

on a slow timescale to pick appropriate subsets of users, and up €T (uy)

use the locally observed channel states of these users @ mak

good scheduling decisions. In this way, loose coordination _— Z ... wa(OE | C;(1)B;(t) x

between the base stations in the form of delayed queue kength Wy W
helps solve the subset-selection problem at each basenstati

and, together with the right rules for scheduling users gs¢h _

subsets, achieves throughput-optimality. We also ingatd [I -B®)]o®=,.... Wy),

the impact of the delay in shared queue length information on uk €L(ug)

the average packet delay performance of the system. Future

directions of research includ€i) considering greedy, low- Xr(t) == (8)

complexity scheduling strategies and evaluating themugh-



Evaluating the expectation gives Proof: Consider two cases:

e Q;(t) > ST Fi(7): In this case, according to (1),
E|C;t)B;(t) [ (1 -Be®)|O@) = (Wh,...,Wy), both sides of (10) are equal.
up €L (uj)
e Q;i(t) < T Fi(7): Forthis case, let € {t,...,t+
Xr(t) = T—2} be the first tlme tha); (¢')—F;(t") < 0 (if no such
time exists, therQJ(tJrT) Q;i(t) =S Ei(r) +
B - - ST A (1) < T A5 (7) and we are done). We
= Y PlOW) = (r1,..ran)|O() = (Wi, ..., W) x e o have
Ty, "M
t+T—1 t+T—1
E | Ci(1)B;(t) H( )(1 ~ By(1)) (T < Y A< Y Ay
ur €L (uy =t =t
O( ) = (Wl,...,WN),XT(t) Z.I',C(t) = (Tl,...,T‘M)]
_ Z m(re,. .. ,rM)rjfj(:c,Wi,rj) which finishes the proof.
Tlyeens M [
(1= frlz, Wagu)» %)), (90 Next, let us introduce for the Markov chaiiX(t))s2, the
ukp €Z(uy) guadratic Lyapunov function
since C(t) is independent ofO(t). Using (9), (8) finally
becomes M
A
=
Aj < Z ¢W17~~~;WN§$(t) x Jj=1
W1 ..... WN,I
e T In what follows, we will bound the expected drift in this
Z (re, - fi (@, Wi, ry) X Lyapunov function over an interval of’ time slots when
T the system operates under the poliy, and show that the
. expected drift can be bounded negatively away from zero.
H (1 - fk(xa WB(uk)v Tk) Consider
up €T (uy)

The fact that this equation has the same form as the one AL(X7(kT)) o L(Xp((k+1)T)) — L(X7(KT))
expressed by (5) and (6) for the long term rates of STS
scheduling policies, together with the fact that

Z ¢W17~~~;WN§1(t) =1,

E'qg

(QF (kT +T) - QF(KT))

[

=1
Wi Wz (@) M ET+T—1 2 ET+T—1 2
. < . . _
shows that the vectok = (\1,..., ) can be dominated = Z; ( _XK:T FJ(T)) + < _ZKZT AJ(T))
by a convex combination of rate vectors of SSS scheduling = o T Tﬁ
policies. This finishes the proof of the theorem. | .
2Q;(kT) Y [Fi(r) — A;(7)]
APPENDIX B T=KT
PROOF OFTHEOREM 2 M
- , - <Y | T°C + T AL
To avoid cluttering up the notation, we prove the theorem = . max max
assuming that each base station can pick all its users in the 7=!
first scheduling step, vizO,, = {U(b;))} ¥ i = 1,...,N. KIT-1
We remark that the extension to the general case is quite 2Q;(kT) Z [F () — A;(7)]
straightforward. T=KT
(TQCI?ndX + T2Ar2ndx)
First, we will bound the amount that any queue in the system KT+T—-1
can grow inT time slots, using (1): QZQj(kT) > [F(m) = A1),
j= T=KT
Lemma 1.
"= "= here (a) follows from the fact that ifV,U, , A
t4+T) < Fi( Ay where (a) follows from the fact that if V.U, u, A are
Q;(t+T) max{ Z }+ 2 nonnegative real numbers with < max{U — u,0} + A,

(10) thenV? < U? + 2 + A% — 2U(u — A). Taking conditional



expectations giverj)(k:T) =q=(q,...,qm) yields Lemma 2. For the static time-sharing policPrs, we have

quup” qu (KT)| Q(KT) = q] | <0.
(11)
KT+T—1 Proof: With the long term rates of the STS poli@;s
2 qu Z [F;(r) — A ()]| Q(kT) = satisfying (13), we can write
T=KT
M Prs _
L MT? (R 4 A20) + 2T gy, (Z am, qu S (kT)| Q(KT) = Q]>
j=1
M kT+T—-1 .
—23 G| Y B(r)| QUT) = (Z% Sioi 3 [wlriran) e 2i) X
Jj=1 T=KT i= 71, A
M
= MT? (Chax + Anax) +2T ) 4 II a-zew) qu 5 (K1) Q(KT) = q
j=1 up €L (uy)

.....

- 2ZQJTE (KT Q(RT) = g, (12) ( max (Z q; Z [ (ST SV RY z;(r]) X

where the last line follows because by definition, the

scheduling choices of the policfpr from time kT upto 1—Zi(r GE[F;(kT)| Q(kT) = ¢

kT +T — 1 depend only on the queue lengif$kT) at time Ukel;[(u )( k(i) Z ’ NIQT) = dl

kT and the optimal binary vectors, ..., z;, computed at ’ (15)
time slot k7', and are thus statistically identical from timeW Iso h by the definii ¢ d scheduli
KT upto kT + T — 1. e also have, by the definition of our proposed scheduling

policy via (7), that

By hypothesis)\ = (\1,...,Ax) € R. Hence there must X
exist a smalle > 0 and a static time-sharing schedulingZ% i (KT Q(KT) = g
policy Prs such thatu”7s = (1 + ¢)\. Let Prs be a time- 77!
sharing (Bernoulli) combination ofi SSS policiesP; with M .
selection probabilitiess’ respectively,i = 1,...,n, where = qu Z w(rs )z () H (1= z(rk))

Py = (Wi,...,Wi,zi,...,2%,) (the superscript indexes e uk €I (u;)
the SSS policy). We have, far< j < M, M . .
>3 S wrremnri) [T - 200)
PTs B i Jj=1 ri,...,rMm ur €L (uj)
Z@ Z:T [W T ) 1y () X for i = 1,...,n, by the optimal choice of the;. Together
""" M with (15), this proves the lemma. ]
; Using Lemma 2, (14) implies
I[I A=) (13)
i E[AL(X2(kT))|Q(KT) = d]
M
We add and subtra@T’ EJ L gji ™S to the right hand side < MT? (C2 .+ A2 ) + QTZ gi(Nj — pl"s)
of (12) to get =
[AL(XT(kT))|Q(kT) = q] < MT? (Cr2ndx + Ar2ndx) — MT? (02 + A2 QETZ Qj)\J
2TZq, N — P )+ -
= MT2 (Cr%ldx + AIQI‘I&X) - 2€TAmax Z qj- (16)
P j=1
2T (Z ap; " Z GE[F;(RT) Q(RT) = Q]) Taking expectations over both sides of (16) and summing from
k=1,...,K leads to

(14)

The crucial observation here is that the scheduling policy

PT is designed su<_:r_1 that the last term above, in round brackets, < MT? (Crgnax n A?nax) 9T Ay Z Z Q; (kT)
is always non-positive P
—1j=

E[L(X7 (K + 1)T))] - E[L(X(T))]



Rearranging terms and noting thatQ((K+1)T")) > 0 yields

=3 Eig ) < X

=

Together with the fact that arrivals and channel states are
bounded, this means that the (irreducible and aperiodgtgay 21]
state processXr(t),t = 1,2...

I TM(A2,, +C2.)

2¢T'K 2¢

k=1j=1
K M
1 TM(A2,.+C2.)
li - E (ET)] < max max
EI(ILSEOPK;; (Q;(kT)] < 5

(17)

< 0.

is positive recurrent. This

completes the proof. [ |
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